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ABSTRACT The transport equation describing the flow of solute across a mem-
brane has been modified on the basis of theoretical studies calculating the drag
of a sphere moving in a viscous liquid undergoing Poiseuille flow inside a cylinder.
It is shown that different frictional resistance terms should be introduced to
calculate the contributions of diffusion and convection. New sieving equations
are derived to calculate r and A,/Ax (respectively, the pore radius and the total
area of the pores per unit of path length). These equations provide a better
agreement than the older formulas between the calculated and the experimental
glomerular sieving coefficients for [6I]polyvinylpyrrolidone (PVP) fractions
with a mean equivalent radius between 19 and 37 A. From r and A,/Ax, the
mean effective glomerular filtration pressure has been calculated, applying
Poiseuille's law. A value of 15.4 mm Hg has been derived from the mean sieving
curve obtained from 23 experiments performed on normal anesthetized dogs.

In 1951, Pappenheimer et al. developed the so-called "pore theory" to account
for the transcapillary transport of uncharged, lipid-insoluble solutes in mam-
malian muscles (24). According to this theory, convective flow and net diffu-
sion contribute to solute flow across the membrane, in this case the capillary
walls, both processes being impeded by the steric hindrance at the entrance
of the "pores" (supposed to exist between the cells) and by frictional forces
within the pores (20, 22, 23, 25).

The solute flow due to diffusion was calculated as D(c - c2)AW/Ax X
A,/A, where D is the free diffusion coefficient, cl and c2 , respectively, the
solute concentrations in filtrand and filtrate and A,/Ax the pore area freely
available to water per unit of length. The term A,/A, describes the restric-
tion to the motion and can be calculated as 1/K 1 X SD where SD = [1 -
(a,/r)]2 is the steric hindrance term (a, is the radius of the solute molecules
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and r the radius of the pores) and /K 1 , called "wall correction factor" is the
frictional resistance to diffusion in free solution relative to that in the pore.
The wall correction factor takes into account the effect of the pore walls on
the motion of the molecules; it is a function of a,/r and was calculated, first
by Ladenburg (14) (for small values of a/r), later by Faxen (5). These
formulas will be given later.

The contribution of convective flow was calculated as Qfci X (A,/IA,)
where Qf is the filtered volume per unit time. The same restriction factor
A ,/A, is used as for diffusion. Renkin later modified the restriction factor and
replaced SD by S = 2[1 - (a/r)]2 - [1 - (ad/r)]4 which better describes
the steric hindrance when Poiseuille flow takes place in the pores (25).

The transport equation for the solute is obtained by adding the contribu-
tions of diffusion and convection. Pappenheimer et al. (24) derived from the
transport equation sieving equations which allow the calculation of two pa-
rameters characterizing the permeability properties of a membrane "equiva-
lent" to the biological sieve: r the radius of cylindrical pores crossing the
membrane and A,l/Ax the total area of the pores per unit of path length. To
derive these values, experimental values for Qf and so the sieving coefficient
(qo = c2/c ) for at least two different solutes are needed (17). The validity of
the pore theory to characterize biological membranes was justified by Solo-
mon in 1968 (28).

Three objections concerning the solute transport equation may be raised.
(a) The same steric hindrance term is used for diffusion and convection.
Lambert et al. (18) recently pointed out that SD should be used for the diffu-
sion term and S, for the convection term.

(b) The same wall correction factor is used in both terms. The validity of
1/K 1 for diffusion is not questionable but its use in calculating the contribu-
tion of convective flow is incorrect. More recent work in the field of hydro-
dynamics (brought to our knowledge by B. M. Brenner [personal com-
munication]) shows that the wall correction factor must be modified
when the liquid inside the tube is not stationary (2, 8). All the authors who
have applied the sieving equations to physiological problems, including our-
selves, have neglected this fact (1, 18, 20, 21, 28).

