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Abstract
Hyperglycemia-induced overproduction of superoxide by mitochondrial electron-transport chain
triggers several pathways of injury involved in the pathogenesis of diabetic complications [protein
kinase C (PKC), hexosamine and polyol pathway fluxes, advanced glycation end product (AGE)
formation] by inhibiting glyceraldehyde-3-phosphate dehydrogenase (GAPDH) activity. Increased
oxidative and nitrosative stress activates the nuclear enzyme, poly(ADP-ribose) polymerase-1
(PARP). PARP activation, on the one hand, depletes its substrate, NAD+, slowing the rate of
glycolysis, electron transport, and ATP formation. On the other hand, it inhibits GAPDH by poly
(ADP-ribosy)lation. These processes result in acute endothelial dysfunction in diabetic blood vessels,
which importantly contributes to the development of various diabetic complications. Accordingly,
hyperglycemia-induced activation of PKC isoforms, hexosaminase pathway flux, and AGE
formation is prevented by blocking PARP activity. Furthermore, inhibition of PARP protects against
diabetic cardiovascular dysfunction in preclinical models. PARP activation is present in
microvasculature of human diabetic subjects. The oxidative/nitrosative stress–PARP pathway leads
to diabetes-induced endothelial dysfunction, which may be an important underlying mechanism for
the pathogenesis of other diabetic complications (cardiomyopathy, nephropathy, neuropathy, and
retinopathy). This review focuses on the role of PARP in diabetic complications and the unique
therapeutic potential of PARP inhibition in the prevention or reversal of diabetic complications.

INTRODUCTION
POLY(ADP-RIBOSE) POLYMERASE (PARP) is a nuclear DNA repair enzyme with
multiple regulatory functions (23–25,38,49,55,85,95,96,99,114). Overactivation of PARP
represents an important mechanism of tissue damage in various pathological conditions
associated with oxidative and nitrosative stress, including myocardial reperfusion injury
(107,120), heart transplantation (106), heart failure (70,71), stroke (31,45), circulatory shock
(42,68,69,89,93,98), and autoimmune β-cell destruction associated with diabetes mellitus
(10,80). Activation of PARP and beneficial effect of various PARP inhibitors have been
demonstrated in various forms of endothelial dysfunction, such as those associated with
circulatory shock, hypertension, atherosclerosis, pre-eclampsia, and aging (41,54,73,74,98).
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Furthermore, recent evidence suggests that activation of PARP importantly contributes to the
development of endothelial dysfunction in various experimental models of diabetes and also
in humans (33,72,91,102). In addition, it has recently been demonstrated that PARP activation
plays a pathogenetic role in diabetic nephropathy, neuropathy, and retinopathy. The following
review will discuss the role of PARP activation in the pathogenesis of diabetic complications
with special focus on endothelial dysfunction, as a common underlying theme.

THE PROCESS OF PARP ACTIVATION
Poly(ADP-ribose) polymerase-1 (PARP-1; EC 2.4.2.30) [also known as poly(ADP-ribose)
synthetase (PARS) or poly(ADP-ribose) transferase (ADPRT)] is a member of the PARP
enzyme family consisting of PARP-1 and an increasing number of additional, recently
identified poly(ADP-ribosyl)ating enzymes (minor PARP isoforms). PARP-1, the major PARP
isoform, is one of the most abundant proteins in the nucleus. PARP-1 is a 116-kDa protein that
consists of three main domains: the N-terminal DNA-binding domain containing two zinc
fingers, the automodification domain, and the C-terminal catalytic domain. The primary
structure of the enzyme is highly conserved in eukaryotes with the catalytic domain showing
the highest degree of homology between different species. The structure and functions of PARP
have been the subject of several recent overviews and monographs (95,96,114,118). For the
purpose of the current review, it is important to note that PARP-1 is considered the major
isoform of PARP in intact cells, and remains commonly termed as “PARP.”

PARP-1 plays an important role in multiple physiological functions, as well as in the
pathophysiology of many diseases. This has been a subject of several recent reviews and
monograph (24,25,49,95,98). PARP-1 functions as a DNA damage sensor and signaling
molecule binding to both single- and double-stranded DNA breaks. Upon binding to damaged
DNA (mainly through the second zinc finger domain), PARP-1 forms homodimers and
catalyzes the cleavage of nicotinamide adenine dinucleotide (NAD+) into nicotinamide and
ADP-ribose and uses the latter to synthesize branched nucleic acid-like polymers of poly(ADP-
ribose) covalently attached to nuclear acceptor proteins. The size of the branched polymer
varies from a few to 200 ADP-ribose units. Due to its high negative charge, covalently attached
ADP-ribose polymer dramatically affects the function of target proteins. In vivo the auto-poly
(ADP-ribosyl)ation represents a major regulatory mechanism for PARP-1, resulting in the
down-regulation of the enzyme activity. In addition to PARP-1, histones are also considered
as major acceptors of poly(ADP-ribose). Poly(ADP-ribosy)lation confers negative charge to
histones, leading to electrostatic repulsion between DNA and histones. This process has been
implicated in chromatin remodeling, DNA repair, and transcriptional regulation. Several
transcription factors, DNA replication factors, and signaling molecules [nuclear factor-κB
(NFκB), activator protein-1 (AP-1), Oct-1, YY1, TEF-1, DNA-PK, p53] have also been shown
to become poly(ADP-ribosyl)ated by PARP-1. The effect of PARP-1 on the function of these
proteins is carried out by noncovalent protein–protein interactions and by covalent poly(ADP-
ribosyl)ation (for review, see 114).

