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ARTICLE

Simultaneous Discovery and Testing of Deletions for Disease
Association in SNP Genotyping Studies
Jared R. Kohler and David J. Cutler

Copy-number variation (CNV), and deletions in particular, can play a crucial, causative role in rare disorders. The extent
to which CNV contributes to common, complex disease etiology, however, is largely unknown. Current techniques to
detect CNV are relatively expensive and time consuming, making it difficult to conduct the necessary large-scale genetic
studies. SNP genotyping technologies, on the other hand, are relatively cheap, thereby facilitating large study designs.
We have developed a computational tool capable of harnessing the information in SNP genotype data to detect deletions.
Our approach not only detects deletions with high power but also returns accurate estimates of both the population
frequency and the transmission frequency. This tool, therefore, lends itself to the discovery of deletions in large familial
SNP genotype data sets and to simultaneous testing of the discovered deletion for association, with the use of both
frequency-based and transmission/disequilibrium test–based designs. We demonstrate the effectiveness of our computer
program (microdel), available for download at no cost, with both simulated and real data. Here, we report 693 deletions
in the HapMap 16c collection, with each deletion assigned a population frequency.
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There are a number of forms of copy-number variation
(CNV)—including aneuploidies, somatic chromosomal
changes, duplications, and deletions—that have long been
known to play a crucial, causative role in disease.1–6 Ad-
ditionally, CNV is known to affect drug and immune re-
sponse as well as to confer resistance or susceptibility to
disease.7–11 However, little is known regarding the role of
CNV in complex disease.12–14 For example, mental retar-
dation is a genomic disorder that results from abnormal
gene dosage due to CNV and that affects 2%–3% of the
population, with an unknown genetic cause in about half
the cases.15–17 Diagnostic studies17–19 that use array com-
parative genomic hybridization (CGH)20,21 have found clin-
ically relevant microdeletions and duplications in 110%
of cytogenetically normal patients with mental retarda-
tion and/or congenital abnormalities. Hence, submicro-
scopic deletions and duplications are being missed when
current diagnostic procedures are used, leaving many in-
dividuals with undiagnosed or even misdiagnosed ge-
nomic disorders.

Moreover, the extent to which CNV contributes to
general non–disease-related genetic diversity is largely un-
known.14,22 Initial studies performed with the use of array
CGH23 and representational oligonucleotide microarray
analysis24,25 elucidated hundreds of variable loci, many of
which occur near regions of segmental duplication.26–28

Recently, whole-genome studies by Redon et al.29 and
Wong et al.30 have reported 1,447 and 3,654 variable loci,
respectively, in nondiseased individuals, suggesting that
CNV contributes significantly to genomic variation. How-
ever, given the limited resolution of whole-genome mi-
croarray scans, these studies are unable to detect small-

scale changes and may still underestimate the contribu-
tions of CNV to genetic diversity and disease. Fine-scale
approaches such as digital karyotyping31 and fosmid-pair
end sequencing32 are more robust but rely on DNA-se-
quencing technologies that are relatively expensive, mak-
ing it difficult to conduct large-scale genetic studies.

SNP genotyping technologies, on the other hand, have
recently become much less expensive and can type hun-
dreds of thousands of SNPs in a single experiment, thereby
facilitating large population studies.33–35 Our goal was to
create analytical techniques capable of using high-density
SNP genotypes to detect CNV in relatively large sample
sizes. To do so, we have developed computational tools
to infer the presence of DNA deletions by detecting their
distinguishing signatures on the basis of inconsistencies
in Mendelian segregation, departures from Hardy-Wein-
berg ratios, and unusual patterns of missing data.

A number of deletions have been mapped by observing
Mendelian inconsistencies in pedigrees,36–38 and depar-
tures from Hardy-Weinberg equilibrium have been used
to detect null alleles as early as the ABO blood-group stud-
ies in 1919.39 Patterns of inheritance and Hardy-Weinberg
equilibrium can be confounded by the presence of ge-
notyping error and missing data.40–42 Even nominal error
rates of 0.5%–1% can mask clinically significant results.43

Genotyping error and missing data can also complicate
the detection of deletion signatures in SNP genotype data,
since many true deletions are falsely categorized as errors
or missing genotypes; conversely, errors or missing data
could be mistaken for a deletion (fig. 1). To this end, we
developed a single modeling framework to detect dele-
tions in familial SNP genotyping studies, using a maxi-
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Figure 1. Observing Mendelian inconsistencies in trios. True genotypes a1 and a2 are observed as A1 and A2, respectively, where a0

is the null allele and N is missing data. A heterozygous deletion in a parent with no genotyping error (A) leads to the same observations
as genotyping error in a parent with no deletion (B). Homozygous deletions are observed as missing data (C).

mum-likelihood approach that simultaneously estimates
allele frequencies, genotyping-error rates, missing-data
rates, and deletion frequency.

Two similar programs have been designed to harness
information from SNP genotype data,44,45 but both of these
approaches focus on the relatively narrow question of
whether a deletion is present at a given SNP. Our approach
not only detects deletions at high power but also reports
accurate estimates of the deletion frequency as well as
informative transmission counts for the deletions. This
tool, therefore, lends itself to the discovery of deletions
in large familial SNP genotype data sets and to simulta-
neous testing of the discovered deletions for association,
with the use of both frequency-based and transmission/
disequilibrium test (TDT)–based approaches.46

Material and Methods

We model a single SNP as a three-allele system. Call those three
alleles “a1,” “a2,” and “a0,” where a0 is a deletion. For any given
individual, we can never know his or her true genotype with
certainty. Instead, we estimate that genotype with an assay. By
their nature, most SNP assays can return only one of four possible
observations, which we think of as estimates of the genotype.
Those possible observations are A1A1, A1A2, A2A2, and NN, where
NN represents “missing data” (i.e., no estimate at all of the ge-
notype). We formulate the problem of detecting a deletion in
genotype data as one of estimating the frequency of the a0 allele,
given the observed genotypes for a collection of trios (two parents
plus offspring). If we estimate the frequency of a0 to be statisti-
cally significantly 10, we conclude that a deletion exists at this
SNP. If we find statistically significant evidence of a deletion at
multiple adjacent SNPs, we combine the information between
those SNPs. This process is described in detail below.

