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A B S T R A C T  Light-evoked intracellular voltage noise records have been ob- 
tained from Limulus eccentric cells, from threshold light intensity to an intensity 
�9 105 times threshold. These data are analyzed in terms of a simple "adapting- 
bump" noise model. It is shown how the model yields a data reduction procedure 
that slightly generalizes the familiar use of Campbell's theorem for Poisson shot 
noise: the correlative effect of adaptation amends Campbell's theorem by a 
single multiplicative factor, which may be estimated directly from the power 
spectrum of the noise data. The model also permits direct estimation of the 
bump shape from the power spectrum. The bump shape estimated from noise 
at dim light is in excellent agreement with the average shape of bumps observed 
directly in the dark. The data yield a bump rate that is linear with light up 
through about 50 times threshold intensity but that falls short of linearity by a 
factor of 35 at the brightest light. The bump height decreases as the -0.4 power 
of light intensity across the entire range. Bump duration decreases by a factor 
of 2 across the entire range, and the adaptation correlation factor descends from 
unity to about one-third. The modest change of the adaptation correlation 
shows that naive application of Campbell's theorem to such data is adequate 
for rough estimation of the model's physiological parameters. This simple 
accounting for all the data gives support to the adapting-bump model. 

I N T R O D U C T I O N  

The primary event in the phototransduction process is a light-induced isom- 
erization of  the photopigment.  The mechanisms that link this event to the 
electrical response within the photoreceptor cell remain unknown. However,  
recordings of  the slow receptor potential (generator potential) from Limulus 
photoreceptors have shown that the response to light is related to the occur- 
rence of  discrete events known as "quan tum bumps"  (Yeandle, 1957). These 
bumps are transitory increases in membrane conductance that lead to "waves" 
of  depolarization (Adolph, 1964). Bumps have been observed in photorecep- 
tors of  several arthropods: Locusta (Scholes, 1965); Musca (Kirschfeld, 1966); 
ventral photoreceptors of  Limulus (Millecchia and Mauro,  1969); Drosophila 
(Wu and Pak, 1975). The  work of  Fuortes and Yeandle (1964) and of  Adolph 
(1964) shows that at very low light intensities the rate of  appearance of  the 
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bumps  increases proport ional ly  to light intensity. The  times of  occurrence of  
bumps,  however, appear  to be r andom and  independent .  Fuortes and  Yeandle  
(1964) also suggested that  each b u m p  follows the absorpt ion of  a single 
photon.  (See also Borsellino and  Fuortes [1968].) The  generator  potent ial  
appears to be a summat ion  of  these q u a n t u m  bumps  (Rushton,  1961). 

Fig. 1 shows further  features of  the intracel lular  voltage response to light. In 
steady state the generator  potential  does not increase proport ional ly  to light 
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FIGURE 1. Records obtained from an eccentric cell showing the responses of a 
photoreceptor to light of various intensities. The lowest trace shows that, for a 
very dark-adapted cell, bumps could occur spontaneously in the dark. (The 
spontaneous bumps only occur when the cell is very dark adapted.) Under very 
dim, steady illumination (-5 log), it appears that the response is the sum of 
more frequent bumps. At higher light intensities, it is not possible to observe the 
bumps individually. There are three major features: first, in response to step 
changes of light intensity, the response goes through a transient phase and a 
smaller plateau, and the mean amplitude of the response in the steady state 
does not increase proportionally with light intensity but more as its logarithm. 
Second, the amplitude of the noise of the response decreases markedly with 
increasing light intensity. (If these responses were the summation of bumps such 
as those seen in dim light, and if the number of bumps per second increased 
proportionally with light intensity, one would expect to see the mean amplitude 
increase proportionally with light intensity; and the mean amplitude of the 
noise should also increase.) Third, there are no big bumps seen immediately 
after the cessation of a bright light. These observations suggest that the response 
to bright light is the sum of bumps the average size of which is smaller than the 
average size of the bumps seen in dim light. 
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intensity but more nearly as its logarithm. Moreover, the amplitude of the 
noise about the mean decreases with increasing light intensity (Dodge et al., 
1968). After the onset of steady light, an early voltage transient settles back to 
a steady state, and, after bright light, a dim light evokes bumps of reduced 
size (Dodge et al., 1968). It is as though brighter light causes a superposition 
of smaller bumps. These observations may be summarized by two model 
postulates (advanced by Rushton [1961], Adolph [1964], and Dodge et al. 
[1968]): (a) the generator potential is a summation of bumps; and (b) the 
average size of bump decreases with light intensity, and this is the major 
mechanism of light adaptation. We shall call these postulates the "adapting- 
bump model." 

If the voltage response in steady light results from the superposition of 
numerous bumps, its average value (in millivolts) should be the product of 
two more fundamental factors, the rate X (in inverse seconds) at which new 
bumps appear and the "average bump size" s (in millivolts times seconds), 
which is the area under a typical bump if we plot its time-course as millivolts 
vs. time. There is a natural way (discussed below; Eqs. 3 and 4) to further 
resolve the bump size into two factors, its "height" (h, in millivolts) and its 
"duration" (T, in seconds, so that s - hT). 

(We note here that when we come to the analysis of actual data, we shall 
deal not with the observed variable, voltage, but with the more fundamental,  
derived biophysical variable, membrane shunt conductance, which differs 
from voltage by a simple transformation. We find that the material of the 
next paragraphs is most easily communicated in terms of the voltage variable, 
which is actually seen in the laboratory.) 