Poly(ADP-ribosyl)ation is a dynamic process as indicated by the short half-life of the polymer.
Two enzymes, poly(ADP-ribose) glycohydrolase (PARG) and ADP-ribosyl protein lyase, are
involved in the catabolism of poly(ADP-ribose) with PARG cleaving ribose–ribose bonds of
both linear and branched portions of poly(ADP-ribose) and the lyase removing the protein
proximal ADP-ribose monomer (23). PARP-1 plays a role in DNA repair and maintenance of
genomic integrity (55,85) and also regulates the expression of various proteins at the
transcriptional level. Of special importance is the regulation by PARP-1 of the production of
inflammatory mediators such as inducible nitric oxide synthase (iNOS), intercellular adhesion
molecule-1 (ICAM-1), and major histocompatibility complex class II (30,38,90,99,120). NF-
κB is a key transcription factor in the regulation of this set of proteins, and PARP has been
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shown to act as a coactivator in the NF-κB-mediated transcription. Poly(ADP-ribosyl)ation
can loosen up the chromatin structure, thereby making genes more accessible for the
transcriptional machinery (37,48,67,79,81,88).

PARP-1 activation has been proposed to represent a cell elimination pathway whereby severely
damaged cells are removed from tissues. PARP-1-mediated cell death occurs in the form of
necrosis, which is the least desirable form of cell death. During necrotic cell death, the cellular
content is released into the tissue exposing neighboring cells to harmful attacks by proteases
and various proinflammatory intracellular factors, and triggering positive feedback pathways
of inflammatory tissue injury.

Recently, it has been shown that poly(ADP-ribose) polymer can also serve as an emergency
source of energy used by the base excision machinery to synthesize ATP (66). Furthermore,
poly(ADP-ribose) may also serve as a signal for protein degradation in oxidatively injured cells
(109).

Under pathophysiological conditions, reactive species (such as hydrogen peroxide, hydroxyl
radical, and peroxynitrite) trigger DNA single-strand breakage and PARP activation (97,
100). Peroxynitrite is considered a key trigger of DNA strand breakage because (as opposed
to hydroxyl radical, for instance) it can travel significant distances and readily crosses cell
membranes. When activated by DNA single-strand breaks, PARP initiates an energy-
consuming cycle by transferring ADP ribose units from NAD+ to nuclear proteins. This process
results in rapid depletion of the intracellular NAD+ and ATP pools, slowing the rate of
glycolysis and mitochondrial respiration, eventually leading to cellular dysfunction and cell
death (for review, see 114). It is noteworthy that, in addition to the process of NAD+ depletion
and the induction of cellular dysfunction, part of the PARP overactivation-induced cell
dysfunction and necrosis is related to intra-cellular acidification. Part of this process is related
to inhibition of sodium/hydrogen exchange in energy-depleted cells (37). Another part of this
process is due to a direct acidification: when PARP catabolizes NAD+, in addition to ADP-
ribose and nicotinamide a “by-product” of the reaction is H+, which directly induces
intracellular acidification, with direct consequences for cell viability (1).

The PARP-mediated pathway of cell necrosis and the PARP-mediated pathway of
inflammatory signal transduction and gene expression may be interrelated in
pathophysiological conditions. Oxidant stress can generate DNA single-strand breaks. DNA
strand breaks then activate PARP, which in turn potentiates NF-κB activation and AP-1
expression, resulting in greater expression of the AP-1- and NF-κB-dependent genes, such as
the gene for ICAM-1, as well as chemokines such as macrophage inflammatory protein-1α and
cytokines such as tumor necrosis factor-α. Chemokine generation, in combination with
increased endothelial expression of ICAM-1, recruits more activated leukocytes to
inflammatory foci, producing greater oxidant stress. It is possible that a low-level, localized
inflammatory response may be beneficial in recruiting mononuclear cells to an inflammatory
site. However, in many pathophysiological states, the above-described feedback cycles amplify
themselves beyond control.