SNP-by-SNP Analysis

We adapt our modeling framework from Mitchell et al.40 Let E
be a 9#4 matrix whose rows correspond to the 9 possible true
genotypes for an individual (i.e., a1a1, a1a2, a1a0, a2a1, a2a2, a2a0,
a0a1, a0a2, and a0a0) and whose columns correspond to the 4
possible observable genotypes (i.e., A1A1, A1A2, A2A2, and NN).
The value stored in row i column j is the probability that the true

genotype i will be observed to be j. In the absence of genotyping
error and missing data, we assume that a1a1, a1a2, a2a1, and a2a2

would be observed to be A1A1, A1A2, A1A2, and A2A2, respectively.
We also assume that individuals containing a heterozygous de-
letion would be observed to be homozygotes for the other allele.
Thus, individuals with a1a0, a2a0, a0a1, and a0a2 genotypes would
be observed to have A1A1, A2A2, A1A1, and A2A2 genotypes, re-
spectively. Individuals with homozygous deletions would be ob-
served as having missing data. In the presence of genotyping
error, we assume that a homozygote is miscalled as a heterozygote
with probability e1, that a homozygote is miscalled as the other
homozygote with probability e2, and that a heterozygote is mis-
called as a homozygote with probability e3. In the presence of
missing data, we assume that the a1a1, a1a2, a1a0, a2a1,a2a2, a2a0,
a0a1, and a0a2 genotypes can give missing data with probabilities
mAA, mAa, mAA, mAa, maa, maa, mAA, and maa, respectively. These as-
sumptions yield the “true-child/observed-child” E matrix (table
1).

The “true-parent/observed-parent” genotype matrix, P, has di-
mensions 81#16 (not shown). The 81 rows represent all possible
combinations of true parental genotypes, since there are 9 pos-
sible true genotypes for each parent. The 16 columns represent
all possible observations for each set of parents, since there are
4 possible observations for each parent. The value stored in po-
sition Pi,j is the probability that true parental combination i will
be found in the general population and will be observed to be j.
With the assumption of Hardy-Weinberg equilibrium for both
sexes and random mating, if , , andp p Freq(a ) r p Freq(a )1 0

, then the frequency of true parentalq p (1 � p � r) p Freq(a )2

combination i is , where , , and are, respectively, thei i i0 1 2r p q i i i0 1 2

number of a0, a1, and a2 alleles possessed by parental combination
i. The probability that parental combination i will be observed
to be type j can be found by multiplying the appropriate elements
of E. Thus, if i corresponds with mating , and if ja a # a a1 2 1 0

corresponds with the observation , will containA A # A A P1 2 1 1 i,j

2rp (1 � p � r)(1 � 2e )(1 � 2e )(1 � m )(1 � m ) .1 3 AA Aa

The “true-parent/true-child” genotype-transmission matrix, M,
has dimensions 81#9 (not shown). The 81 rows correspond with
all possible combinations of true parental genotypes. The 9 col-
umns correspond with the 9 possible true genotypes for an in-
dividual. The value stored in Mi,j is the probability that the child
of true parents i will have true genotype j. Thus, if row i corre-
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Table 1. True-Child/Observed-Child E Matrix

True
Genotype

Observable Genotype

A1A1 A1A2 A2A2 NN

a1a1 (1 � e � e )(1 � m )1 2 AA e (1 � m )1 AA e (1 � m )2 AA mAA

a1a2 e (1 � m )3 Aa (1 � 2e )(1 � m )3 Aa e (1 � m )3 Aa mAa

a1a0 (1 � 2e )(1 � m )1 AA (e )(1 � m )1 AA (e )(1 � m )1 AA mAA

a2a1 e (1 � m )3 Aa (1 � 2e )(1 � m )3 Aa e (1 � m )3 Aa mAa

a2a2 e (1 � m )2 aa e (1 � m )1 aa (1 � e � e )(1 � m )1 2 aa maa

a2a0 e (1 � m )1 aa e (1 � m )1 aa (1 � 2e )(1 � m )1 aa maa

a0a1 (1 � 2e )(1 � m )1 AA e (1 � m )1 AA e (1 � m )1 AA mAA

a0a2 e (1 � m )1 aa e (1 � m )1 aa (1 � 2e )(1 � m )1 aa maa

a0a0 e3
1 (e � e )1 32 e1

3 3(1 � e � e )1 32 2

sponds with parental genotypes , then Mi containsa a # a a1 2 2 0

the values 0, 1/4, 1/4, 0, 1/4, 1/4, 0, 0, and 0 for columns a1a1,
a1a2, a1a0, a2a1, a2a2, a2a0, a0a1, a0a2, and a0a0, respectively.

Given the genotyping-error and missing-data models described
in E and P and the population-allele frequencies provided in P,
we can calculate the probability of observing any particular par-
ent-offspring combination. First, we transpose the P matrix and
cross the transposed P matrix, PT, with M to yield the 16#9
“observed-parent/true-child” C matrix:

TC p P # M .

Taking the product of C with E, the true-child/observed-child
matrix, gives the 16#4 “observed-parent/observed-childmatrix,”
F (not shown):

F p C # E .

The rows of F represent all possible combinations of observable
parent genotypes. The columns of F represent all possible off-
spring observations. The value stored in Fi,j gives the probability
that a parent-offspring trio will have observed parent genotypes
i and observed child genotype j.

Let matrix N (not shown) be analogous to matrix F, where
element Ni,j gives the observed number of trios with observed
parental genotypes i and observed offspring genotype j. Let T be
the total number of observed trios.

Thus, N is the “data,” and F contains our expectations for the
data as a function of eight unknown parameters, p, r, e1, e2, e3,
mAA, mAa, and maa, where p is the frequency of the a1 allele; r is
the frequency of the a0 allele; e1, e2, and e3 are the genotype-error
rates; and mAA, mAa, and maa are the genotype missing-data rates.
In general, we assume that the elements of N are multinomially
distributed with expected proportions given in the corresponding
element of F. Thus, the overall likelihood of our data is given by

L(dataFp,r,e ,e ,e ,m ,m ,m )1 2 3 AA Aa aa

16 4
T Ni,jp (F )�� i,j( )N ,N ,…,N ip1 jp11,1 1,2 16,4

and

� log [L(dataFp,r,e ,e ,e ,m ,m ,m )] (1)1 2 3 AA Aa aa

16 4

≈ � N log (F ) .�� i,j i,j
ip1 jp1

Using this framework, we built two nested likelihood models.
In the null model, we assumed that no deletion is present and,
therefore, that . The other parameters, p, e1, e2, e3, mAA, mAa,r p 0
and maa, were set equal to their maximum-likelihood values found
by numerically minimizing equation (1) with the use of Powell’s
algorithm.47 Under the alternate model, all eight parameters were
set equal to their maximum-likelihood values. We compared the
two models with a likelihood-ratio test48 with 1 df. If, by the
likelihood-ratio test, the alternate model fit significantly better
than the null model, we suggested that a deletion may exist at
the SNP.