Once a model of the photoresponse has been defined in sufficient detail, we 
may analyze experimental voltage noise records to extract the three underlying 
parameters of X, h, and T. A rough analysis of this sort was reported without 
procedural details for voltage noise in Limulus visual cells by Dodge et al. 
(1968), who estimated the T from the voltage-frequency response to sinusoi- 
dally flickered light and then estimated X and h by a direct application of 
Campbell's theorem. The use of Campbell 's theorem (Rice, [1944]; see also 
Hagins [196.5]) is a classic technique for extracting rate and height information 
from a "Poisson shot noise," which is a superposition of independent bumps. 

The procedure of Dodge et al. (1968) is open to logical challenge in two 
respects. Firstly, it is now known (Wong et al., 1980) that the frequency 
response to flicker is not uniquely related to the bump shape but depends also 
on the "dispersion of latencies" between photon capture and bump release. 
(Dodge et al. [1968] mention that their analysis is limited to data for which 
such dispersion could be ruled out as a significant effect.) Secondly, the 
adapting feature of the adapting-bump model implies that the sizes of later 
bumps are reduced by (and hence correlated with) the capture of photons 
that have given rise to earlier bumps. The assumption of adaptation is not 
strictly consistent with the use of Campbell 's theorem, which holds for a 
Poisson shot noise of uncorrelated bumps. (Dodge et al. mention that the 
effect of correlation shortens their calculated duration by a spurious factor of 
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up to 2. They give no guiding details but refer to work "in preparation," 
which now appears in Knight [1973]). 

Our purpose here is to present and apply a method whereby the three 
parameters duration T, height h, and rate • can all be estimated from steady 
voltage noise alone in a manner consistent with and correct for the adapting- 
bump model. 

Theory 
In this section we present Campbell's theorem, which leads us by a simple 
dimensional argument to natural expressions for the height and duration of a 
bump whose shape is arbitrary. Campbell's theorem takes a particularly 
simple form in terms of these parameters. Another simple dimensional argu- 
ment shows how the correlation among bumps may modify Campbell's 
theorem only by the introduction of a single, dimensionless multiplicative 
factor. We then observe how the power spectrum of a noise composed of 
uncorrelated bumps is related to T; two procedures for estimating T are 
presented, one simple and the other more general. At this point, the data 
indicate that in bright light there is correlation among the underlying bumps 
in the voltage noise; the data also indicate where this correlation will modify 
the power spectrum. A quantitative estimate of this modification is made and 
is applied directly to evaluation of the correlation correction to Campbell's 
theorem, whereupon rate, height, and duration can be estimated for the 
correlated voltage noise. 

If a random variable is the sum of underlying random variables, then, quite 
generally, its mean value is the corresponding sum of the means of the 
underlying random variables. If its component underlying variables are 
uncorrelated, then its variance (mean squared departure from its mean) is the 
sum of the variances of the underlying processes. If g(t) is a noisy signal 
composed of superimposed bumps having a common waveform B(t) (zero for 
t < O) and appearing at a mean rate ~k, then the addition-of-means property 
leads directly to 

mean (g) ---- X ~0-- dt B(t); (1) 

and, if the bumps are uncorrelated, the addition-of-variances property simi- 
larly leads directly to 

var (gu) -- ~ f o  dt B2(t) (2) 

(the subscript u indicates that gu(t) is composed of uncorrelated bumps). Eqs. 
1 and 2 state Campbell's theorem, which relates the measurable properties 
mean (gu) and var(gu) of the noise gu(t) to its underlying constituents ~k and 
B(t). Note that the integral in Eq. 1 is the "size" mentioned in the introduction, 
and that the quadratic integral in Eq. 2 is the size of the variance. If we are 
dealing with a noisy voltage signal, the physical dimension of B(t) dt is voltage 
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times time, whereas that of B2(t) dt is voltage squared times time. There is 
only one way in which the integrals in Eqs. 1 and 2 can be combined to yield 
a quantity with the physical dimension of voltage, and that is 

f~ dt B2(t) 
h , (3) 

i dt B(t) 

whereas 

T -- (4) 

~ dt B2(t) 

is the only combination that dimensionally is a time (Knight, 1973). Eqs. 3 
and 4 form natural definitions of the height and duration. Note that h scales 
linearly with B(t), whereas the same scaling leaves T unchanged. If we choose 
a rectangular waveform for B(t) and if we call its height h and its duration T, 
then Eqs. 3 and 4 are identically satisfied. For a bump of arbitrary shape, a 
reasonable "equivalent rectangular bump"  should be such that h • T equals 
the bump's exact area, which is manifestly satisfied by Eqs. 3 and 4. If we 
rescale B(t) to derive a weighting function with unit area, Eq. 3 becomes the 
average height of B(t) with that weighting. (See Wong et al. [1980] on the 
distribution of bump sizes.) No reasonable alternative definitions of height 
and duration will yield numbers drastically different from those yielded by 
Eqs. 3 and 4 when applied to bumps of reasonable shape. 

When Eqs. 3 and 4 are solved for the two integrals, and when the results 
are subatituted into Eqs. 1 and 2, Campbell 's theorem takes the simple form 

mean (gu) = ~hT and (5) 

var (gu) -- ~kh2T. (6) 

If T can be estimated independently by a more detailed scrutiny of the noise 
signal, then, since mean (g~) and var (gu) may be measured directly, Eqs. 5 
and 6 can be solved for the underlying ~k and h in terms of measured quantities. 