ROLE OF PARP ACTIVATION IN THE PATHOGENESIS OF ENDOTHELIAL
DYSFUNCTION

The contribution of the PARP pathway to the development of endothelial dysfunction was
proposed in 1997 (98), using an endotoxic shock model in the rat. This model is known to
induce severe oxidative and nitrosative stress in the vicinity of the vascular endothelium, due
to the up-regulation of iNOS, as well as the activation of various superoxide-generating
sources, including NADPH oxidase. In vascular rings taken from rats subjected to endotoxic
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shock, there was a loss of the endothelium-dependent relaxations, and these alterations were
prevented by pharmacological inhibition of PARP with 3-aminobenzamide (98). In in vitro
studies, vascular rings exposed to peroxynitrite also exhibited reduced endothelium-dependent
relaxations in response to acetylcholine, and the development of this endothelial dysfunction
was ameliorated by 3-aminobenzamide (98). These findings were consistent with previous in
vitro data demonstrating that PARP inhibition protects against the metabolic suppression and
death of oxidatively (3,41,44,46,108) or nitrosatively (98) injured endothelial cells. These
findings were also consistent with studies where endothelial cells were incubated in vitro with
various pathophysiologically relevant factors that induce oxidative stress, including
homocysteine (a model of a variety of cardiovascular diseases) (7) or elevated glucose
concentrations (a model of diabetic vascular complications) (33).

Over the last 5 years, the list of pathophysiological conditions where the endothelial
dysfunction has been demonstrated to be dependent on PARP activation has increased. The
list, in addition to various forms of shock (20,42,52,69,98), now includes complement-
mediated endothelial injury (22), myocardial infarction and various forms of myocardial
reperfusion injury, and heart transplantation (106,120), as well as the endothelial dysfunction
associated with chronic heart failure (70,71), aging (73), hypertension (74), and diabetes
mellitus (33,72,91,92,102).

ENDOTHELIAL DYSFUNCTION IN EXPERIMENTAL MODELS OF DIABETES:
THE ROLE OF PARP ACTIVATION

Endothelial dysfunction has been documented in various forms of diabetes, and even in
prediabetic individuals (11,12,14,19,86,102). The pathogenesis of this endothelial dysfunction
involves many components, including increased polyol pathway flux, altered cellular redox
state, increased formation of diacylglycerol and the subsequent activation of specific protein
kinase C (PKC) isoforms, and accelerated nonenzymatic formation of advanced glycation end
products (AGEs) (5,8,15,25,34,36,58). Many of these pathways, in concert, trigger the
production of oxygen- and nitrogen-derived oxidants and free radicals, such as superoxide
anion and peroxynitrite, which play a significant role in the pathogenesis of the diabetes-
associated endothelial dysfunction and other diabetic complications. The cellular sources of
reactive oxygen species such as superoxide anion are multiple and include AGEs, NADH/
NADPH oxidases, the mitochondrial respiratory chain, xanthine oxidase, the arachidonic acid
cascade (lipoxygenase and cyclooxygenase), and microsomal enzymes (8,15,25,34).

In a recent study, we have shown that high glucose-induced oxidative and nitrosative stress
leads to DNA single-strand breakage and PARP activation in murine and human endothelial
cells (33) (Fig. 1). The involvement of oxyradicals and nitric oxide (NO)-derived reactive
species in PARP activation and the evidence for nitrated tyrosine residues both suggested that
peroxynitrite may be one of the final mediators responsible for single-strand breakage and
subsequent PARP activation (33). The role of hyperglycemia-induced oxidative stress in
producing DNA damage is also supported by recent findings showing that increased amounts
of 8-hydroxyguanine and 8-hydroxydeoxyguanosine (markers of oxidative damage to DNA)
can be found in both the plasma and tissues of streptozotocin (STZ) diabetic rats (78).
Importantly, various forms of oxidant-induced DNA damage (base modifications as well as
DNA strand breaks) have also been demonstrated in diabetic patients (2,4,26,53,87).

In a STZ-induced murine model of type I diabetes, we observed that the diabetes-associated
loss of endothelial function is not only preventable, but also rapidly reversible with PARP
inhibition (33,91). Intravascular PARP activation (seen primarily in endothelial cells, as well
as in vascular smooth muscle cells) was already apparent 2 weeks after the onset of diabetes,
and thus it slightly preceded the occurrence of the endothelial dysfunction, which developed
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between the 2nd and the 4th week of diabetes (33,91) (Fig. 2). Delayed treatment with the PARP
inhibitor, starting at 1 week after STZ, ameliorated vascular poly(ADP-ribose) accumulation
and restored normal vascular function without altering systemic glucose levels, plasma
glycated hemoglobin levels, or pancreatic insulin content (33,91). Furthermore, delayed
treatment of the animals with the PARP inhibitor restored the already established diabetic
endothelial dysfunction (Fig. 3), and even in vitro incubation of diabetic blood vessels with
PARP inhibitors of various structural classes significantly enhanced their endothelium-
dependent relaxant responsiveness (91) (Fig. 4). The development of the endothelial
dysfunction and its reversibility by pharmacological inhibition of PARP have also been
demonstrated in an autoimmune model of diabetes (72) (Fig. 5). The endothelial dysfunction
was associated with a simultaneous loss of NAD+ and NADPH in the vasculature, and PARP
inhibition reversed these changes. Based on these observations, and the known fact that
endothelial nitric oxide synthase (eNOS; the NOS isoform present in the vascular endothelial
cells) is dependent on NADPH and is sensitively regulated by this cofactor, we hypothesized
that the endothelial dysfunction in diabetes is dependent on a PARP-mediated, reversible
cellular NADPH deficiency (33,91). In fact, previous in vitro work demonstrated that the
NADPH depletion in oxidatively stressed cells is dependent on PARP activation (18,39,47).
It is interesting to note that other groups have demonstrated that diabetic endothelial
dysfunction is also associated with direct oxidation and consequent cellular depletion of other
cofactors of eNOS, such as tetrahydrobiopterin (32,33,35,75,117). As in the absence of
tetrahydrobiopterin a functional uncoupling of eNOS occurs and the enzyme produces
superoxide and peroxynitrite, rather than NO (114), the consequences of these processes are
increased free radical and oxidant production, oxidative damage, and further exacerbation of
the endothelial dysfunction.