(c) The concentration term c used to calculate the contribution of con-
vective flow is not correct if the concentrations on both sides of the membrane
are not very similar. If they are different, the transport equation has to be
integrated across the membrane. This results in introducing a mean concen-
tration , instead of cl in the calculation of the contribution of bulk flow
(12, 18).

A supplementary remark has to be made on which Pappenheimer himself
had already drawn the attention (20). If the molecular radius (a,) is greater
than 0.5r, Faxen's approximate solution for K 1 is no longer accurate enough.
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Recently exact values for K1 have been computed by Haberman and Sayre
up to a,/r = 0.8 (8).

The purpose of this paper is to show that sieving equations can be derived
in a consistent way from the Kedem and Katchalsky equation describing the
transport of solute across a membrane in terms of irreversible thermodynamics
(13). Different frictional coefficients will be proposed for bulk flow and diffu-
sion, starting from Haberman and Sayre studies.

The modified equations will be used to extract from the mean sieving curve
for [25I]polyvinylpyrrolidone (PVP) of 23 normal dogs the values of the
membrane parameters (r and A,l/Ax). The effective glomerular filtration
pressure (GFPe) will then be calculated by means of Poiseuille's law. These
results will be compared with those published recently (18).

THEORY

The following mathematical model is based on these assumptions: (a) The
biological sieve is comparable to an artificial membrane crossed by cylindrical
pores with a uniform radius r; Ax, their length, is much greater than r. (b)
Solute molecules are simulated by rigid spheres of radius a, moving slowly
inside the pores. (c) The solvent flows according to Poiseuille's law. (d) The
filtration rate is constant during the experiment and steady state is assumed.
(e) The concentrations of solute are so small that there is no interaction be-
tween solute molecules inside the pores. (f) Finally it is assumed that all
gradients are along the x coordinate. Thus the forces, flows, and velocities
are along the x axis.

Let us call c the solute concentration in the filtrand, c, that in the filtrate
(c, > c), and c, the concentration at any point in the pore. It must be kept
in mind that c, will change along the pore.

A molecule of solute at point x in a particular pore will be acted upon by
thermodynamic forces as well as by frictional forces. It is assumed that in a
steady flow, the thermodynamic force, f,, acting on the solute is counter-
balanced by the frictional forces and that these latter forces are additive (13).
Thus:

f. = -8w - 8m , (1)

where 4,. and ,.m are the frictional forces between one molecule of solute and
water or membrane.

According to hydrodynamic convention, the frictional forces between two
components are proportional to their relative velocity (13). Choosing the
membrane as reference:

, = -f,(UV. - (),

Sa0m = -f mV a,
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where v, and v,, are the velocities of solute and water relative to the membrane,
f ,, and f,,, the frictional coefficients for one molecule of solute. Thus:

f, = fi(v. - v) fs = v.(f, + fm) - fv . (3)

The two terms on the right-hand side of Eq. 3 are, respectively, (a) the drag
force on a molecule of solute moving with speed v in a pore containing sta-
tionary water and (b) the drag force exerted on a stationary molecule of
solute by a flow of water moving with speed v, .

Haberman and Sayre (8) have calculated the drag force of a sphere of
radius a, moving slowly on the axis of a cylinder of radius r containing a
viscous liquid. The drag force is enhanced by the presence of the walls of the
cylinder. Thus the drag felt by a sphere moving in a stationary liquid is K1
times greater than the drag in an infinite medium: v fo,, . Likewise, the drag
on a stationary sphere in a moving liquid (according to Poiseuille's law) is
K, times greater thanfo , v . Kt and K2 are both functions of a,/r. The values
to be given to K, and K2 will be discussed later.

The drag forces on our molecule are thus:

va(f. + fm.) = fKiv , (4)

and

vzfe, = fK 2v,

The values for K1 and K, have been calculated only for spheres moving on the
axis of a cylinder. But we shall assume that K1 and K2 are constant throughout
the pore. This will be justified in the discussion. By substitution in Eq. 3,
Eq. 5 is obtained:

f Kv - K2 v,. (5)

Let us write this equation for 1 mol of solute acted upon by a thermodynamic
force X, = Nof, and let F 2 , = NofJ 0w be the frictional coefficient of 1 mol of
solute in an infinite medium (No is the Avogadro number).