Far more general sorts of "superimposed bump"  noise can be contemplated; 
if the mean time-course of the bumps is B(t), Eq. 1 will still hold. Eq. 2 does 
not have similar generality. However, the bump shape B(t) will always yield 
the h and T of Eqs. 3 and 4 (and Eq. 5 will follow for general g as a 
consequence). With some generality, the variance var (g) of the superimposed 
bump noise should be proportional to the arrival rate X, and should also 
depend on the form of the individual bump. The physical dimension of the 
var (g) is millivolts squared, and the only expression with that physical 
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dimension, linear in )~ (expressed in inverse seconds) and involving h(millivolts) 
and T(expressed in seconds), is )~h 2, as in Eq. 6. Consequently,  for more 
general sorts of superimposed b u m p  noise, the variance can in general be 
related to its underlying causes through an expression similar to Eq. 6 of the 
form 

var (g) = ~pAh2T, (7) 

where 6 is a real number  without  physical dimension, characteristic of the 
processes that  underlie the noise, and where ~p may depart  from unity if the 
assumptions that  lead to Eq. 6 do not hold. I f 6  as well as T could be est imated 
by analyzing the noise, then we could obtain h and )~ by solving Eqs. 5 and 7, 
which yield 

l var (g) 
h = and (8) 

q~ mean (g) 

7~ _- ff [mean (g)]2 (9) 
T var(g) 

If  (contrary to fact) we could collect laboratory records not only of the noise 
g(t) but  also of a second, comparison, noise gu(t) composed of uncorrelated 
bumps  B(t) with the same values of h and T, arriving at the same A, then 4' 
could be measured directly inasmuch as the quotient  of Eqs. 6 and 7 is 

var (g) 
= var (gu) (10) 

We shall see below that  var (gu), the variance of the comparison uncorrelated 
b u m p  noise, though not directly measureable, can be est imated from the 
power spectrum of the correlated b u m p  noise. 

We return to the estimation o f T  for an uncorrelated b u m p  noise gu(t). Two 
estimation procedures will be given, both of which utilize the power spectrum, 
which we now define in terms of the noise autocovariance. The  autocovariance 
C(T) of a noise g(t) is formed from the noise departure  g(t) - ~ at t ime t and 
the departure,  a t ime 1" away from t, by forming their product  and averaging 
over t: 

C(T) ---- [g(t) -- g][g(t  + ~-) -- g].  (! 1) 

This experimentally measurable function is a generalization of the variance, 
because evidently, 

var (g) -- C(0). (12) 

The  autocovariance may be expressed as a superposition of its frequency 
components  i" 

C(T) = ~ d f S ( f )  cos (27rf~'), (13) 

where the power spectrum S(f) ,  the Fourier coefficient in Eq. 13, can be 
calculated from C(~') by the inverse Fourier formula 
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S ( f )  = ~ d'r C('r) cos (2,rf'r). (14) 

(See Wong et al. [1980]. The  more elementary cosine form of the Fourier 
t ransformation applies here because, by its definition, Eq. 11, C(~') is real and  
symmetric about  t = 0, whence S ( f )  is real and symmetric  about  f -  0.) Eqs. 
12 and 13 give 

f 
var(g)  = J d f S ( f ) ,  (15) 

which is impor tant  below. (The power spectrum more descriptively could be 
called the "variance spect rum" of g.) Wong et al. (1980) have shown that  if 
gu(t) is a noise composed of uncorrelated bumps,  for wh ich /} ( f )  is the Fourier 
transform of the b u m p  shape B(t) ,  then 

S ( f )  = X l /}( f  ) 12. (16) 

Below we shall show that  at low light intensity our  power spectra support  
the conclusion that  our  voltage noise is composed of uncorrelated bumps.  For 
these data, there are two ways in which Eq. 16 can be used to estimate T. The  
first method  simply assumes an analytic form for the b u m p  shape, with 
parameters to be fit by the power spectrum. Following Fuortes and Hodgkin  
(1964) and Wong et al. (1980), we choose the form 

1 
B(t) = r ( t ; n ,  "r) =- ~ (t/ 'r)" e -t/" (17) 

n!"f 

(we omit a multiplicative ampl i tude  scale because it would not influence T 
according to Eq. 4). This yields, upon  Fourier transformation,  

/} ( f )  l 2 = I i ' ( f ;  . ,~)12 = 1 (18) 
[1 + (2*r~'f)2] "+1' 

and, according to Eq. 16, n and ~" may be evaluated by fitting this to the 
scaled experimental  power spectrum S ( f ) / S O ) .  Then  T is evaluated from Eq. 
4 by performing the elementary integrals, which yield 

(n!)222n+l 
T = �9 r. (19) 

(2n)! 

The  second me thod  for evaluation of T furnishes also some checks on the 
consistency of  the rest of our work; it is a deeper analysis involving the 
" m i n i m u m  phase" property,  and  only a sketch of the procedure is furnished 
here. Wi th in  the set of  all waveforms [such as B(t)] that  might  deterministically 
follow a point  event in t ime [such as a photon absorption or the triggering of 
B(t)] is distinguished a subset of common  occurrence: those waveforms with 
the m i n i m u m  phase property (see, for example, Page [1955]). There  appears 
to be no single simple characterization of the general physical circumstances 
that  yield this property, but  it is easily stated: a waveform is m i n i m u m  phase 
if its Fourier transform is the exponential  of a causal transfer function. The  
m i n i m u m  phase property opens an important  computat ional  opportuni ty:  
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because the imaginary part of a causal transfer function may be deduced from 
its real part (by the so-called "Kramers-Kronig analysis" [Kramers, 1927; 
Kronig, 1936]; see also Titchmarsh [1973] and Page [1955]; Peterson and 
Knight [1973] give a modern algorithm), knowledge of the amplitude [/~(f) [ 
of the Fourier transform of a minimum phase waveform B(t) similarly yields 
its phase. In turn, amplitude and phase together yield B(t) by inverse Fourier 
transformation. The bump waveform B(t), if it is minimum phase, can thus 
be recovered from the measured power spectrum to within a multiplicative 
coefficient ~ according to Eq. 16. 