For moderate frequency deletions, there is often relatively little
power to distinguish a deletion of, say, 5% frequency from some
combination of genotyping error and missing data in the 2%–
5% range. For many SNP genotyping technologies, however, any
genotyping error as large as 5% would be unlikely. Thus, to in-
crease power, we borrowed an idea from the Bayesian approach
and modified the likelihood equations to include terms that re-
flect our beliefs concerning the probability of observing a given
error rate or missing-date rate. In general, we maintained a pure
“frequentist” framework—that is, we focused on a single-point
maximum in a likelihood equation rather than integrating over
a posterior distribution. However, we penalized that likelihood
for departing from our prior belief concerning the distribution
of error and missing-data parameters.

In general, we assumed that each of the three genotyping-error
rates and missing-data rates are drawn from beta distributions.
Thus, we assumed that error rate ei, where , has proba-1 � i � 3
bility density49

1
a �1 b �1i i( )f(e ;a ,b ) p e 1 � e .i i i i iB(a ,b )i i

Similarly, we assumed that missing-data rate mm, where m p

, has probability density{AA,Aa,aa}

1
a �1 b �1m m( )f(m ;a ,b ) p m 1 � m .m m m m mB(a ,b )m m

Our approach is two staged. In stage one, we found the max-
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imum-likelihood values for all eight parameters at every SNP in
the study by minimizing equation (1). After all parameters were
estimated, we estimated the beta-distribution parameters by the
method of moments.50 Thus, for error/missing-data parameter x,
we estimated

E{x}(1 � E{x})
a p E{x} � 1x [ ]Var {x}

and

E{x}(1 � E{x})
b p (1 � E{x}) � 1 ,x [ ]Var {x}

where E{x} is the mean of parameter x across the SNPs, and Var{x}
is the variance.

In stage two, we modified the likelihood equation to pe-
nalize for extreme error rates and missing-data rates, and we
reestimated all parameters. If ande p max {e ,e ,e } m pem 1 2 3 mm

, then we penalized our likelihood to createmax {m ,m ,m }AA Aa aa

L(dataFp,r,e ,e ,e ,m ,m ,m ) p1 2 3 AA Aa aa

16 4
T Ni,jf(e ;a ,b )f(m ;a ,b ) (F )��em em em mm mm mm i,j( )N ,N ,…,N ip1 jp11,1 1,2 16,4

and

log [L(dataFp,r,e ,e ,e ,m ,m ,m )]1 2 3 AA Aa aa

≈ log [f(e ;a ,b )] � log [f(m ;a ,b )]em em em mm mm mm

16 4

� N log (F ) . (2)�� i,j i,j
ip1 jp1

In stage two, we again created two nested likelihood models
by numerically minimizing equation (2), to distinguish the null
from the alternate model. Once again, these models differ by one
parameter, r, and can be compared by a likelihood-ratio test48 with
1 df. If, by the likelihood-ratio test, the alternate model fit sig-
nificantly better than the null model, we suggested that a deletion
may exist at the SNP.

Combining Evidence between SNPs

With the above machinery, for every SNP i in the study, we es-
timated the probability, pi, that the improvement in fit of the
deletion model over the null model is due to chance alone with
a likelihood-ratio test. Thus, can be thought of as the prob-1 � pi

ability that SNP i is covered by a deletion independent of every
other SNP in the study. Evidence was combined among SNPs in
the following steps: (1) for each SNP i, with , we es-1 � p 1 0.5i

timated who carries the putative deletion; (2) for each individual
estimated to carry a deletion, we estimated the physical bounds
of that deletion; (3) we combined collections of individuals with
overlapping deletions into a single deletion; (4) we estimated the
physical bounds of the deletion; (5) we estimated the frequency
of the deletion from all the SNPs within its physical bounds; (6)
given the frequency of the deletion, we reestimated the bounds;
(7) we estimated a final P value for the deletion, using all the
SNPs within its physical bounds; and (8) we reestimated individ-

uals possessing the deletion, using the deletion’s entire physical
bounds and estimated frequency.

(1) For each SNP i, with , we estimated who carries the1 � p 1 0.5i

putative deletion.—For every individual j, we wish to calculate the
probability that j possesses either a heterozygous or homozygous
deletion at SNP i. Let , , andD p {a a } H p {a a ,a a ,a a ,a a }0 0 1 0 2 0 0 1 0 2

} be the sets of possible homozygousN p {a a ,a a ,a a ,a a1 1 1 2 2 1 2 2

deletion, heterozygous deletion, and “no deletion” genotypes,
respectively. Let be the set of all possible ge-A p D w Hw N
notypes. Let Ni,j be the probability that j’s true genotype is an
element of N—that is, the probability that j possesses no deletion
at SNP i. Let Hi,j and Di,j be the respective probabilities that j is a
heterozygous or homozygous deletion, where N � H � D pi,j i,j i,j

. Let j’s true genotype be , and let j be part of a trio with relatives1 gj

u and v, with true genotypes and and corresponding observedg gu v

genotypes , , and .g g gj u v

∗H p Pr {deletion exists AND j has heterozygousi,j

deletion AND observations are g ,g ,g }j u v

p [Pr {deletion exists}� � �
g �A g �A g �Hu jv

#Pr {g ,g ,g Fdeletion,g ,g ,g }Pr {g ,g ,g Fdeletion}]j u j u j uv v v

p [(1 � p )� � � i
g �A g �A g �Hu jv

#M P E ,{g ,g ,g } {g ,g ,g ,g ,g ,g } {g ,g ,g ,g ,g ,g }]j u j u j u j u j uv v v v v

∗D p (1 � p )M P E ,� � �i,j i {g ,g ,g } {g ,g ,g ,g ,g ,g } {g ,g ,g ,g ,g ,g }j u j u j u j u j uv v v v v
g �A g �A g �Du jv

∗N p p � [(1 � p ) #� � �i,j i i
g �A g �A g �Nu jv

M P E ] ,{g ,g ,g } {g ,g ,g ,g ,g ,g } {g ,g ,g ,g ,g ,g }j u j u j u j u j uv v v v v

∗Hi,jH p ,i,j ∗ ∗ ∗H � D � Ni,j i,j i,j

∗Di,jD p ,i,j ∗ ∗ ∗H � D � Ni,j i,j i,j

and

∗Ni,jN p ,i,j ∗ ∗ ∗H � D � Ni,j i,j i,j

where , , and are the elements ofM P E{g ,g ,g } {g ,g ,g ,g ,g ,g } {g ,g ,g ,g ,g ,g }j u j u j u j u j uv v v v v

the true-parent/true-child, true-parent/observed-parent, and true-
child/observed-child matrices, respectively, corresponding with
truth { , , } and observation { , , }. Note that j can be ag g g g g gj u j uv v

homozygote for a “no deletion” either because the deletion exists
but j does not possess it, or because the deletion does not exist.