Kv -Kv , - K2V. (6)
Fow

The thermodynamic force is equal to the gradient of chemical potential
(A,). As all gradients are along the x coordinate:

X, = -d. (7)
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Following Kedem and Katchalsky (12) we shall make the assumption that
the chemical potentials for ideal solutions may be used:

d., _ dP RTdc,
dx dx + ,dx (8)

where V, is the partial molar volume of solute, P the effective filtration pres-
sure, R is the ideal gas constant, T is the absolute temperature. Introducing
Eqs. 7 and 8 in Eq. 6 we find:

_dP RTdc. = Fe(Kvs- Kiv), (9)
d-x c d(

and multiplying both sides by c,

--Vc, dP -RT dX = F,,(Kvc, - K2vc 8 ). (10)
d- dx

vac, is the solute flow per unit area and unit time, j,. Thus:

fVc8 dP RT dc,
-Fdx F- x~- = Kij. - K2v.c., (11)

or

D d, K2 1 - c, dP
K 1dx K1 K1 Fo dx' (12

where D = RT/FO°, is the free diffusion coefficient of the solute in water.
Let us now calculate the total solute flow for one pore, (,) pore. We shall

assume that the flow of water in the pore is laminar. Then, v = V(1 - (p2/r2))
where V is the axial velocity of the water and p the distance from the axis.
Besides it will be assumed that the molecules are evenly distributed over the
cross section of the pore, their centers being located inside a circle of radius
r - a. Then, c, is constant for p < r - a, and is equal to O for p > r - a .

(j) pore = dp-D d + K I 2 dx. .)
K{ dx ( 92 , dxP

As

1 f- 211p dpD d d, H (r - a) 2

K, Jo 2np dx~dr K1 dxr

do 2IIp dpKKcV =
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I1 f - a2p a dpK2cV = K2 - a) 4,
- , 2 -TK1 r2

fI- , ' 2 p - c, dP V, c.H dP 2,
2Hp dpV~ T - 7 - -(r - a),

K-- JO PV21 Fo* dx K1 Fo8W dx

D dcII 2( a8 )2+ K2 CI 2 a.)2

4I a.)4} cl dP 2,( -;X 14
(6 c) dPr 1-

2\,--/( K2 Fo, dx r] 

The mean solute flow per unit area and unit time J. = (j.) pore/Hr2 is:

D dc, f a,)\ K2 J 2(1 a)2 ( 1 )4}
K1 dx r K V r r

(15)
V* c5 dP 1_ (15)
K1 Fow dx, x r

In this equation J, is the water volume flow; its value is LAVP times the mean
velocity of water (. and V. being, respectively, the mean concentration and
partial molar volume of water). As the mean velocity in Poiseuille flow is half
the axial velocity and as V is very close to unity, J, = V/2.

Eq. 15 is a local equation. To become useful for the interpretation of experi-
mental data, this equation must be integrated across the membrane (13). As
-dP/dx is constant, it may be replaced by AP/Ax the gradient of effective
filtration pressure. Let us perform the integration:

J, dx = (- S dc + -c1 VJS, dx±- S dx). (16)
K 1 K1 K1 Fx, ax

As J. is constant along the pore in a steady flow, we find:

D cx -- c K2 1 V~,~APDJ,= D S C1 + K2 + S (17)A "x K 1 KD F, ax

where

8 = ~x~ A c. dx,

S= (I _ a .

and

r) ( r)
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Eq. 17 has a simple physical interpretation. The first term on the right-hand
side describes the transport of solute by diffusion, the second term, the trans-
port by convection (molecules being dragged along by the fluid) whereas the
third term represents the flow of solute due to a difference in effective pressure
across the membrane. The steric hindrance factors Sy and SD describe the
"reflection" of molecules hitting the rim of the pore (these molecules are
unable to enter the pore and hence do not contribute to the flow) (25). As
the laminar flow drives proportionally more molecules through the central
area of the pore than diffusion, the steric hindrance factor for convection S,
is greater than that for diffusion, SD .