To reconstruct the bump shape from the minimum-phase assertion, we use 
the power spectrum in dim light to confirm the stronger assertion that the 
voltage response in dim light is composed of uncorrelated minimum-phase 
bumps whose waveform is the same as that of bumps measured directly in the 
dark. First, we determine the shape B(t) of the bump measured in the dark by 
averaging several samples; the result is shown in Fig. 2 a. Then, by Fourier 
transformation we determine the corresponding amplitude [B(f)  [. We now 
postulate the minimum phase property for B(t) and use the resulting algorithm 
upon [B(f)  [ to reconstruct the waveform which that postulate predicts; the 
result is shown in Fig. 2 b. The very close agreement with Fig. 2 a validates the 
minimum-phase postulate. None of the numbers generated as described above 
are used in the next step, which is to postulate Eq. 16 and apply the minimum- 
phase algorithm again to the independently evaluated experimental power 
spectrum (extracted from records comparable to the "log I/Io = - 5 "  line of 
Fig. 1). The resulting waveform, predicted from the power spectrum alone, is 
shown in Fig. 2 c. The degree of its agreement with the direct waveform 
measurement of Fig. 2 a is strong evidence that the generator potential 
response to dim light is indeed a superposition of "dark" bumps. 

The waveform thus derived from the power spectrum can now be used to 
numerically evaluate the integrals in Eq. 4, which determine the value of T. 
The good agreement of this method with the more elementary first procedure 
justifies that method, which simply fits the two parameters of the waveform 
Eq. 17 to the experimental power spectrum. (That waveform, in fact, possesses 
the minimum-phase property.) 

Our final largely theoretical task is to show that under bright, steady light 
the underlying bumps are correlated and to anticipate how this correlation 
should affect the power spectrum, thereby producing a means for estimating 
the "adaptation correlation factor," which first appeared in Eq. 7 and which 
is needed to evaluate h and ~ in Eqs. 8 and 9. 

Fig. 3, reproduced from Dodge et al. (1968), is an oscilloscope record of the 
eccentric cell's voltage response to a brief (40-ms) flash superimposed upon a 
bright, steady light. (The steady-state generator potential amplitude is 16 mV 
and the response amplitude is ~5 mV.) After its initial rise, the flash-response 
voltage swings beneath its baseline value and returns to steady state from 
below. According to the adapting-bump model, the heightened activity early 
in the record causes a reduction in bump size, and, as a consequence, a 
reduced voltage response to light later in the record. This reduced voltage is 
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not the result of  a biphasic bump shape: conductance measurements by brief 
bridge pulses during the flash response revealed that the undershoot conduct- 
ance was less than the steady-state value, whereas biphasic bumps would have 
yielded a larger-than-steady-state conductance (just as a larger-than-resting 
conductance exists in the undershoot of  the biphasic nerve action potential). 
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FIouxE 2. The results of calculations based on the minimum-phase assump- 
tion. a is the average of ten bumps observed to occur spontaneously. They were 
picked for this analysis because they were clearly seen on the record to be 
individual bumps and were not picked for their particular shapes. The computer 
was used to record and average the 10 bumps. The vertical scale is arbitrary 
since we were only_interested in the shape. With this bump shape B(t) the 
Fourier transform B(f) was obtained. The phase part of this function was 
ignored, and the phase was calculated instead from the amplitude information 
by use of the algorithm described by Peterson and Knight (1973). With this and 
the amplitude information, the bump shape b was obtained. That the top two 
curves are almost identical indicates that the algorithm works for calculating 
the phase information from the amplitude information, and that our assumption 
of minimum phase for the bump shape is valid, c was obtained by using this 
same algorithm to calculate the phase information from the amplitude infor- 
mation provided by the power spectrum. The bottom curve looks sharper than 
the top two curves, but the durations calculated from them differ by only ~ 10% 
also indicating that the assumption of minimum phase for the bumps is a good 
assumption and that the duration of the bumps can be calculated from the 
power spectrum, as described. 

This adaptat ion is directly related to voltage-generating activity rather than 
to some other parallel effect of  light intensity. It is easily shown that a signal 
composed of  uncorrelated monophasic bumps must yield an autocovariance 
that is always positive, whereas the experimentally measured autocovariance 
at bright light (see Fig. 8 of  the preceding paper [Wong et al., 1980]) shows a 
negative-going late phase, which indicates that spontaneous fluctuations of 
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voltage activity predispose the cell to make a compensating swing to the 
opposite side of mean activity. A reduction in the size of later bumps due to 
increased bump release activity would yield the observed effect. (Note that 
the data quoted in this paragraph and the one before it are also consistent 
with the alternative hypothesis that bump release activity reduces the like- 
lihood that an absorbed photon will lead to a bump. Data given below will 
suggest that this indeed is a secondary contributor but not the major mecha- 
nism of adaptation.) 