The mode of the protective action of PARP inhibitors on the vascular endothelium in vivo likely
involves the conservation of cellular energetic pools, as well as a prevention of the up-
regulation of various proinflammatory pathways [cytokines, adhesion molecules (ICAM-1,
VCAM-1, and E-selectin) mononuclear cell infiltration] triggered by hyperglycemia (16,33,
92). This latter mechanism may represent an important additional pathway whereby PARP
activation can contribute to vascular dysfunction via the up-regulation of adhesion molecules.
As mentioned earlier, PARP regulates the activation of a variety of signal transduction
pathways, and some of these pathways regulate the expression of cell surface and soluble
adhesion molecules. Recent preliminary data indicate that pharmacological inhibition of PARP
can suppress this process (16). Intermittent high/low glucose induces a more pronounced
expression of adhesion molecules than constant high glucose (82), and PARP inhibition
suppresses NF-κB activation and the expression of adhesion molecules both under constant
high glucose and under intermittent high/low glucose conditions in cultured endothelial cells
in vitro (16).

Brownlee and colleagues have demonstrated that the hyperglycemia-induced overproduction
of superoxide by mitochondrial electron-transport chain activated major pathways of
hyperglycemic damage found in aortic endothelial cells (activation of PKC isoforms,
hexosamine pathway flux, and AGE formation) by inhibiting glyceraldehyde-3-phosphate
dehydrogenase (GAPDH) activity (28,29,83). Importantly, the hyperglycemia-induced
GAPDH inhibition was found to be a consequence of poly(ADP-ribosyl)ation of GAPDH by
PARP, which was activated by DNA strand breaks produced by reactive species generated by
hyperglycemia. One of the likely DNA-damaging factors is peroxynitrite, which is generated
when mitochondrial superoxide reacts with NO produced by the constitutive eNOS. Both the
hyperglycemia-induced decrease in activation of GAPDH and its poly (ADP-ribosyl)ation can
be prevented by overexpression of either uncoupling protein-1 (UCP-1) or manganese
superoxide dismutase (MnSOD), which decrease hyperglycemia-induced superoxide
generation. Overexpression of UCP-1 or MnSOD also prevented hyperglycemia-induced DNA
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strand breaks and activation of PARP (28). Similarly, administration of the mitochondrial
uncoupler 2,4-dinitrophenol to endothelial cells exposed to high glucose blocked glucose-
induced DNA strand breakage and PARP activation (76). Importantly, the hyperglycemia-
induced activation of PKC isoforms, hexosaminase pathway flux, and AGE formation was
prevented by blocking PARP activity with various structurally unrelated inhibitors of the
enzyme (28).

An additional factor to be considered in the context of PARP activation and the pathogenesis
of endothelial dysfunction and diabetic complications is angiotensin II. Angiotensin II is a
known factor in the pathogenesis of diabetic complications, perhaps most importantly in
nephropathy, cardiomyopathy, and retinopathy. Recent studies indicate that the protective
effects of angiotensin-converting enzyme inhibitors or angiotensin receptor antagonists may
go beyond the blood pressure-lowering effects of these agents (6,9,50). In this context, it is
noteworthy that angiotensin II can induce direct, prooxidative effects on the vascular
endothelium. These effects are, at least in part, mediated by intraendothelial reactive species
formation via a new family of NAD(P)H oxidase subunits, known as the nonphagocytic NAD
(P)H oxidase proteins. Reactive oxidant species produced following angiotensin II-mediated
stimulation of NAD(P)H oxidases can exert direct oxidative effects, but can also signal through
pathways such as mitogen-activated protein kinases, tyrosine kinases, and transcription factors,
and lead to events such as inflammation, hypertrophy, remodeling, and angiogenesis (13).
Recent work demonstrates that angiotensin II can also induce intraendothelial peroxynitrite
formation (56,116), as well as PARP activation (104). Administration of angiotensin II triggers
the activation of PARP in cultured endothelial cells in vitro. The in vitro PARP activation is
dose-dependently inhibited by PARP inhibitors of various structural classes, as well as by the
compound apocynin, indicating that NAD(P)H oxidase-generated superoxide anion accounts
for the generation of the reactive species that trigger DNA single strand breakage and PARP
activation (104). Angiotensin-induced PARP activation is also inhibited by Nω-nitro-L-
arginine methyl ester and diphenyleneiodonium (104). Thus, angiotensin triggers the
endothelial generation of reactive oxygen species from NAD(P)H oxidase, and these with
constitutively produced NO produce peroxynitrite and other reactive nitrogen species, which
induce DNA breakage and activate PARP in the vascular endothelium, leading to the
development of endothelial dysfunction. This pathway is also operative in vivo, as chronic
infusion of subpressor doses of angiotensin infusion triggers endothelial dysfunction in vivo,
which can be prevented or reversed by PARP inhibition (103). Future work needs to establish
the importance of this pathway in the context of diabetic complications.