To calculate the value of e,, we must know how the solute concentration
c, behaves along the pore. Z, is calculated as follows: J, in a steady flow, being
constant along the pore, (d/dx)J, = 0. Derivation of Eq. 15 with respect to
x is:

D d2c, K2 I , AP dcs -- SD- + S + -oSD.K1 dx2 K1 >I R+K1 F°, Ax D dx-

Resolving this linear differential equation:

K'z

c, = klei + k2 (18)

where

K= DK2 JA x + FA D"

kl and k2 are constants which are determined by the limit conditions c, = cl
at x = 0 and c = c2 at x = Ax.

k cl--c2
- eK'

k2 2 - Cl e

1 - e

The mean value of the concentration in the pores, ,., is

A ixf c, dx = c2 -- cl eK ( 19 )2

Exalf cK (19 1 -- e ' K'19)

Let us replace in Eq. 17 E. by its value. We find the transport equation for
the solute:

J = (K- S 1 + AP SD ) 2-cie' ) (20)
K, E ,- AX I -; e·
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This equation differs from the equation we used in a previous work (18) on
two points. First, the formula giving the mean concentration e, is more accu-
rate. Then, we have shown that different wall correction factors should be
used: 1/K1 for diffusion and K2/K1 for convection.'

Several authors have calculated the drag force on a sphere (of radius a)
moving axially in a cylinder containing a viscous liquid. When the liquid is
stationary, the drag force is

drag = 6avK1

when 77 is the dynamic viscosity (poises) and v, the sphere velocity.
The first formula given for the coefficient 1/Kl is due to Ladenburg (14):

1 1

K, + (21)
1 + 2.4-

r

valid only within narrow limits (0 < a/r < 0.1).
Faxen has proposed the following equation (5):

1 =a (a)' (a)"
K = 1 - 2.104 - + 2.09() - 0.95 (22)

which is valid in the range 0 < a/r < 0.5. Since Eq. 22 neglects the terms of
power higher than 5, Bohlin (2) has introduced higher order terms, extending
the validity of his formula up to a/r < 0.6. Bohlin's equation, however, is of
little help in solving our problem. For a/r > 0.6 his formula leads to negative
values. Haberman and Sayre have given a more accurate formula, although
still approximate (8):

1 -2.105 a + 2.0865 (a) - 1.7068 (a)' + 0.72603 (a) (
1 = (23)

K, 1 - 0.75857

When the liquid is moving inside the cylinder (with axial speed V far from
the sphere) Haberman and Sayre have shown that the drag is

drag = 6IIra(v.K1,- VK2),

and they give for K2 the formula

1 - ( ) - 0.20217
K2 = (24)

1 -2.1050a 2.0865 ) - 1.7068 () + 0.72603(a
r (a) 2.865

1 See Addendum.
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In addition they have calculated "exact" values for K 1 and K2 for several
values of a/r up to 0.8. Fig. 1 shows 1/K 1, K 2/K 1, as well as SD/K1 and
SFK2/K 1 in function of a,/r.

APPLICATION TO GLOMERULAR SIEVING

We shall now express the transport equation in terms of renal physiology.
J, and J, will be replaced by quantities readily derived from sieving measure-
ments.

Let Qf be the filtration rate, A the total area of the pores. The capillary
and urinary compartments are assumed to be well stirred so that the solute

1.0 1.0

0.9 0.9

0.8 K, 0.8

0.7 0,-0.7

0.6 0.6

0.5 0.5

0.4. __ 0.4

0.3 \0.3 

0.2 0.2

0.1 0.