The arguments presented above make a substantial case for the response to 
light being a superposition of bumps whose release activity adjusts itself in a 
manner  appropriately described as "adaptation." If we assume such a model, 
then Fig. 1 gives some indication as to the time scale over which this 

FIGURE 3. Oscilloscope record of the eccentric cell's voltage response to a brief 
(40-ms) flash superimposed upon a bright, steady light, reproduced from Dodge 
et al., Science, Vol. 160, pp. 88-90, 5 April 1968, copyright 1968 by the American 
Association for the Advancement of Science. The sweep duration is 0.5 s, and 
the response amplitude is ~5 inV. The generator potential amplitude is 16 mV. 

adaptation occurs. Note that for all light intensities but the lowest there is 
between light onset and steady state a "transient" period in which the voltage 
response readjusts downward. This epoch becomes shorter in brighter light, 
but in all cases its duration is longer than the general time scale of the 
individual bumps that also can be seen in the figure. This separation between 
the time scales of bump duration and of adaptation enables us to predict what 
the effect of adaptation will be upon the power spectrum of the voltage noise. 

Adaptation is a "self-correcting" mechanism within the noise that tends to 
reduce the variance of noise about its mean. The variance is given by the area 
under the power spectrum (Eq. 15), so the effect of adaptation will be to 
reduce that area. However, it is a general feature of Fourier representation in 
terms of frequency components that features which involve only long time 
scale can affect frequency components only at low frequency. Thus the bump- 
correlation effect of adaptation upon the power spectrum should be a depres- 
sion of its low frequency region. (An example of the adapting-bump model, 
which is analytically solvable in detail, confirms this general argument;  see 
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Appendix.)  Figs. 4 (top) and  5 show tha t  precisely such a feature is experimen- 
tally observed in the power spectrum. In contrast ,  the power spectrum of  a 
noisy signal composed of  uncorrela ted monophasic  bumps  must have its 
m a x i m u m  at zero frequency (as follows from Eq. 16). 

A me thod  to est imate the adap ta t ion  correlation coefficient ~, which we 
need for Eqs. 8 and  9, now becomes evident.  Inasmuch  as correlation influences 
the power spectrum S(f) at low frequencies, the funct ional  form of  Eq. 18 
(already val idated by its success at low light intensities) can be fit ted to the 
high-frequency end of  the power spectrum. This  has been done in Fig. 5, 

2 4 6 8 I0 12 14 16Hz 

t t l  
i .% 

22 
4 g B i0 ,'2 ;4 ,6Hz 

FiouRE 4. The power spectra calculated on transmembrane voltage of Limulus 
retinular or eccentric cells obtained at low light intensity (-5 log) and at high 
light intensity (0 log). The horizontal axis is frequency and the scale is 0.234 Hz 
per bin. The vertical scale is in arbitrary units for the power spectrum. The 
areas under the two curves are normalized. It can be seen that the shapes of the 
two curves are very different. For low light intensity, the power spectrum is 
represented by a monotonic curve, whereas for high light intensity, the power 
spectrum shows a low frequency cutoff due to "adaptation" (see text). 

where the smooth curve comes from Eq. 18. The  smooth curve "fills up the 
low frequency no tch"  and  gives an est imate for (say) So(f), the power 
spectrum which would result from fixed uncorrela ted bumps  of  the same 
average shape as the real correlated ones. Wi th  Su(f ) now known, we m a y  
twice use Eq. 15 in Eq. 10 to obta in  

f d fS( f )  
= , ( 2 0 )  

f dfSu(f) 

the ratio of  the two areas. Our  fitt ing also yields T from Eq. 19, so that  we 
may  now use Eqs. 8 and  9 to evaluate  the h and  N. 
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M A T E R I A L S  A N D  M E T H O D S  

Biological Preparations 

These experiments were performed on seven eccentric cells of Limulus. The cell 
preparation and general experimental techniques were the same as those described 
previouslv (Wong et al., 1980). 

iCted curve 
i 

-> 

' ' '  8 '  i21'4' 2_ 4 6 I0 16 Hz 
FIOURE 5. The  procedure for estimating at high light intensity the duration of 
the bumps and the adaptation factor ~. The horizontal scale is frequency in 
0.234 Hz per bin and the vertical scale is arbitrary units of power density. The 
fitted curve (from Eq. 18) was matched to the data at frequencies above ~2  Hz. 
The areas of the two curves in this range are normalized. Values of the 
parameters for the best fitted curve were used to calculate the duration from 
Eq. 19. As described in the text, the ratio of the areas under the two curves 
(starting from the lowest frequency component) gives an estimation for ~b. The 
fitted curve corresponds to n -- 1 and ~" = 40 ms in Eq. 19, and the duration 
calculated from these values was 160 ms. ~b was 0.& 

Data Collection 
The transmembrane voltage response to steady light furnishes the data for this 
investigation. Recording procedures were the same as those described by Wong et al. 
(1980) except that the episode lengths for light intensities corresponding to - 3  log 
and - 2  log were 90 s and those for - 1  log and 0 log were 120 s. The - 5  log filter 
furnished a "threshold" generator potential response in the sense that - 6  log yielded 
isolated bumps, separated by intervals of resting potential. 

Data Analysis 
EVALUATION OF POWER SPECTRA The power spectrum at each light intensity 

was calculated from data in the steady state. After removal of slow drift, direct 
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evaluation by averaging squared Fourier coefficients was used, as described in the 
previous paper (Wong et al., 1980). Fig. 4 shows the power spectrum calculated from 
data obtained at low light intensity ( - 5  log) and at high light intensity (0 log). The 
areas under the two power spectra have been normalized to a common value because 
this facilitates the visual comparison of spectra taken at different light intensities. It 
is evident that the shapes of the two curves are very different. 