ENDOTHELIAL DYSFUNCTION IN DIABETIC AND PREDIABETIC PATIENTS:
THE POTENTIAL ROLE OF PARP ACTIVATION

A recent study of forearm skin biopsies from healthy subjects extended our knowledge on the
role of PARP activation in the development of diabetic endothelial dysfunction in human
subjects. Analysis of dermal biopsy samples from healthy individuals with parental history of
type 2 diabetes (T2DM), subjects with impaired glucose tolerance, and a group of type 2
diabetic patients indicated that the percentage of PARP-positive endothelial nuclei was higher
in the group of parental history of T2DM and diabetic patients when compared with the controls
(102). In addition, significant correlations were observed between the percentage of PARP-
positive endothelial nuclei and fasting blood glucose, resting skin blood flow, maximal skin
vasodilatory response to the iontophoresis of acetylcholine (which indicates endothelium-
dependent vasodilation), and nitrotyrosine immunostaining intensity. Nitrotyrosine
immunoreactivity [a marker of reactive nitrogen species (chiefly peroxynitrite) formation] was
also higher in the diabetic patients when compared with all other groups (102). Significant
correlations were observed between nitrotyrosine immunostaining intensity and fasting blood
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glucose, glycosylated hemoglobin (HbA1c), ICAM, and VCAM. No differences in the
expression of eNOS and RAGE were found among all four groups. The polymorphism of the
eNOS gene was also studied and was not found to influence eNOS expression or microvascular
functional measurements. Thus, in humans, PARP activation is present in healthy subjects at
risk of developing diabetes, as well as in established type 2 diabetic patients, and it correlates
with impairments in the vascular reactivity in the skin microcirculation (102). As interventional
studies with PARP inhibitors in humans with diabetic endothelial dysfunction have not yet
been conducted, it remains to be seen whether PARP activation in diabetic or prediabetic
humans can be seen as a predictor or early marker for the development of diabetic vascular
complications.

THE ROLE OF PARP ACTIVATION IN THE PATHOGENESIS OF DIABETIC
CARDIOMYOPATHY

It is well established that the superoxide–peroxynitrite–PARP pathway plays a pivotal role in
various models of myocardial ischemia–reperfusion injury (a condition in which oxidative and
nitrosative stress plays a key pathogenetic role) (106,107,120). Recent data demonstrate that
the PARP pathway also plays a pathogenetic role in the development of diabetic
cardiomyopathy (72). Cardiac dysfunction and PARP activation in the cardiac myocytes and
the coronary vasculature were observed in both STZ-induced and genetic (nonobese diabetic)
models of diabetes mellitus in rats and mice. Furthermore, treatment with the
phenanthridinone-based PARP inhibitor PJ34, starting 1 week after the onset of diabetes,
restored normal vascular responsiveness and significantly improved cardiac function in
diabetic mice and rats, despite the persistence of severe hyperglycemia. The beneficial effect
of PARP inhibition persisted even after several weeks of the discontinuation of the PARP
inhibitor treatment (72).

It is conceivable that the diabetic endothelial PARP pathway and the diabetic cardiomyopathy
are interrelated: the impairment of the endothelial function may lead to global or regional
myocardial ischemia, which may secondarily impair cardiac performance. The beneficial effect
of PARP inhibition on myocardial function, however, is not related to an anabolic effect
because PJ34 treatment did not influence the body and heart weight loss in diabetic animals,
whereas it dramatically improved cardiac function. It is noteworthy that the protective effect
of PARP inhibition against diabetic cardiac dysfunction extends several weeks beyond the
discontinuation of treatment; this observation may have important implications for the design
of future clinical trials with PARP inhibitors. The prolonged protective effect may be related
to the permanent interruption by the PARP inhibitor of positive feedback cycles of cardiac
injury. Indeed, previous studies in various pathophysiological conditions have demonstrated
that PARP inhibitors suppress positive feedback cycles of adhesion receptor expression and
mononuclear cell infiltration, as well as cellular oxidant generation (16,106,120). The mode
of the PARP inhibitors’ cardioprotective action involves a conservation of myocardial
energetics, as well as a prevention of the up-regulation of various proinflammatory pathways
(cytokines, adhesion receptors, mononuclear cell infiltration) triggered by ischemia and
reperfusion (106,120). It is conceivable that PARP inhibition exerts beneficial effects in
experimental models of diabetic cardiomyopathy by affecting both above-referenced pathways
of injury, and also by suppressing positive feedback cycles initiated by them.