(2) For each individual estimated to carry a deletion, we estimated
the physical bounds of that deletion.—If for any individualN ! 0.5i,j

j, we have evidence that SNP i is deleted in individual j; poten-
tially, other SNPs with weaker evidence may be deleted as well.
Noting that individuals who are heterozygous or homozygous
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Table 2. Threshold Matrix

No. of
Deleted
SNPs

Pdel
a

N p 30 N p 100 N p 500 N p 1,000

1 1#10�7 1#10�6 1#10�4 1#10�4

2 1#10�8 1#10�6 1#10�5 1#10�4

3 1#10�9 1#10�7 1#10�6 1#10�5

�4 1#10�11 1#10�8 1#10�7 1#10�6

�10 1#10�15 1#10�9 1#10�7 1#10�7

a Pdel needed for significance, given a particular com-
bination of trio size (N) and number of SNPs deleted.

for a deletion rarely appear to be heterozygotes, since this would
involve some sort of genotyping error, we assigned a putative
maximum bound for individual j’s deletion by including all SNPs
extending in either direction until a heterozygote was observed.
We call these the maximum bounds of the deletion. Within the
maximum bounds there is at least one SNP i that has positive
evidence of a deletion. The minimum bounds of the deletion
contain the region that includes all SNPs within the maximum
that show positive evidence for a deletion (possibly just i itself).

(3) We combined collections of individuals with overlapping deletions
into a single deletion.—Given two overlapping deletions, a and b,
occurring in different individuals, we determined whether these
deletions are compatible. Let amin and bmin represent the minimum
bounds for a and b and amax and bmax represent the maximum
bounds. Two individuals were deemed to have compatible dele-
tions if amin was contained entirely within bmax or if bmin was con-
tained entirely within amax, and if amin and bmin overlapped.

(4) We estimated the physical bounds of the deletion.—We com-
bined all compatible deletions into a “unique” deletion with
physical bounds that is the minimum deletion size necessary
to include the minimum region for each of the compatible
deletions.

(5) We estimated the frequency of the deletion from all the SNPs
within its physical bounds.—For a region containing a deletion, the
deletion frequency must be the same at all SNPs covered by the
deletion—that is, we assumed only one segregating deletion per
genomic region. For each unique deletion, we estimated r, its
frequency in the population, using information from all SNPs in
the deleted region. Consider a putative deletion covering K SNPs.
Noting that p, e1, e2, e3, mAA, mAa, and maa vary among the K SNPs,
let p, , , , mAA, mAa, and maa be vectors of the correspondinge e e1 2 3

values across each of the K SNPs in the deleted region. The fre-
quency of the deletion, r, on the other hand, is assumed to be a
scalar and the same for all K SNPs (i.e., we assume only a single
deletion within any genomic region). Thus, the likelihood of a
deletion with frequency r covering all SNPs in the region is

� � � � � � �L(dataFp,e ,e ,e ,m, m ,m ,r)1 2 3 AA Aa aa

K
T

p f(e ;a ,b )� k,em k,em k,em( )N ,N ,…,Nkp1 k,1,1 k,1,2 k,16,4

16 4

Nk,i,j#f(m ;a ,b ) (F ) ,��k,mm k,mm k,mm k,i,j
ip1 jp1

and

� � � � � � �log [L(dataFp,e ,e ,e ,m ,m ,m ,r)]1 2 3 AA Aa aa

K

≈ {log [f(e ;a ,b )] � log [f(m ;a ,b )]� k,em k,em k,em k,mm k,mm k,mm
kp1

16 4

� N log (F )} .�� k,i,j k,i,j
ip1 jp1

(6) Given the frequency of the deletion, we reestimated the
bounds.—Given r, we examined SNPs adjacent to the deletion. We
considered two models. In model 1, a SNP adjacent to the deletion
also has a deletion with frequency r; in model 2, the deletion
frequency of the adjacent SNP is 0. If model 1 fit better than

model 2, we extended the deletion to this SNP and returned to
step 5.

(7) We estimated a final P value for the deletion, using all the SNPs
within its physical bounds.—We performed a likelihood-ratio test,
comparing a model with no deletion in the region with a model
with a deletion with frequency r covering all the SNPs in the
region. If the deletion model fit significantly better than the null
model, then we inferred that a deletion spanning the entire re-
gion exists, with P value Pdel taken from the likelihood-ratio test.

(8) We reestimated individuals possessing the deletion, using the de-
letion’s entire physical bounds and estimated frequency.—For every
deletion with Pdel below our threshold of significance (table 2),
we used the final deletion frequency r to recalculate Ni,j, Hi,j, and
Di,j for all individuals and all SNPs within the deletion. Since these
values vary from SNP to SNP, we calculated an average Nj, Hj, and
Dj as the harmonic mean across the SNPs:

K1 1 1
p .�

H K Hip1j i,j

We think of Hj as something like the posterior probability that
individual j has a heterozygous deletion over this region. Partic-
ularly for rare and small deletions, this posterior probability may
be low. However, the posterior probability might be quite high
relative to the prior probability for a heterozygous deletion, which
is only . Thus, we considered the support for individual2r(1 � r)
j having a heterozygous deletion to be / and the supportH 2r(1 � r)j

for a homozygous deletion and no deletion to be / and /2D r Nj j

, respectively.2(1 � r)

Individuals are assigned genotypes by use of a four-pass pro-
cess. In step (4) above, individuals with deletions “compatible”
with this physical location in the genome were identified. In the
first pass, these individuals are assigned a genotype if that support
for the genotype is 10-fold higher than that for any other ge-
notype. In the second pass, any individual (regardless of whether
they were originally identified as having a deletion compatible
with this location) is assigned a genotype if the genotype dem-
onstrates support 20 times larger than the other two combined.
With the use of these two rules, most, but not all, individuals
possessing deletions are identified. Generally, the number of in-
dividuals assigned the deletion genotype in the first two passes
is lower than would be implied by the frequency of the deletion.
The genotype support for individuals who have not been assigned
a genotype is indistinguishable. So, in the third pass, we pick
parental individuals to have a deletion stochastically. We pick
parent i to have a deletion with probability / , where theH � Hi j

sum is taken over all j individuals not yet assigned a genotype.
Thus, the probability of being assigned a deletion is proportional
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Figure 2. Power to detect deletions of 5 kb (A), 10 kb (B), 20 kb (C), and 100 kb (D). SNP density is one SNP per 6 kb. Each bar
represents an average with SD of 800 deletion simulations conducted for a particular trio size (i.e., 30, 100, 500, or 1,000).

to the posterior probability of having the deletion. In the third
pass, parents are picked until the deletion frequency in the sample
reaches the deletion frequency estimated for the population. Par-
ents not picked in the third pass are assigned a homozygous
nondeletion genotype. At this point, all parents have been as-
signed a genotype. In the fourth pass, the genotype support for
all unassigned children is recalculated, with conditioning on the
putatively known parental genotype. Children are assigned a ge-
notype if the support for that genotype is 10 times greater than
that for any other genotype. Children with weaker support are
assigned genotypes stochastically, proportional to the relative
support for the genotype.