CONFIRMATION THAT MINIMUM PHASE DARK BUMPS UNDERLIE RESPONSE TO DIM 

LIGHT From a stretch of voltage record taken in the dark, ten consecutive, clearly 
visible, single, spontaneous bumps were chosen and were averaged with their times of 
steepest rise in register. The resultant average bump is shown in Fig. 2 a. 

The Fourier transform of this bump shape was evaluated numerically and converted 
to its absolute value ] /~(f)  [, which was then input to a minimum phase numerical 
algorithm (Peterson and Knight, 1973). The phase thus calculated was composed 
with ] /~( f ) I ,  to construct a full minimum-phase Fourier transform to which a 
numerical inverse Fourier transformation was applied. The resulting minimum-phase 
waveform is shown in Fig. 2 b. Its very close agreement with Fig. 2 a demonstrates 
that the experimentally measured average dark bump likewise has the minimum- 
phase property. 

The - 5  log power spectrum of the same cell was then processed with the identical 
procedures used upon I /~(f)  [. The  result, scaled to the same maximum height, is 
shown in Fig. 2 c. It is close to what we would predict if the power spectrum were that 
of a shot noise of superimposed uncorrelated copies of the minimum-phase bump 
shape shown in Fig. 2 a. The duration parameters T numerically evaluated from Eq. 
4 for the waveforms of Fig. 2 a and c differ by only 10%. 

EVALUATION OF DURATION T AND ADAPTATION CORRELATION FACTOR ~ Power 
spectra at low light intensity ( -5  log, - 4  log) were fit directly to the functional form 
of Eq. 18. This was facilitated by comparing a log vs. log presentation of the data 
against template curves, which yields n and ~" together and at once. The duration T 
was then calculated directly from Eq. 19. The amplitude scale of the raw power 
spectrum never enters into this procedure. Fitting was done by eye; though this 
permits substantial flexibility in "plausible" choices of n and % these correlated 
uncertainties largely cancel in Eq. 19, and for every spectrum the most extreme 
plausible resulting values of T differed by <20%. The values of T independently 
derived from three cells by the minimum-phase method described above fell within 
this modest uncertainty and thus supported this simple method for estimating 
duration. For the example shown in Fig. 4 (bottom) the estimated duration is 360 ms. 

At higher light intensity, adaptation affects the low-frequency end of the power 
spectrum, but in such a way that Eq. 18 may still be fit unambiguously to the 
spectrum at higher frequencies. T may be calculated from Eq. 19 as before. Moreover, 
according to Eq. 2, the value of the adaptation correlation factor ~b is given by the 
ratio between the area under the experimental power spectrum and the area under 
the curve fitted to the higher frequency data. This procedure, again, is independent 
of the power spectrum's vertical scale. 

In Fig. 5 the smooth fitted curve corresponds to n = 1 and t" =, 40 ms. The resulting 
duration is T -- 160 ms. The ratio of the two areas gives ff ~- 0.6. 

EVALUATION OF I-IEIOHT h AND RATE ~k The height and rate parameters depend 
upon the absolute scales of the mean and variance of the underlying process. Because 
the bump process is in the membrane shunt conductance, we must perform a 
transformation upon our voltage data, as has been discussed in detail by Martin 
(1955). If the cell's resting conductance is Go and if its resting potential is removed 
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from its equilibrium by a voltage difference E, then a voltage departure V from resting 
is related to shunt conductance g by the relation 

g 1 
- 1. ( 2 1 )  

Go V 
1 - - -  

E 

If  the equilibrium potential is distant from the momentary voltage by a factor several 
times larger than the fluctuations in the voltage, then we need not use Eq. 21 at each 
time point; it can be straightforwardly shown that mean and variance of g are 
approximately related to mean and variance of V by 

mean (g/Go) = mean (V/E) 1 - mean (V/E) 

I( 1 var (g/Go) = var(V/E) 1 - mean (VIE ' (23) 

where the brackets enclose the "Mart in  corrections" to the naive results which would 
hold i fg  and V were linearly related. Eqs. 8 and 9 for height and rate thus yield 

1 var(g/Go) = 1 var(V/E) [ (  1 )3] 
h/Go = ~b mean (g/Go) qJ mean (V/E) 1 - mean (V/E) (24) 

[mean (g/Go)] 2 [mean (V/E)]  2 
h T = k  = ~b 

var (g/Go) var (V/E) 
([1 - mean (V/E)]2}. (25) 

The summary Fig. 6 shows that at brightest light the rate X falls below its linear 
extrapolated value by a factor of about 35, and we may ask if errors in measurement 
entered into Eq. 25 might account for this factor. This typical cell had a resting 
potential o f E  = 55 mV, while at the 0 log light it gave mean (V) -- 23.6 mV. Thus, 
the correction enclosed in braces in Eq. 25 was about one-fourth, while ~ was about 
one-third. Even if these two factors were entirely spurious, their removal would fail by 
a factor of about 3 to lift the rate to its extrapolated value. The modestly sublinear 
trend in rate with light intensity thus appears to be more than any plausible error in 
our computational procedure. (The effect of the cell membrane's  shunt capacitance 
upon the accuracy of these procedures must be slight: the cell's resistance-capacitance 
time constant of no more than ~'m = 10 ms can substantially affect the voltage variance 
only through that part of the power spectrum that lies a b o v e f  = 1/(2~r~'m) ~ 15 Hz 
and the power spectrum has already dropped to a small value before that frequency.) 

