Abstract
Cellular identification of color receptors in crayfish compound eyes has been made by selective adaptation at 450 nm and 570 nm, wavelengths near the λmax's of the two retinular cell classes previously demonstrated. By utilizing earlier evidence, the concentration of lysosome-related bodies (LRB) was used to measure relative light adaptation and thus wavelength sensitivity in 665 retinular cells from six eyes. The observed particle distributions demonstrate the following. Both violet and yellow receptors occur ordinarily in each retinula. Of the seven regular retinular cells two (R3 and R4 using Eguchi's numbering [1965]) have mean sensitivities significantly greater to violet and less to yellow than the other five. The latter apparently comprise "pure" yellow receptors (R1 and R7) and mixed yellow and violet receptors (R2, R5, and R6). Explanations of such ambiguity requiring two visual pigments in single retinular cells or intercellular coupling of adjacent neuroreceptors are apparently precluded by previous evidence. Present data imply alternatively some positional variability in the violet pair's location in individual retinulas. Thus R3 and R4 are predominantly the violet receptors but in some retinulas R2 and R3 or R4 and R5 (or rarely some other cell pairs) may be. The retinal distribution of such variations has yet to be determined. In agreement with intracellular recordings the blue and yellow cells here identified belong to both the vertical and horizontal e-vector sensitive channels.
Full Text
The Full Text of this article is available as a PDF (1.2 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Eguchi E., Waterman T. H. Cellular basis for polarized light perception in the spider crab, Libinia. Z Zellforsch Mikrosk Anat. 1968;84(1):87–101. doi: 10.1007/BF00345984. [DOI] [PubMed] [Google Scholar]
- Eguchi E., Waterman T. H. Changes in retinal fine structure induced in the crab Libinia by light and dark adaptation. Z Zellforsch Mikrosk Anat. 1967;79(2):209–229. doi: 10.1007/BF00369286. [DOI] [PubMed] [Google Scholar]
- Eguchi E., Waterman T. H. Orthogonal microvillus pattern in the eighth rhabdomere of the rock crab Grapsus. Z Zellforsch Mikrosk Anat. 1973 Feb 12;137(2):145–157. doi: 10.1007/BF00307426. [DOI] [PubMed] [Google Scholar]
- Gribakin F. G. The distribution of the long wave photoreceptors in the compound eye of the honey bee as revealed by selective osmic staining. Vision Res. 1972 Jul;12(7):1225–1230. doi: 10.1016/0042-6989(72)90193-9. [DOI] [PubMed] [Google Scholar]
- Kirschfeld K. Das neurale Superpositionsauge. Fortschr Zool. 1973;21(2):229–257. [PubMed] [Google Scholar]
- Kirschfeld K. Die Projektion der optischen Umwelt auf das Raster der Rhabdomere im Komplexauge von MUSCA. Exp Brain Res. 1967;3(3):248–270. doi: 10.1007/BF00235588. [DOI] [PubMed] [Google Scholar]
- Kunze P. Die Orientierung der Retinulazellen im Auge von Ocypode. Z Zellforsch Mikrosk Anat. 1968;90(3):454–462. [PubMed] [Google Scholar]
- McCann G. D., Arnett D. W. Spectral and polarization sensitivity of the dipteran visual system. J Gen Physiol. 1972 May;59(5):534–558. doi: 10.1085/jgp.59.5.534. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rutherford D. J., Horridge G. A. The rhabdom of the lobster eye. Q J Microsc Sci. 1965 Jun;106(2):119–130. [PubMed] [Google Scholar]
- Scholes J. The electrical responses of the retinal receptors and the lamina in the visual system of the fly Musca. Kybernetik. 1969 Sep;6(4):149–162. doi: 10.1007/BF00274109. [DOI] [PubMed] [Google Scholar]
- Shaw S. R. Interreceptor coupling in ommatidia of drone honeybee and locust compound eyes. Vision Res. 1969 Sep;9(9):999–1029. doi: 10.1016/0042-6989(69)90044-3. [DOI] [PubMed] [Google Scholar]
- Shaw S. R. Sense-cell structure and interspecies comparisons of polarized-light absorption in arthropod compound eyes. Vision Res. 1969 Sep;9(9):1031–1040. doi: 10.1016/0042-6989(69)90045-5. [DOI] [PubMed] [Google Scholar]
- Shaw S. R. Sense-cell structure and interspecies comparisons of polarized-light absorption in arthropod compound eyes. Vision Res. 1969 Sep;9(9):1031–1040. doi: 10.1016/0042-6989(69)90045-5. [DOI] [PubMed] [Google Scholar]
- Tomita T., Kaneko A., Murakami M., Pautler E. L. Spectral response curves of single cones in the carp. Vision Res. 1967 Jul;7(7):519–531. doi: 10.1016/0042-6989(67)90061-2. [DOI] [PubMed] [Google Scholar]
- Trujillo-Cenóz O., Bernard G. D. Some aspects of the retinal organization of Sympycnus linetaus Loew (Diptera, Dolichopodidae). J Ultrastruct Res. 1972 Jan;38(1):149–160. doi: 10.1016/s0022-5320(72)90089-5. [DOI] [PubMed] [Google Scholar]
- Wald G. Single and multiple visual systems in arthropods. J Gen Physiol. 1968 Feb;51(2):125–156. doi: 10.1085/jgp.51.2.125. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Waterman T. H., Fernández H. R., Goldsmith T. H. Dichroism of photosensitive pigment in rhabdoms of the crayfish Orconectes. J Gen Physiol. 1969 Sep;54(3):415–432. doi: 10.1085/jgp.54.3.415. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Waterman T. H., Horch K. W. Mechanism of polarized light perception. Science. 1966 Oct 28;154(3748):467–475. doi: 10.1126/science.154.3748.467. [DOI] [PubMed] [Google Scholar]
- White R. H. The effect of light and light deprivation upon the ultrastructure of the larval mosquito eye. 3. Multivesicular bodies and protein uptake. J Exp Zool. 1968 Nov;169(3):261–277. doi: 10.1002/jez.1401690302. [DOI] [PubMed] [Google Scholar]
- White R. H. The effect of light and light deprivation upon the ultrastructure of the larval mosquito eye. II. The rhabdom. J Exp Zool. 1967 Dec;166(3):405–425. doi: 10.1002/jez.1401660313. [DOI] [PubMed] [Google Scholar]