Association Testing

For each deletion, every individual in the population has now
been assigned one of the following genotypes: homozygous de-
letion, heterozygous deletion, or no deletion. Given an affected-
trio study design (two parents with affected offspring), we ob-
tained informative transmission counts for the deletion from
heterozygous parents to offspring and performed a standard
TDT46 ( ) for the deletion. Given an affected trio combinedP ! .05
with an unaffected trio (two parents with unaffected offspring)
from a matched control group, we also performed population-
based association testing. To do so, we compared the deletion
frequency for affected offspring with the frequency for unaffected
offspring, with a standard x2 test ( ).P ! .05

Deletion Simulations

Genotype data were simulated using a Wright-Fisher coalescent
model incorporating recombination, genotyping error, and miss-
ing data with a deletion at a given frequency placed on the co-
alescent. Nuclear families follow Mendelian assortment. All SNPs
have a dbSNP-like minor-allele frequency.51 Each simulation con-
sists of 250 kb of sequence with a whole-genome SNP density
based on 500,000 SNPs. Error rates and missing-data rates vary
by SNP, with mean and variance drawn from HapMap data.52 Each
simulation varied given the following parameters: a combination
of genotyping error and missing data rates drawn from one of
eight HapMap genotyping centers (EM1–EM8), deletion frequency
(0.5%, 1%, 5%, 10%, and 20%), deletion size (1 kb, 5 kb, 10 kb,
20 kb, and 100 kb), and number of trios in the study (30, 100,
500, and 1,000). We tested 80,000 total deletion simulations (100
for each combination of parameters). Simulated data are pre-
sented as averages over all genotyping centers (figs. 2–7).

Null Simulations

Null genotype data were simulated using the same method as
above, except that no deletion was placed on the coalescent. Each
simulation consists of 2 Mb of sequence with a whole-genome
SNP density based on 500,000 SNPs. We tested 8,000 total null
simulations (1,000 for each combination of sample size and ge-
notyping center). Data are presented as averages over all geno-
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Figure 3. Mean error number of deleted SNPs with the use of 1,000 trios, given a deletion of 5 kb (A), 10 kb (B), 20 kb (C), and
100 kb (D). Each point represents an average with SD of 800 deletion simulations.

typing centers, yielding 2 billion bp of deletion-free sequence for
each sample size.

HapMap Data

We obtained genotypes for all 22 autosomes from the unfiltered
HapMap 16c phase I data set.52 This consisted of 866,757 SNPs
from 90 CEPH individuals (30 trios) of European ancestry sampled
in Utah (CEU) and 932,404 SNPs from 90 individuals (30 trios)
of Yoruba ancestry sampled in Ibadan, Nigeria (YRI). For geno-
types typed by more than one center, we took the consensus
genotype. If a consensus did not exist, then we called the ge-
notype “missing data,” N. We filtered the genotype data to ex-
clude any SNP with 120% missing data or 120% genotyping error,
or that exhibited a statistically significant excess of heterozygotes
( and for Hardy-Weinberg equilibrium).53F ! 0 P ! 0.05

Results

We demonstrate the effectiveness of our method, using
both simulated and real data. First, we establish our false-
positive deletion detection rate—that is, the rate at which
we infer deletions when they do not actually exist. Our
overall false-positive rate for detecting a deletion is small,
even at whole-genome scales. In null simulations that use
30 trios and a total of 2.66 million SNPs, we detect 34
false deletions, where the average deletion spans 2.4 SNPs
(table 3). This yields a false-positive rate of per�53.12 # 10

SNP. The false-positive rate remains consistent regardless
of sample size (data not shown). From this, we expect ∼23
false deletions (totaling 56 SNPs) when applying this ap-
proach to the unfiltered HapMap 16c phase I data set.43

Next, we gauge our power to find deletions when they
do exist. Figure 2 shows our power, in simulated data with
a whole-genome SNP density of 500,000 SNPs, to detect
deletions of 5 kb, 10 kb, 20 kb, and 100 kb with deletion
frequencies ranging from 0.5%–20%, with the use of sam-
ple sizes of 30, 100, 500, and 1,000 trios. Power increases
with increasing deletion size, deletion frequency, sample
size, and SNP density. Varying genotyping-error rates and
missing-data rates have little or no effect on our ability to
detect deletions.

On detecting a deletion, we estimated the boundaries
of the deletion (i.e., the start SNP and the stop SNP), which
often included a high percentage of the SNPs in the true
deletion, if not all of them (fig. 3). For rare deletions—say,
100 kb (∼16.7 SNPs deleted) at 0.5% frequency—the mean
error in number of deleted SNPs is 1.8 in 1,000 trios (fig.
3). This shows that, for rare variants, we tend to be biased
and to slightly underestimate the true bounds, but only
by a few SNPs. As frequency increases—say, 100 kb at 20%
frequency—the mean error in number of deleted SNPs
is effectively unbiased (0.03). For most cases, including
smaller sample sizes (data not shown), estimates of the
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Figure 4. Estimated frequencies versus true frequencies for deletions of 5 kb (A), 10 kb (B), 20 kb (C), and 100 kb (D). SNP density
is one SNP per 6 kb. Each bar represents an average with SE of 800 deletion simulations conducted for a particular trio size (i.e., 30,
100, 500, or 1,000).

deletion bounds are within a single SNP of the true bounds
(i.e., the SD in the error estimate is usually smaller than
one SNP).