0.1 02 0.3 0.4 0.5 0.6 0.7 0.8
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 r

FIGURE 1. Relationship between 1/K1 , K2/K, SD/K, (K2/K1) X Sp,, and a,/r.

concentration in each is homogeneous. The sieving coefficient o is the ratio of
filtrate to filtrand concentration o = c2 /cl. Then J, = Qf/A,, and J. =

c2J = c 1Qf/A.
The third term in Eq. 17 is negligible as long as e,V, is close to unity;

E ,V is then very small (dilute solutions). We find a simplified formula for ,
by replacing K' by

K = K SI Ax. (25)
D AP SD

Replacing J, and J, in Eq. 20 by their values and dividing both members by
QfI/A, we find

K2 C2 - eK
cp = ,K SPl eK 
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and, by using the relation s° = cS/cl, one obtains

K2,

, (26)
Kl St)

An explicit expression for A/Ax may be obtained starting from Eq. 26,

1 K2 S

1 Sp
K1

Taking the natural logarithm of both members,

I K2 S,

-K = In { K, 1
and, by using Eq. 25

Ap K2 Q S 1
Ax D S- I *; S (27)

K - K so4

The effective glomerular filtration pressure, AP (dyn cm-2) is calculated by
using Poiseuille's law:

AP 8rlQ 1
r2 Af' (28)

Ax

where is the dynamic viscosity (poises), A., the pore area for water flow
equal to

Ap {2(1 - a)2 (1 - ) 

a. is the radius of the water molecules (1.5 A); since Af and A, are very close
together, AP will be calculated introducing A , in Eq. 28.
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RESULTS

Fig. 2 shows the mean sieving curve for [121I]PVP derived from 23 experi-
ments performed on normal anesthetized dogs with a mean arterial pressure
between 120 and 150 mm Hg. The sieving coefficients (ordinates) were cal-
culated as:

urinary clearances of ['25I]PVP fractions
GFR

The glomerular filtration rate (GFR) was measured as the urinary clearance
of inulin. Separation of PVP equimolecular fractions from the urine and the
plasma was performed by Sephadex G-200 gel filtration (Pharmacia Fine
Chemicals Inc., Uppsala, Sweden) (10, 16). Since PVP is not significantly
reabsorbed by the renal tubules (15), the ratio

urinary clearance of [' 2 I]PVP fractions _ c2
GFR cl

Molecular sizes (abscissas) were calculated as radii of equivalent spheres
from the chromatographic data according to Hardwicke et al. (9). Since the
values for K 2 , K 1 , SF, and SD in Eq. 26 and Eq. 27 depend on the pore radius,

C2

N: -1--~ 1, As-- experimental curve
- calculated curve

075 

0.50

025-

19 21 23 25 27 29 31 33 35 
3 7

as

FIGURE 2. Glomerular sieving coefficients s° for [126I]PVP fractions with an equivalent
molecular radius a between 19 and 37 A.
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r, all being functions of a,/r and since the value for K in Eq. 25 depends on
the value given to Al/Ax, those values for r and A, /Ax giving the best fit to
the experimental data, within the limits a, = 19 to 37 A were calculated by
computer using a step by step approach. The solution minimizes a sum of
weighted quadratic errors, ZE which is calculated as follows:

2 (calC - (Pexp
a. 19 , /,exp

K 2 and K1 were obtained by interpolation on a logarithmic scale from the
"exact" values given in Haberman and Sayre's tables (8). The calculated
curve is also represented in Fig. 2.

Table I shows the values derived for r, A,/Ax, GFP, (equal to AP) and
ME according to Eqs. 26 and 27. For comparison the same parameters have
been calculated within the same limits according to the equations previously
proposed by Lambert et al. (18). The latter do not take into account Poi-

TABLE I

VALUES DERIVED FOR r, Ap/Ax, GFP, (EQUAL TO AP) AND ZE

ACCORDING TO EQS. 26 AND 27

r A,/Azx GFP, ZE

A cm mm Hg

Eqs. 26 and 27 50.66 7,510,000 15.4 0.0108
Lambert et al. (18) 49.47 15,340,000 9.5 0.0183

seuille flow in calculating the "wall factor" restricting convective flow. These
authors also use the approximate values derived for K1 by Faxen (5) instead of
Haberman's exact values.