THE ROLE OF PARP ACTIVATION IN THE PATHOGENESIS OF DIABETIC
RETINOPATHY, NEPHROPATHY, AND NEUROPATHY

Although most of the studies on the role of PARP in the pathogenesis of diabetic endothelial
dysfunction were conducted in macrovessels (see above), there is circumstantial evidence that
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similar processes are operative for the pathogenesis of diabetic microvascular injury (which is
an important underlying mechanism for the pathogenesis of retinopathy, nephropathy, and
neuropathy). In fact, there is now evidence of PARP activation in the microvessels and
ganglionic layer of the diabetic retina (64,105). The causative role of PARP in diabetic
retinopathy is now supported by two independent interventional preclinical studies. In one
report (119), a long-term (9-month) study was used to investigate the role of PARP in
hyperglycemia-induced cell death in vitro and in the development of diabetic retinopathy in
vivo. STZ-diabetic Lewis rats were treated with vehicle or the PARP inhibitor PJ34. Diabetes
was found to increase activity of PARP in retina measured at 2 months, and PJ34 inhibited this
increase. PARP activation was detectable also in a subset of nuclei from retinal capillary
endothelial cells and pericytes. Diabetes of 9 months duration significantly increased the
number of both TUNEL-positive capillary cells and acellular capillaries (a marker of
degenerate capillaries), and PJ34 significantly inhibited these alterations without influencing
glycemic control. PJ34 also inhibited a diabetes-induced up-regulation of ICAM and
leukostasis within the retinal vasculature. In a complementary in vitro study, bovine retinal
endothelial cells and pericytes were incubated in 5 mM (normal) and 25 mM (elevated) glucose
for 5 days with or without PJ34. High glucose significantly increased death of retinal capillary
endothelial cells, and PARP inhibition prevented this cell death. In a second, independent study
(119), male C57/BL6 mice were rendered diabetic with a single injection of STZ. Diabetic
mice, treated with the PARP inhibitor PJ34 for 6 months, were investigated for experimental
retinopathy by using retinal digest preparations and quantitative retinal morphometry. Diabetes
over 6 months induced pericyte loss and increased the number of acellular capillaries.
Treatment with PJ34 inhibited both the loss of pericytes and the formation of acellular
capillaries. These data, taken together, suggest that hyperglycemia-induced PARP activation
affects predominantly the retinal vasculature and is susceptible to pharmacological PARP
inhibition.

As far as the role of PARP in diabetic nephropathy goes, the presence of glomerular depositions
(mesangial distribution) of IgG was significantly reduced in STZ-diabetic rats treated with the
PARP inhibitor nicotinamide for 6 months (115). In agreement with these results, we have
recently provided evidence that PARP activation is present in the tubuli of STZ-induced
diabetic rats. This PARP activation is attenuated by two unrelated PARP inhibitors, 3-
aminobenzamide and 1,5-isoquinolinediol, which also counteracted the overexpression of
endothelin-1 and endothelin receptors in the renal cortex (57).

It has recently been suggested that the oxidative/nitrosative stress–PARP pathway PARP also
plays a key role in the development of diabetic neuropathy: the progressive slowing of sensory
and motor neuron conductance in diabetic rats and mice is preventable by PARP inhibition or
PARP deficiency, and this is associated with maintained neuronal phosphocreatine levels, as
well as improved endoneurial blood flow (17,51,61,62,76). Importantly, pharmacological
PARP inhibition is not only a preventive option; it can also restore sensory and motor neuronal
conduction in already established diabetic neuropathy, at least in murine models of the disease
(51).

Additional studies, utilizing potent and specific inhibitors of PARP, are needed to further
delineate the role of PARP in the pathogenesis of diabetic retinopathy, neuropathy, and
nephropathy. It is important to reemphasize that, although the above conditions are generally
considered as separate patho-physiological entities, there is good evidence that, at least in part,
they all develop on the basis of endothelial (vascular) dysfunction (59,60). As diabetic erectile
dysfunction is also known to develop on the basis of diabetic endothelial dysfunction and
diabetic neuropathy (84), the potential role of PARP activation in this condition must also be
explored in future studies.
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CONCLUSIONS AND IMPLICATIONS
Based on the evidence reviewed herein, we conclude that the PARP pathway plays very
important regulatory roles in the pathogenesis of vascular endothelial dysfunction in patho-
physiological conditions associated with oxidative stress, including diabetes (20,75,76,110).
It remains to be studied whether various clinical therapeutic or experimental therapeutic
interventions, which are known to have some vascular protective effects in diabetes
(antioxidant therapies, peroxisome proliferator-activated receptor agonists, etc.), are able to
suppress the activation of PARP in the cardiovascular system. It is noteworthy in this respect
that, in preclinical studies, administration of the aldose reductase inhibitors sorbinil or fidarestat
to diabetic rats not only corrected diabetes-induced depletion of glutathione and ascorbate,
down-regulation of superoxide dismutase activity, and accumulation of lipid peroxidation
products in the peripheral nerve, counteracted superoxide formation in vasa nervorum, and
was effective against multiple indices of diabetes-associated retinal oxidative and nitrosative
stress, but also inhibited poly(ADP-ribose) accumulation (a marker of PARP activation) in
diabetic nerve and retina (65). Similar results were obtained with FP15, a novel peroxynitrite
decomposition catalyst compound (63,76,101). In a murine study, sciatic motor nerve
conduction velocity and hind-limb digital sensory conduction velocity were reduced in diabetic
mice versus controls, and both indices were normalized by FP15, which also ameliorated the
accumulation of poly(ADP-ribose) accumulation in diabetic nerves (63).