Estimates of the deletion frequency are highly accurate
(figure 4). Using large study designs of 1,000 trios, we are
able to return extremely accurate estimates of the true
frequency with percent error less than one for deletions
as small as 5 kb or as rare as 1% frequency. For example,
given a 100-kb deletion with true deletion frequency of
20%, we estimate the deletion frequency to be, on average,
20.01% with SD 0.0082. Estimated frequency is biased
when the power to detect the deletion is very low. Thus,
we suffer the classic winner’s curse. When underpowered
to detect the deletion, we tend to overestimate the dele-
tion frequency.

Even with accurate estimates of the deletion frequency,
our sensitivity, or ability to identify every individual in
the population who carries the deletion, is never perfect
(figure 5). This is largely due to misidentifying parents
with untransmitted deletions. For example, given a 100-
kb deletion at frequency 5%, using a sample of 30 trios,
we correctly identify 95% of parents with transmitted de-
letions but only 60% of parents with untransmitted de-
letions, which leads to an overall sensitivity of 85%.

We tested our detected deletions for association with

disease. We maintain nominal false-positive rates for
showing association when the deletion is unassociated
with disease (genotype-relative risk [GRR] 1), and we dem-
onstrate substantial power to show disease association
when it is present (GRR 11). Power to detect association
using standard TDT given a deletion with GRR of 1, 2, 3,
and 4 is shown in figure 6 (a multiplicative model of dis-
ease is assumed).51 Power to detect association ( )P ! .05
with the use of an affected-trio versus unaffected-trio case-
control design with GRR of 1, 2, 3, and 4 is shown in
figure 7. In 80,000 simulations with an unassociated de-
letion (GRR 1), over the entire range of parameter values
examined, our rate for detecting and then falsely associ-
ating the deletion is 2.0% and 2.4% for the TDT and case-
control designs, respectively, at nominal . However,P ! .05
when deletions are absent from the data, they can still be
detected erroneously at the false-deletion detection rate
of per SNP. These false deletions generally�53.12 # 10
span three or fewer SNPs and tend to appear significantly
undertransmitted (data not shown), especially when the
deletion is more than three SNPs in length. Therefore,
deletions that showed significant undertransmission from
the TDT ( ) were excluded from our HapMap survey.P ! .05

Here, we report 693 total deletions (see the tab-delim-
ited ASCII file, which can be imported into a spreadsheet,
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Figure 5. Sensitivity given a deletion of 5 kb (A), 10 kb (B), 20 kb (C), and 100 kb (D). SNP density is one SNP per 6 kb. Each bar
represents an average with SE of 800 deletion simulations conducted for a particular trio size (i.e., 30, 100, 500, or 1,000).

of data set 1 [online only]), with 213 deletions found in
the sample of 90 CEU individuals and 480 deletions found
in the sample of 90 YRI individuals. Overall, 329 (47%)
deletions span multiple SNPs, 532 (77%) exist in the ho-
mozygous state, and 253 (37%) have been validated by
one or more previous studies (table 4). On average, each
CEU individual has 2.6 Mb deleted, whereas each YRI
individual has 6.0 Mb deleted (data not shown). The dis-
tribution of length (figure 8) ranges from 1 bp to 794
kb (average 20.2 kb; median 3.6 kb) in CEU individuals
and from 1 bp to 145 kb (average 5.9 kb; median 1 bp) in
YRI individuals. The distribution of frequency estimates
ranges from 2.7% to 47.8% (average 18.7%; median 19.2%)
in CEU individuals (fig. 9A) and from 3.6% to 70.0% (av-
erage 21.6; median 20.3) in YRI individuals (fig. 9B). For
all validated deletions, the sizes range from 1 bp to 794
kb (average 16.3 kb; median 3.6 kb), with estimated fre-
quencies from 2.7% to 46.4% (average 18.6%; median
16.6%); for all novel deletions (those not previously
identified by other studies), the sizes range from 1 bp to
245 kb (average 6.8 kb; median 1 bp), with estimated fre-
quencies from 3.0% to 70.0% (average 21.9; median 20.9).

Our computational tool to detect deletions, microdel,
and our deletion simulator are available for free download
as C source code from the author’s Web site and are li-
censed under the General Public License.

Discussion

It has long been recognized that CNV in general, and de-
letions in particular, can play an important role in the
etiology of rare disorders.4,36 Elucidating the role of CNV
in common, complex disorders has proved to be diffi-
cult.13,14,54–56 The nature of complex disease is one of mul-
tiple factors, each usually with relatively small effect.
Hence, the demonstration of association between any ge-
netic variant, whether deletion or SNP, and a complex
disorder generally requires large study designs.51,57–60 Many
techniques to study CNVs, however, are unable to detect
small deletions20,61 or are time consuming and expensive
to perform on a large scale.30,32,62

The need for large study designs and the expense of
many techniques that detect deletions has led to a flurry
of recent research to find methods that can detect dele-
tions efficiently, cheaply, and, ideally, in the context of a
preexisting study.44,45 With the advent of high-density SNP
arrays, large-scale whole-genome association studies have
become a powerful and realistic approach in the search
for genetic factors underlying complex phenotypes. Tech-
niques aimed at identifying deletions solely from hybrid-
ization intensities may or may not be compatible with
data already collected, whereas an approach that uses ge-
notype data could easily be applied to existing SNP data
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Figure 6. Power to detect association with use of the TDT ( ), given a deletion of 20 kb with GRR of 1 (A), 2 (B), 3 (C), andP ! .05
4 (D). GRR of 1 represents a deletion with no association. SNP density is one SNP per 6 kb. Each bar represents an average with SD
of 800 deletion simulations conducted for a particular trio size (i.e., 30, 100, 500, or 1,000).

sets. Developing tools and strategies that harness the in-
formation in SNP genotype data to detect deletions at high
power may enable a single study to test not only for as-
sociation with SNPs but also for association with deletions.
To take advantage of this all-in-one design, accurate fre-
quencies must be assigned to deletions.

This means that, for a deletion to be useful in a disease-
association study, it must not only be detectable but must
also be assigned an accurate estimate of either its popu-
lation frequency or its transmission frequency or both.
Thus, complex disease association studies fundamentally
test questions of frequency. For a tool to be useful in this
context, the tool must be able to detect the deletion at
high power with a low false-positive rate and must also
return an accurate estimate of its transmission from het-
erozygous parents to offspring or its occurrence in cases
versus controls. The tool developed here, microdel, is the
first, to our knowledge, aimed at both halves of this
problem.