R E S U L T S  A N D  C O N C L U S I O N S  

Fig. 6 shows ca lcu la ted  values of  ~, T ,  ~, h p lo t ted  across fivc decades  in light 
intensity. These  results are for the cell tha t  yielded the raw d a t a  of  Fig. 1 and  
the power  spect ra  shown in Figs. 4 and  5, and  are typical  o f  all cclls. Th is  cell 
had  a rcst ing poten t ia l  o f - . 5 5  m V  and  a rcst ing resistance of  8 M ~ .  

T h e  ca lcu la ted  ~ is l inear  wi th  light intensi ty  t h rough  a b o u t  500 b u m p s  per  
second, f rom a threshold of  abou t  l0 b u m p s  per  second, bu t  falls beh ind  strict 
p ropor t iona l i ty  at h igher  light intensi ty  until  at  the br ightes t  light it has fallen 
a factor  o f  abou t  35 below the factor  of  l0 s ex t r apo la t ed  f rom threshold.  T 
decreases by  a factor  o f  2 f rom its threshold  value as the light becomes  
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brighter; though this total drop in duration was similar for all cells, the 
intensity decade in which the partial drop was greatest proved the most 
variable feature among our seven cells. ~b descends from unity (which indicates 
no correlation) in dim light down to one-third in the brightest light. Thus, 
both T and ~p undergo changes that are extremely modest in comparison with 

1.0 
0.8 0.6 0.4. 

T(~) / 

0'5 f 0.2 
0.1 

I 

X (.-,) l i n e a r _ , " . , . ,  h 
I~ 4 r,se ,, ..,r X 8g/go 

103[ ~ 10"2 
1021 10"3 

10-4 '~ 
-;  ' -i ' -4 0 

log [/Io 
FIOURE 6. The steady-state parameters of the adapting-bump model have 
been evaluated over a large range of light intensities for a typical eccentric cell. 
The rate increases proportionally to light intensity up to ~500 bumps/s, and 
then it departs from strict proportionality. The height, expressed as the fractional 
increase in conductance in terms of the dark value of total conductance, 
decreases like the -0.4 power of light intensity. The duration decreases by a 
factor of 2. The adaptation factor ~b is 1 for the - 5  log and - 4  log light 
intensities, indicating that the correlating of the sizes of the bumps did not 
substantially affect the variance. At higher light intensities, the correlation of 
sizes of the bumps reduced the variance. At 0 log, + was 0.3. (Note that in the 
top frame, the vertical scale for adaptation factor is truncated well above ~ ~- 
0.) 

the changes in light intensity; this fact accounts for the reasonable agreement 
of our data with the early result of  Dodge et al. (L968), where the effect of  ~p 
was not separated from that of T. Across the entire range of light intensity, h 
descends smoothly as the -0 .4  power of the illumination. (This agrees with 
the original data of  Dodge et at. (1968): their quoted - 0 . 5  power resulted 
from plotting their end point at 0 log intensity one decade too low.) 
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The height and duration at the dimmest ( -5  log) light intensity shown in 
Fig. 6 agree with estimates made directly from individual spontaneous bumps 
recorded in the dark. As shown in Fig. 2 a and b, the average spontaneous 
bump has a shape with the minimum-phase property; if that property and 
independence of bump events are postulated for the voltage noise at - 5  log 
light intensity, then the power spectrum predicts a bump shape that agrees 
well with that observed in the dark, with no further assumptions, as Fig. 2 c 
shows. 

The results presented here can be compared directly with the classic study 
of Fuortes and Hodgkin (1964). These authors explored the basic idea that in 
Limulus the change in time scale may be causally related to the change in 
sensitivity and observed that a 200-fold reduction in sensitivity was associated 
with a factor of two decrease in time scale of the response. This observation 
may be directly related to Fig. 6, which shows a 200-fold reduction in the 
bump size (height times duration) concurrent with a decrease of a factor of 2 
in the duration of the bumps. Over the same span of light intensities there is 
also a decrease of a factor of about 2 in the time scale of the latency process 
(Wong et al., 1980). 

At the brightest (0 log) light intensity Fig. 6 gives a bump height parameter  
of 2 • 10 -4 times the cell's resting conductance of near 10 -7 reciprocal ohms, 
whence our brightest light yields 2 • 10 -11 reciprocal ohms for the smallest 
observed conductance event. This is about what is reported for individual 
conductance channels at the neuromuscular junction (Anderson and Stevens, 
1973). We observed that an approximately comparable uncalibrated light 
added to our brightest calibrated light would drive the voltage response into 
saturation; this we may regard as informal evidence that our bumps result 
from the roughly synchronized opening of channels with individual conduct- 
ance o f -  10 -11 reciprocal ohms. (Complexities in the detailed equivalent 
circuit of the eccentric cell make the precision of such an estimate questionable. 
However, our conclusion is supported more formally by observations on 
ventral photoreceptors of Limulus [Wong, 1978].) If this is the case, Fig. 6 
further implies that a bump at threshold light intensity (or spontaneous in the 
dark) is the consequence of ~ 100 elementary channels opening together. It is 
easy to imagine that the modest shortening in T, as light increases, may be 
due to a better synchronization in the activation of elementary channels as 
their total number  (and presumably the membrane area involved in the 
formation of a single bump) becomes smaller. 

We may go a step further if we postulate that the initial transient to the 
brightest light in Fig. I opens a substantial fraction of all the channels. That  
transient of 28 mV is about half the full resting potential of 55 mV, which 
implies that the parallel resistance of all the open channels is - 1 0  7 ~; at 1011 

per channel this implies 10 4 open channels, or a few times 10 4 channels total 
if a substantial fraction are opened at the transient. 