The new equations do not modify the mean value for r but increase GFP.
by approximately 60%. It is noteworthy that E is much lower using the
new sieving equations. The improvement in the alignment of the sieving curves
results from a better fit between the sieving coefficients (calculated and
experimental) for the smallest molecules here considered (9 and p21).

A more analytical method has been applied to calculate r and A,/Ax.
Paired values for pv and D are introduced in Eq. 27; Ap/Ax is then eliminated
from this system of equations and r is determined. The same procedure is used
for the pairs: a, = 19 and 23 A and so on until a, = 35 and 39 A. The mean
value for r(r) is thereafter introduced in Eq. 27 to calculate the A,l /Ax value
corresponding to each experimental value for o. The same procedure is used
to calculate other values for and A,/Ax by utilizing the sieving data within
more narrow limits. Those paired values for r and Ap,/Ax minimizing BE are
definitively accepted.
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Fig. 3 illustrates how r varies according to the molecular sizes used in the
calculations; r is almost constant when the new sieving equations are utilized
(Fig. 3 B) but increased progressively with molecular size when calculated
according to the older equations (Fig. 3 A). Although the introduction of the

g19 still provides a lower value for r, the new equations make the isoporous
model much more reliable, at least in the range of molecular sizes 21-37 A.

Whatever the mathematical model used, the value derived for A,/Ax is too
high when the oi9 is introduced together with r. The same observation was

A B

Ap cm

75- -15x106

r

50- r45 -1Ox10
6

25- J =49.5 F = 50 6 - Sx106
A =15,340,000 cm -= 7,510,000 cm

GFPe 8.5 mm Hg GFPe,=15.
4

mm Hg

E 0.0183 XE 00109

O--i- T-TTT I { j T'T r ---- I T 
21 25 29 33 37A 2125 29 33 37 A

FIGuRE 3. Values for r and A,/Ax calculated according to the "analytical method"
(see text). At left, using the sieving equations previously proposed (18). At right, using the
new sieving equations developed in the present study.

made with the older model. The difference between the calculated and the
experimental values for i9g was even more pronounced. For PVP molecules
with an equivalent radius between 23 and 35 A, Ar/Ax is constant. Again
A,l/Ax increases when the sieving coefficients for molecules larger than 35 A
are used in the calculations. This observation is difficult to explain. It may
prove the presence of a small number of larger pores (1, 18). However it
should be kept in mind that experimental errors are more likely to be greater
in this range of molecular sizes (on account of the small excretory rates of
these molecules). Finally the theoretical model may fail to be correct for these
large molecules: for instance, the values for K2 and K1 are exact only for
a,/r < 0.8; this limit is reached for molecules with a radius of 39 A.
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DISCUSSION

A. Assumptions of the mathematical model

A Poiseuille flow inside the pores has been assumed. Indeed, the Reynolds
number is very small on account of the low velocity of the fluid in the pores.
According to Landau and Lifshitz (19) its value is:

2r-C
P

where v is the kinematic viscosity (dynamic viscosity divided by density)
and v, the mean velocity of the fluid. R. for the glomerular membrane is ap-
proximately 0.5 X 10-6.2 Simultaneously the particle Reynolds number has
been calculated as (27):

Rem v 

For molecular sizes of 19 and 37 A, R,, is, respectively, 1.37 X 10-8 and
10 X 10-8 . According to Goldsmith and Mason there is no radial movement
of rigid spheres in a cylindrical tube for R., values lower than 10- 6 (7).
Therefore it seems justified to consider the molecular concentration identical
at any point of the available area of the pore section. The word "concentra-
tion" deserves some explanation. Since tracer amounts of [1261]PVP are in-
jected into the animals, a relatively small number of molecules are present in
the membrane. It has been calculated that only 1 pore among 600 contains a
molecule of PVP. Therefore concentration in a part of a pore means the
probability for a PVP molecule to be localized at a given point of the avail-
able pore volume. Considering the whole set of pores, it represents the number
of molecules located at homologous points per unit of volume.