The pathogenetic role of the oxidative/nitrosative stress–PARP pathway (Fig. 6) is not limited
to the diabetes-induced vascular dysfunction, but it has also been demonstrated in various
animal models of other diabetic complications, including cardiomyopathy, nephropathy,
neuropathy, and retinopathy. PARP activation, thus, is a unique checkpoint in the development
and progression of various diabetic complications. PARP inhibition may emerge as a novel
approach for the prevention or reversal of diabetic complications. The benefits and potential
risks associated with chronic administration of PARP inhibitors are discussed in a recent review
(94). The comparative therapeutic utility of PARP inhibition for the experimental therapy of
diabetic complications should be explored by additional preclinical and subsequent clinical
investigations.

ABBREVIATIONS
AGE  

advanced glycation end product

AP-1  
activator protein-1

eNOS  
endothelial nitric oxide synthase

GAPDH  
glyceraldehyde-3-phosphate dehydrogenase

ICAM-1  
inter-cellular adhesion molecule-1

iNOS  
inducible nitric oxide synthase

MnSOD  
manganese superoxide dismutase
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NAD+  
nicotinamide adenine dinucleotide

NF-κB  
nuclear factor-κB

NO  
nitric oxide

PARG  
poly(ADP-ribose) glycohydrolase

PARP/PARS 
poly(ADP-ribose) polymerase/synthase

PJ34  
potent water-soluble phenanthridinone-derived PARP inhibitor

PKC  
protein kinase C

STZ  
streptozotocin

T2DM  
type 2 diabetes mellitus

UCP-1  
uncoupling protein-1

VCAM-1  
vascular cellular adhesion molecule-1
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FIG. 1. Reactive nitrogen species generation, DNA breakage, and PARP activation in diabetic blood
vessels
(a–c) Immunohistochemical staining for nitrotyrosine in control rings (a), in rings from diabetic
mice treated with vehicle at 8 weeks (b), and in rings from diabetic mice treated with PJ34 (c).
(d–f) Terminal deoxyribonucleotidyl transferase-mediated dUTP nick-end labeling, an
indicator of DNA-strand breakage, in control rings (d), in rings from diabetic mice treated with
vehicle at 8 weeks (e), and in rings from diabetic mice treated with PJ34 (f). (g–i)
Immunohistochemical staining for poly(ADP-ribose), an indicator of PARP activation, in
control rings (g), in rings from diabetic mice treated with vehicle at 8 weeks (h), and in rings
from diabetic mice treated with PJ34 (i). Reproduced with permission from 33.

PACHER and SZABÓ Page 17

Antioxid Redox Signal. Author manuscript; available in PMC 2008 February 4.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