In Fig. 6, at the brightest steady light, there are 2 • 10 4 events per second; 
if each event is due to a single elementary channel which remains open for 
about 0.2 s as T in the figure indicates, then, if there indeed are 10 4 channels, 
each channel remains open about half the time. In such a regime it is easy to 
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imagine strong correlations between the successive openings of each elemen- 
tary channel, and the measured correlation factor of~b - 0.3 is not unexpected. 

It is notable that, even when the photon arrivals are reduced to 0.01 
maximum ( -2  log units in Fig. 6), the situation shown by Fig. 6 remains so 
similar to that shown at maximum light. The duration has not changed 
significantly, and, although the rate is down an order of magnitude, the height 
has increased nearly an order of magnitude, which implies that the fraction of 
channel open time decreased only slightly. The correlation factor has moved 
less than halfway back to its uncorrelated value of unity. These changes in the 
data may be explained naturally if the major physiological effect of the much 
lowered photon flux is to permit each effective photon to synchronously 
activate a "block" of nearly ten times more elementary channels than a 
photon could reach in the brightest light. 

We suggest that the cell membrane may be organized by patches into 
"functional blocks" of elementary channels, which respond with near uninim- 
ity (if they respond at all) to any rhodopsin photoisomerization within the 
patch, and that the patches or functional blocks grow larger when photon 
captures become fewer. Adaptation of bump size would be a clear conse- 
quence. Such a model carries with it a natural time scale that is measured by 
the mean time between activations of the patch containing a given elementary 
channel. Because the patch size may adjust, this time scale may be insensitive 
to large changes in the rate of photon arrivals. Although this interpretation of 
our data is not unique, informal support for such a model can indeed be 
drawn from our power spectrum data. We have mentioned that the suppres- 
sion of low frequencies in the power spectrum rules out a noise signal composed 
of monophasic bumps that are uncorrelated; the dip at low frequencies is a 
natural consequence of correlations among bumps, whence the band of 
frequencies over which it extends should reflect the natural time scale over 
which those correlations occur. We can roughly characterize that frequency 
band by noting the frequency at which the power spectrum has recovered 
half its measured maximum value. Both the 0 log spectrum of Fig. 4 and the 
- 2  log spectrum of Fig. 5 give a half-recovery frequency of 1.14 Hz, an 
agreement beyond the accuracy of these measurements. That  characteristic 
frequency had held steady in the face of a factor of 10 change in the rate of 
bump occurrences and a factor of 100 in the rate of photon arrivals. This 
experimentally observed insensitivity, of the half-recovery frequency to large 
changes in other experimental variables which likewise have reciprocal time 
as their physical dimension, is a strong constraint on the physiological models 
that we may realistically entertain. Our  suggestion of "functional blocks" of 
elementary channels, which adapt in size according to the frequency of photon 
arrivals, is evidently able to satisfy the constraint because block size may be 
adjusted to maintain a steady rate of responses per block. 

A P P E N D I X  

Effect of Correlation on the Power Spectrum 

Knight (1973) analyzes a fairly broad class of adapting bump models in some detail. 
His is a special treatment of an even more general analysis done independently in 
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another context by Celasco and Stepanescu (1977). Here we give Knight 's  conclusions 
in our notation; equation numbers with decimal points refer to his publication. 

A class of models is presented in which bumps are fixed in temporal shape but of 
variable height determined by a stochastic law. The power spectrum is derived in Eq. 
3.20 as 

( :  } S ( f )  = Su ( f )  1 + ~ [ / ~ ( f )  + k ( - f ) ]  , (A1) 

where s is height times duration of the bump; k ( f )  is related to the correlation 
between a given bump and its successors and predecessors and may be evaluated once 
assumptions about the mechanism of correlation are made. Typically, k ( f )  + k ( - f )  
is negative at low frequencies (it is zero for a Poisson process of uncorrelated bumps), 
and the frequency range over which it is non-zero is the frequency range over which 
correlation modifies the power spectrum. Thus, Eq. A1 leads naturally to the 
estimation procedure shown in Fig. 5 and used in Eq. 20; the fraction to which the 
expression in braces in Eq. A1 reduces the area under the power spectrum is the 
adaptation correlation factor ~. 

Simple, explicit results can be obtained from the following model, which is 
physiologically plausible but not in full accord with our data: the bumps might be 
the consequence of "transmitter release" from vesicles that subsequently refill to an 
asymptotic maximum content, with an exponential time-course whose rate constant 
we call ),. I f  H0 is the mean rate at which a typical vesicle is discharged, then by Eq. 
3.28 the power spectrum is 

I [,/0(-0 + 
S ( f )  ffi S~(f)  1 - L 2(H0 + "1,) 2 _l 

1 

1 + \/-/0 + v / 

(A2) 

In this model, correlation becomes significant when the release rate H0 approaches or 
exceeds the growth rate y. At each light intensity a reasonable fit to our power 
spectrum data is given by Eq. A2. However, Eq. A2 gives a correlation half-effect 
frequency of J:/2 ffi (H0 + ),)/2~r. Thus, if H0 were proportional to the total bump 
rate, the half-effect frequency would have a sensitive dependence on bump rate, 
contrary to our observations. This is in accordance with our conclusion that the 
insensitivity of the half-recovery frequency to a major change in bump rate sets an 
informative constraint on the sorts of model that we may consider. 
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