In our calculations we assumed that K 1 and K 2 are constant over the cross
section of the pore. This is certainly not exact. However experimental evi-
dence shows that K 1 and K 2 are not very much different for off-axis motion.
Francis has measured the terminal velocity of spheres falling in a vertical
tube filled with a stationary viscous liquid. The values for K1 did not differ
significantly according to the position of the sphere with respect to the wall
(6). Goldsmith and Mason have studied the movement of a sphere in suspen-
sion in a liquid undergoing laminar viscous flow. The translational velocity
of the sphere is proportional to K 2 /K 1. Its value has been measured experi-
mentally for spheres moving at different distances off the axis (7). These meas-

2 Such low values satisfy one of the assumptions of Haberman and Sayre and allow to omit the inertia
terms in the Navier-Stokes equation from which start all calculations.
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urements make it possible to calculate how K 2/K 1 varies as a function of the
radial distance between the center of the sphere and the axis. If PVP mole-
cules with an equivalent radius between 19 and 37 A are distributed through-
out the pore section area, the flow of solute differs by less than 10% from the
value calculated using the axial values for K 2 and K1 .

The other assumptions on which the mathematical model is based will not
be discussed in detail. Objections may be raised that the PVP molecules are
probably neither spherical nor rigid (26).

Likewise the glomerular basement membrane is much more likely a fibrillar
network than an idealized isoporous membrane with cylindrical pores. How-
ever it is uncertain that the basement membrane is the ultimate structure
responsible for the molecular sieving in the range of molecular sizes here con-

cS(x)
C1l

1.0- *-

_6 --.

0.6 -

0.4 - -21 A

--- 37.

0.2-

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.o
X

FIGURE 4. Decrease of the normalized [2I]PVP concentration c(x)/c1 along the pore
for different molecular sizes.

sidered (11, 29). It is therefore difficult to avoid making major simplifications
since experimental evidence is lacking concerning the structure of the sieving
membrane and the physical characteristics of the PVP molecules.

B. Concentration of PVP molecules inside the pores and the respective contributions
of convection and diffusion

The concentration of PVP molecules (with the meaning defined above) along
the pores has been calculated according to Eq. 18 for three molecular sizes
(21, 29, and 37 A) using Q = 0.709 ml s - ' (mean value for GFR of 23 normal
dogs) and the values for r and A,/Ax given in Table I. The concentration
decreases curvilinearly as shown in Fig. 4. If diffusion alone were responsible
for the transport of solute, the concentration would decrease linearly. As the
relative part of convection increases, the curve separates more and more from
the straight line (3, 4).
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The parts taken by convection and diffusion in the transport of PVP mole-
cules are shown in Table II. Convective flow prevails at all the molecular
sizes, especially for the smallest and the largest molecules in the range here
considered. The relative part of diffusion is maximum at intermediate molecu-
lar sizes (27 A). For larger molecules it falls rapidly since the decrease of
I/K 1 is more rapid than that of K 2/K 1 .

This explains the intersection of the curves representing the concentration
of PVP molecules in relation with distance inside the pores. Table II also
shows the contribution of the third term present in Eq. 17 (1/K 1 ) (V 8e8/Foo) X
(AP/Ax)SD . The values obtained are low enough to be neglected in the range
of molecular sizes under consideration.

The mean concentrations inside the pores , have been calculated using
Eq. 19. They have been normalized with respect to cl (Table III). The
arithmetical means (cl + c2)/2cl are given for comparison. Both mean values

TABLE II

CONVECTION AND DIFFUSION IN THE TRANSPORT OF PVP MOLECULES AND
THE CONTRIBUTION OF THIRD TERM OF EQ. 17

Diffusion 1 P.8 AP

as Diffusive flow Convective flow diffusion + convection Ki R T Ax Cl

A

19 0.2290 0.3756 0.379
21 0.2305 0.3195 0.419 0.0061
23 0.2146 0.2635 0.449
25 0.1882 0.2150 0.467 0.0027
27 0.1472 0.1719 0.461
29 0.1064 0.1372 0.437
31 0.0709 0.1093 0.394 0.0007
33 0.0426 0.0881 0.326
35 0.0243 0.0710 0.255 0.0002
37 0.0122 0.0566 0.177