Our approach facilitates simultaneous discovery and
testing of small segregating deletions for association with
disease in large-scale familial SNP genotyping studies.
Given the density of current array designs, we demon-
strate the usefulness of microdel on simulated data with a
whole-genome SNP density based on 500,000 SNPs. With

a modestly large study design of 500 trios, microdel can
detect deletions as small as 10 kb or as rare as 1% frequen-
cy with at least 80% power and, in all cases, return suf-
ficiently accurate estimates of both population frequency
and transmission frequency, for the performance of as-
sociation tests on the detected deletion. Increasing the
study design to 1,000 trios provides a substantial boost in
microdel’s power to detect very rare deletions of !1% fre-
quency while returning extremely accurate estimates of
the deletion frequency. Decreasing the study design to 100
trios still enables discovery of deletions as small as 20 kb
or as rare as 5% frequency with 180% power. This illus-
trates the potential usefulness of microdel as a tool to not
only detect deletions at high power but to also test the
inferred deletion for association with disease using both
case-control analysis and the TDT.

We examine two sorts of association study designs: (1)
a typical TDT design (two parents and one affected off-
spring) and (2) a typical TDT design combined with two
parents and unaffected offspring from some matched con-
trol group. We call this second design a “case trio–control
trio” design, or just “case-control trio” for simplicity. In
the presence of true disease association, the case-control
trio design tends to be more powerful. We show in figure
4 that, under the null model of no association with dis-



694 The American Journal of Human Genetics Volume 81 October 2007 www.ajhg.org

Figure 7. Power to detect association with the use of case-control analysis ( ), given a deletion of 20 kb with GRR of 1 (A),P ! .05
2 (B), 3 (C), and 4 (D). GRR of 1 represents a deletion with no association. SNP density is one SNP per 6 kb. Each bar represents an
average with SD of 800 deletion simulations conducted for a particular trio size (i.e., 30, 100, 500, or 1,000).

Table 3. False-Positive Rate in Null Simulations

Centera

No. of

FPRa per
SNPTrios

False
Deletions

Deleted
SNPs

Total
SNPs

EM1 30 3 7 331,922 2.11#10�5

EM2 30 6 14 332,419 4.21#10�5

EM3 30 5 9 332,043 2.71#10�5

EM4 30 1 1 332,377 3.01#10�6

EM5 30 0 0 332,362 0
EM6 30 3 7 332,333 2.11#10�5

EM7 30 10 21 332,244 6.32#10�5

EM8 30 6 24 332,388 7.22#10�5

Total 30 34 83 2,660,000 3.12#10�5

a Eight combinations (EM1–EM8) of genotyping-error and missing-data
rates were drawn from the eight HapMap genotyping centers. For each
EM combination, 1,000 simulations were performed with ∼2 Mb of de-
letion-free sequence each and one SNP per 6 kb.

b FPR p false-positive rate.

ease, we accurately estimate the frequency of deletions in
the general population. Under the alternate model (where
disease association is present), however, we tend to over-
estimate the deletion frequency in the general population
(data not shown). Thus, we overestimate the number of
untransmitted chromosomes in the first design, leading
to reduced power with use of the TDT only. By adding
control trios, even in the presence of disease, the deletion
frequency is better estimated, and power increases.

Other methods, both computational and experimental,
exist to detect CNV; however, there is no consensus ap-
proach to identify all types of variants, as evidenced by
the little overlap seen in previous studies (Database of
Genomic Variants). Here, we report 440 novel variants in
the HapMap collection with an estimated false-positive
rate of ∼5%, whereas the remaining 253 deletions have
been validated by one or more previous studies (Database
of Genomic Variants). Not surprisingly, our survey shows
considerable overlap with the computational approaches
of Conrad et al.44 and McCarroll et al.,45 both jointly and
individually (table 4). In instances where we fail to report
deletions found by both Conrad et al.44 and McCarroll et
al.,45 we usually have evidence that a deletion may exist,
but the P value for the deletion falls just above our thresh-
old of significance (see the tab-delimited ASCII file of data

set 2 [online only]). More notably, microdel is capable of
inferring deletions that are reported by noncomputational
techniques, such as the fine-scale fosmid-based approach
used by Tuzun et al.32 and recent array-based studies con-
ducted by Redon et al.29 and Wong et al.30 (table 4), but
that are missed by other computational approaches.44,45

Our framework for finding a deletion compares a model



Table 4. Most Significant Deletions in HapMap Collection

Start End Chromosome
Size
(bp)

No. of

Deletion
Frequency Pdel PTDT Population Validation

Deleted
SNPs Heta Homb

69120910 69165549 4 44,640 15 44 3 .288 9.6#10�80 .369 CEU Conrad et al.,44 Redon et al.,29 Sharp et al.27

69130187 69165549 4 35,363 19 37 2 .221 1.8#10�79 .835 YRI Conrad et al.,44 Redon et al.,29 Sharp et al.27

13659506 13693201 8 33,696 15 24 1 .133 9.7#10�66 .317 YRI Conrad et al.,44 McCarroll et al.,45 Mills et al.,68 Redon et al.29

39423310 39492651 8 69,342 32 14 0 .078 4.2#10�65 .527 YRI Conrad et al.,44 McCarroll et al.,45 Redon et al.29

34456637 34507878 4 51,242 19 20 1 .126 1.6#10�45 .109 YRI Conrad et al.,44 Iafrate et al.,23 McCarroll et al.,45 Sebat et al.25

11398341 11434605 12 36,265 13 28 3 .208 1.7#10�44 .180 YRI Conrad et al.,44 McCarroll et al.,45 Redon et al.29

11398341 11438799 12 40,459 13 16 1 .087 9.2#10�41 .366 CEU Conrad et al.,44 McCarroll et al.,45 Redon et al.29

39469612 39497557 8 27,946 13 44 16 .395 6.4#10�40 .394 CEU Conrad et al.,44 McCarroll et al.,45 Redon et al.29

25030376 25045471 8 15,096 8 25 0 .137 3.6#10�39 .808 YRI Conrad et al.,44 McCarroll et al.,45 Redon et al.29

64380379 64392138 4 11,760 4 37 9 .321 2.3#10�36 .161 CEU McCarroll et al.45

71425108 71495782 18 70,675 73 5 0 .043 4.9#10�35 .317 YRI …
115392087 115401739 4 9,653 5 41 14 .376 1.8#10�34 .336 YRI McCarroll et al.,45 Redon et al.29

61416760 61498398 7 81,639 16 25 0 .142 5.1#10�34 .346 YRI Conrad et al.,44 Redon et al.29

27539977 27545038 12 5,062 6 22 3 .163 7.5#10�34 .796 YRI Conrad et al.,44 McCarroll et al.,45 Redon et al.29

21247095 21299228 22 52,134 21 6 0 .040 3.2#10�33 .180 CEU Locke et al.,28 McCarroll et al.,45 Sebat et al.25