FIG. 2. Reversal of diabetes-induced endothelial dysfunction by pharmacological inhibition of
PARP
The following symbols were used for the respective groups: animals that received no STZ
injection (Δ), nondiabetic control animals at 8 weeks treated with PJ34 between week 1 and 8
(▴), diabetic animals at 8 weeks treated with vehicle (▲), diabetic animals at 8 weeks treated
with PJ34 between week 1 and 8 (●). (a) Blood glucose levels, pancreatic insulin content (ng
of insulin/mg of pancreatic protein), and blood glycosylated hemoglobin (Hb) (expressed as
% of total Hb) at 0–8 weeks in nondiabetic, control male BALB/c mice, and at 0–8 weeks after
STZ treatment (diabetic) in male BALB/c mice. PARP inhibitor treatment, starting at 1 week
after STZ and continuing until the end of week 8, is indicated by the arrow. Pancreatic insulin
and glycated hemoglobin levels are shown at 8 weeks in vehicle-treated and STZ-treated
animals, in the presence or absence of PJ34 treatment. (b) Acetylcholine-induced,
endothelium-dependent relaxations, phenylephrine-induced contractions, and sodium
nitroprusside (SNP)-induced endothelium-independent relaxations. *p < 0.05 for vehicle-
treated diabetic versus PJ34-treated diabetic mice (n = 8 per group). Reproduced with
permission from 33.
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FIG. 3. Pharmacological inhibition of PARP restores impaired endothelium-dependent relaxant
ability of the diabetic vessels
Blood glucose levels and vascular responsiveness are presented. Endothelium-dependent
relaxations were induced by acetylcholine, contractions induced by phenylephrine, and
endothelium-independent relaxations induced by sodium nitroprusside (SNP) in control
(nondiabetic) male Balb/c mice and 1, 4, and 8 weeks after STZ-induced diabetes. Vehicle or
PARP inhibitor (PJ34, 10 mg/kg oral gavage once a day) treatment started at 4 weeks after
STZ and continued until 8 weeks (the end of the experimental period). There was a marked
and selective impairment of the endothelium-dependent relaxant ability of the vascular rings
in diabetes at 4 and 8 weeks. Treatment with the PARP inhibitor between weeks 4 and 8 restored
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to normal the endothelium-dependent relaxant ability of the diabetic vessels despite the
persistence of hyperglycemia. *p < 0.05 for differences between experimental groups, as
indicated. n = 8 per group. Reproduced with permission from 91.
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FIG. 4. In vitro treatment with all PARP inhibitors improved the endothelium-dependent relaxant
ability of the diabetic vessels
(A) Endothelium-dependent relaxations induced by acetylcholine in control (nondiabetic) male
Balb/c mice and 4 weeks after STZ-induced diabetes. In a subgroup of the vascular rings,
evaluation of vascular responsiveness was preceded by 1-h incubation with three structurally
different PARP inhibitors: 3-aminobenzamide (3 mmol/L), 5-iodo-6-amino-1,2-benzopyrone
(INH2BP) (100 μmol/L), or 1,5-dihydroxyisoquinoline (Isoquinolone) (30 μmol/L). There was
a marked and selective impairment of the endothelium-dependent relaxant ability of the
vascular rings in diabetes at 4 weeks. In vitro treatment with all PARP inhibitors improved the
endothelium-dependent relaxant ability of the diabetic vessels. *p < 0.05 for differences
between experimental groups, as indicated. n = 8 per group. Reproduced with permission from
91. (B) Endothelium-dependent relaxations induced by acetylcholine in control (nondiabetic)
male Balb/c mice and 6 weeks after STZ-induced diabetes. In a subgroup of the vascular rings,
evaluation of vascular responsiveness was preceded by 1-h incubation with the novel potent
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PARP inhibitor, INO1001 (3 μmol/L). There was a marked and selective impairment of the
endothelium-dependent relaxant ability of the vascular rings in diabetes at 6 weeks. In vitro
treatment with all PARP inhibitors improved the endothelium-dependent relaxant ability of
the diabetic vessels. #, *p < 0.05 for differences between experimental groups, as indicated.
n = 8 per group.
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FIG. 5. Reversal of diabetes-induced endothelial dysfunction by pharmacological inhibition of
PARP in diabetic NOD mouse vascular rings
Epinephrine-induced contractions (upper panel), acetylcholine-induced endothelium-
dependent relaxation (middle panel), and sodium nitroprusside (SNP)-induced endothelium-
independent relaxations (lower panel).■, control; ○, control + PJ34; □, diabetes; ●, diabetes
+ PJ34. Each point of the curve represents the mean ± SE of five to eight experiments in vascular
rings. *p < 0.05 versus control; #p < 0.05 versus diabetes. Reproduced with permission from
72.
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FIG. 6. Overview of the role of PARP in regulating multiple components of hyperglycemia-induced
endothelial dysfunction
High circulating glucose interacts with the vascular endothelium where it triggers the release
of oxidant mediators from the mitochondrial electron transport chain, as well as from NADH/
NADPH oxidase and other sources. NO, in turn, combines with superoxide (O2

− to yield
peroxynitrite (ONOO−). Hydroxyl radical (OH·) (produced from superoxide via the iron-
catalyzed Haber–Weiss reaction) and peroxynitrite or peroxynitrous acid induce the
development of DNA single-strand breakage, with consequent activation of PARP. Depletion
of the cellular NAD+ leads to inhibition of cellular ATP-generating pathways leading to cellular
dysfunction. The PARP-triggered depletion of cellular NADPH directly impairs the
endothelium-dependent relaxations. The effects of elevated glucose are also exacerbated by
increased aldose reductase activity leading to depletion of NADPH and generation of reactive
oxidants. NO alone does not induce DNA single-strand breakage, but may combine with
superoxide (produced from the mitochondrial chain or from other cellular sources) to yield
peroxynitrite. Under conditions of low cellular L-arginine, NOS may produce both superoxide
and NO, which then can combine to form peroxynitrite. PARP activation, via a not yet
characterized fashion, can promote the activation of nuclear factor-κB, AP-1, mitogen-
activated protein (MAP) kinases, and the expression of proinflammatory mediators, adhesion
molecules, and iNOS. PARP activation contributes to the activation of PKC. PARP activation
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also leads to the inhibition of cellular GAPDH activity, at least in part via the direct poly(ADP-
ribosyl)ation of GAPDH. PARP-independent, parallel pathways of cellular metabolic
inhibition can be activated by NO, hydroxyl radical, superoxide, and peroxynitrite.
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