TABLE III

MEAN CONCENTRATIONS INSIDE THE PORES Us
WITH RESPECT TO cl

NORMALIZED

as ( calculated Kl K2 C,/l (C + c2)/2 ci

19 0.850 3.173 2.879 0.928 0.925
21 0.774 3.784 3.358 0.893 0.887
23 0.669 4.725 4.084 0.847 0.834
25 0.560 5.668 4.786 0.803 0.780
27 0.446 7.189 5.888 0.762 0.723
29 0.341 9.226 7.332 0.733 0.670
31 0.253 12.080 9.257 0.722 0.627
33 0.184 16.670 12.330 0.736 0.592
35 0.134 23.010 16.440 0.770 0.567
37 0.097 34.430 23.685 0.828 0.548
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decrease with increasing molecular sizes up to 31 A. The differences are
negligible for small molecules but increase rapidly for molecules greater than
27 A. For molecular radii greater than 31 A, ,/cl increases with molecular
size, illustrating the greater part of convection in the total transport of the
largest molecules.

To conclude, the biomathematical model used to study the permeability of
a porous membrane to macromolecules such as [12I]PVP (actually the glomer-
ular membrane) has been modified on the basis of theoretical studies cal-
culating the drag of a sphere moving in a viscous liquid undergoing a Poiseuil-
lian flow inside a cylinder. The new sieving equations differ essentially from
those proposed in a previous study by the value given to the wall correction
factor used to calculate the contribution of convective flow. They provide a
better agreement than the older formulas between the calculated and the
experimental values for op, the sieving coefficients of PVP fractions with a
mean equivalent radius between 19 and 37 A (sieving coefficients varying
between 0.9 and 0.1).

The mean effective glomerular filtration pressure has been calculated from
r and A,/Ax the parameters describing the permeability of the equivalent
isoporous membrane, applying Poiseuille's law. A value of 15.4 mm Hg was
derived from the mean sieving curve obtained from 23 experiments performed
on normal anesthetized dogs.

LIST OF SYMBOLS

a, Radius of solute molecules (A = 10- 8 cm)
a. Radius of water molecules (A = 10- 8 cm)
A, Total pore area (cm 2)
cl Solute concentration in filtrand (mol ml- ')
c2 Solute concentration in filtrate (mol ml-l)
c, Solute concentration in the pores (mol ml- ')
E, Mean solute concentration in the pores (mol ml- ')
D Free diffusion coefficient of solute in water (cm2 s- 1)
F,, Molar frictional coefficient in infinite medium (dyn s cm- l

mole-1)
j. Solute flow per unit time and area (mol cm- 2 s-')
J, Mean solute flow (mol cm-2 s- 1)
J, Water volume flow (ml cm-2 s - ')
K 1, K2 Wall correction factors (dimensionless)
K = (K2QfSjr/DASD)AX
K = [(K 2Q fS1/DASD)Ax] + V,AP/F°D
AP, GFP. Effective filtration pressure (dyn cm-2 )

Qf Filtration rate (ml s-')
r Radius of the pores (A)
i Mean radius of the pores (A)
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SD, SF Steric hindrance restriction factors (dimensionless)
Uv Velocity of the solute (cm s- ')
v, Velocity of the water (cm s- ')
V Axial velocity of water in Poiseuille flow (cm s- ')

1V Partial molar volume of solute (ml)
Ax Length of the pores (cm)
;E Sum of weighted quadratic errors
t/ Dynamic viscosity (P = dyn s cm 2 )

Sieving coefficient (dimensionless)

ADDENDUM

C. P. Bean has independently reached the same conclusion concerning wall correction
factors. (1972. In Membranes. G. Eisenman, editor. Marcel Dekker Inc., New York.
1: 32.)
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