133555158 133800547 5 245,390 50 15 0 .080 5.8#10�32 1 CEU …
65166887 65188519 3 21,633 16 26 0 .127 1.6#10�30 .317 CEU Conrad et al.,44 McCarroll et al.,45 Redon et al.29

71027351 71049091 18 21,741 30 6 0 .073 5.4#10�30 .180 YRI …
23931936 24211173 10 279,238 67 15 0 .081 6.9#10�30 1 CEU Wong et al.30

70250280 70262009 4 11,730 4 45 12 .390 1.4#10�29 .577 YRI Conrad et al.,44 Locke et al.,28 McCarroll et al.,45 Redon et al.29

70174665 70227396 4 52,732 14 50 3 .300 3.1#10�29 .384 YRI Conrad et al.,44 McCarroll et al.,45 Redon et al.29

109229673 109238466 7 8,794 8 26 2 .150 4.1#10�29 .491 YRI Conrad et al.,44 McCarroll et al.,45 Tuzun et al.32

20724046 20753953 21 29,908 25 5 0 .036 1.1#10�28 .317 YRI Conrad et al.,44 Redon et al.29

60798055 60847919 3 49,868 20 15 0 .081 5.7#10�27 .527 CEU Conrad et al.,44 McCarroll et al.,45 Redon et al.29

104428735 104434065 4 5,331 9 18 1 .096 9.2#10�27 .248 YRI Conrad et al.,44 McCarroll et al.,45 Redon et al.,29 Sebat et al.25

147377167 147414362 1 37,196 15 23 0 .119 3.0#10�26 .796 CEU Conrad et al.,44 Redon et al.,29 Wong et al.30

70058756 70094563 18 35,808 44 7 0 .045 9.7#10�26 .102 YRI …
246287577 246402642 1 115,066 27 25 0 .117 2.0#10�24 .796 CEU Redon et al.29

241828358 241912790 1 84,433 19 7 0 .052 4.6#10�24 .655 CEU …
21359263 21422160 22 62,898 17 11 1 .088 5.5#10�24 .157 YRI McCarroll et al.,45 Simon-Sanchez et al.,69 Urban et al.70

164029860 164077953 3 48,094 20 44 0 .230 8.5#10�24 .450 CEU Conrad et al.,44 McCarroll et al.,45 Redon et al.,29 Tuzun et al.,32 Wong et al.30

133425381 133446804 7 21,424 9 21 1 .122 8.5#10�24 .782 YRI Conrad et al.,44 McCarroll et al.,45 Redon et al.29

93165059 93168493 7 3,435 4 33 4 .224 4.6#10�23 .835 CEU Conrad et al.,44 McCarroll et al.45

41095773 41099005 2 3,233 3 34 4 .236 5.2#10�23 .513 YRI Conrad et al.,44 McCarroll et al.45

147460714 147505129 1 44,416 16 19 0 .110 1.5#10�22 .109 CEU Conrad et al.,44 McCarroll et al.,45 Redon et al.,29 Wong et al.30

20803641 20831833 22 28,193 12 10 0 .054 1.7#10�22 .705 CEU McCarroll et al.,45 Simon-Sanchez et al.69

39351896 39456066 8 104,171 35 20 0 .094 1.9#10�22 1 CEU Conrad et al.,44 McCarroll et al.,45 Redon et al.29

190846788 190850343 3 3,556 3 29 3 .187 3.8#10�22 .827 YRI Conrad et al.,44 McCarroll et al.45

70240740 70262009 4 21,270 6 18 0 .100 4.0#10�22 .564 CEU Conrad et al.,44 McCarroll et al.,45 Locke et al.,28 Redon et al.29

78665072 78684492 7 19,421 9 17 0 .083 4.6#10�22 .206 YRI Conrad et al.,44 McCarroll et al.,45 Redon et al.29

NOTE.—Chromosome start and end positions are relative to NCBI build 36.
a Heterozygous deletions observed.
b Homozygous deletions observed.
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Figure 8. Distribution of deletion size in HapMap individuals. Red indicates the number of deletions observed in YRI individuals.
Blue indicates the number of deletions observed in CEU individuals. The first bin represents the number of single-SNP deletions. Every
bin after that represents a distance of 5 kb. The second bin shows the number of deletions !5 kb (excluding all single-SNP deletions).
The last bin shows the number of deletions 1100 kb.

Figure 9. Distribution of frequency for 90 CEU individuals (30 trios) (A) and for 90 YRI individuals (30 trios) (B). Full color indicates
the contribution from deletions of two or more SNPs. Half-shading indicates the contribution from single-SNP deletions. Every bin
represents a frequency difference of 1%. The last bin shows the number of deletions with frequency 150%.

with a deletion with a model without a deletion and infers
the presence of the deletion when the deletion model fits
much better than the null model. It is also possible that
neither model describes the truth very well and that there

is some third, unconsidered alternative explanation that
fits the data. For example, it has been shown that geno-
typing studies with the use of DNA from cell lines may
contain somatic cell–line artifacts that appear as dele-
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tions.29,44 Given the level of statistical evidence needed for
our method to detect a deletion, it is unlikely we would
detect cell-line artifacts unless they are of substantial size
or occur in multiple individuals. Therefore, large, unval-
idated deletions in our survey of HapMap individuals may
be cell-line artifacts, but this number is small, since only
five deletions 1100 kb in size were invalidated. Second,
SNP genotype assays rely on techniques (e.g., restriction
digests and primer hybridization) that are sensitive to
cryptic polymorphisms. Single-SNP aberrations may result
when one allele is ineffectively assayed because of a cryptic
SNP residing in a location crucial to the success of the
assay (i.e., a restriction-enzyme cutting site or the genomic
sequence targeted for primer hybridization). Thus, single-
SNP deletions in our HapMap survey may potentially be
the result of nearby cryptic SNPs, which in and of them-
selves are worth noting, whereas others are undoubtedly
real deletions, since 82 of our 364 reported single-SNP
deletions were shown to occur in previously reported
regions of variation (Database of Genomic Variants).

The approach taken by microdel, as well as the com-
putational tools of Conrad et al.44 and McCarroll et al.,45

fundamentally uses only a fraction of the information
available from modern whole-genome microarrays. In par-
ticular, we use only the actual genotype call and do noth-
ing with the relative hybridization intensity. Since other
techniques exist to infer deletions from the hybridization
intensity29,63–67 without use of the genotype call per se, it
seems natural that the ultimate approach to these sorts
of studies will combine both types of data into a single
framework.
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