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ABSTRACT

	

The blocking action of 4-aminopyridine (4-AP) and 3,4-diamino-
pyridine (di-AP) on transient potassium current (IA) in molluscan central
neurons was studied in internal perfusion voltage-clamp experiments . Identical
blocking effects were seen when the drugs were applied either externally or
internally . It was found that aminopyridines have two kinds of effects on IA
channels . The first involves block of open channels during depolarizing pulses
and results in a shortening of the time to peak current and an increase in the
initial rate of decay of current . This effect of the drug is similar to the block of
delayed potassium current by tetraethylammonium (TEA) . The other effect is
a steady block that increases in strength during hyperpolarization, is removed
by depolarization, and is dependent on the frequency of stimulation . The
voltage dependence of steady state block approximates the voltage dependence
of inactivation gating and changes e-fold in -10 mV. These data suggest that
the strength of block may depend on the state of IA gating such that the resting
state of the channel with open inactivation gate is more susceptible to block
than are the open or inactivated states . A multistate sequential model for IA
gating and voltage-dependent AP block is developed .

INTRODUCTION

Potassium currents in nerve and muscle are susceptible to block by amino-
pyridines (Pelhate and Pichon, 1974; Ulbricht and Wagner, 1976 ; Yeh et al .,
1976a, b ; Meves and Pichon, 1977) . These drugs are of interest as pharmaco-
logical tools for the suppression and separation ofK+ currents . Their physio-
logical effects include increase in the release of transmitter at the neuromus-
cular junction and production of epileptiform discharge when applied to
mammalian brain, effects that may result from block of potassium channels .
In molluscan central neurons, the fast transient potassium current IA (for
review see Adams et al ., 1980) is particularly sensitive to block by aminopyr-
idines (Thompson, 1977; Adams and Gage, 1979) . The blocking action is
dependent on voltage, frequency of stimulation, and prior activation of
channels in a manner that differs from the aminopyridine block of delayed
outward current in nerve .
In this paper the mechanism of aminopyridine block of IA is considered . It

is concluded that block involves two kinds of effects . The time to peak current
during a depolarization is shortened in the presence of AP and the initial rate
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of fall of current is hastened, which indicates a blocking effect involving open
IA channels . In addition, there is a steady state blocking action that increases
in strength during hyperpolarizing pulses that remove inactivation of IA .

Steady state block is decreased by depolarization . The rate of inactivation of
blocked channels is modified in a way that suggests an interaction between
the inactivation mechanism and the drug, and it is suggested that the
inactivation mechanism is essential for mediating the frequency dependence
and voltage dependence of drug action . These findings lead to the develop-
ment of a model for AP block based on the hypothesis that the strength of
block depends on the state of IA gating.

METHODS

Preparation
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Experiments were performed on neuron somata taken from the pleural ganglia of the
nudibranchs Archidoris and Anisodons. Ganglia were removed and treated for 2 min
with pronase to soften the outer muscle and connective tissue sheaths. Epineural
sheaths were dissected away and small clumps of cells were axotomized and removed
using the method of Connor (1977) . The cells were transferred to a recording chamber
and cooled to 10°C.

Voltage Clamp
An internal perfusion voltage clamp was used that employs a suction pipette as a
cannula for internal perfusion and as a current electrode. A separate 3 M KCl
microelectrode (2-5 MSZ) is used to measure cell voltage . Similar techniques have
been described by Kostyuk et al . (1975), Lee et al . (1978), and Takahashi and Yoshii
(1978) . The suction pipette is a 3-mm-Diam glass capillary that is pulled to a point
and then cleaved and fire-polished to form a 40-ttm-Diam orifice . The pipette is fitted
with a thinner internal glass capillary that has a tip diameter of 20 um and is
manipulated to within 100 /.tm of the suction pipette tip . Internal solutions are
supplied to the cell through this inner capillary and exit out the back of the suction
pipette. The flow of internal solution and the negative pressure developed at the
pipette tip are produced by vacuum and controlled by a needle valve to maintain a
flow rate of 0.2-0.5 ml/mina The electrical resistance of the suction pipette is 350 ka

in saline . When it is brought up to contact a cell and negative pressure is applied, this
resistance increases 10-20 times. As the cell membrane in the pipette orifice ruptures,
the resistance drops again to a value of 2-5 MSZ when measured at voltages close to
the cell resting potential (-40 mV) . This value is similar to the membrane resistance
measured in the same cells with a two-microelectrode voltage clamp. Spike waveform
and amplitude and resting potential (after correction for liquid junction potentials),
measured by the perfusion pipette, are the same as simultaneous measurements with
a microelectrode . Evidently a tight seal is formed between the glass pipette and the
cell . The perfusion pipette is acid cleaned with Chromerge (Fisher Scientific Co.,
Pittsburgh, PA) after each experiment . The cleaning treatment increases the value of
the initial resistance measured before cell puncture by a factor of two to five .

After the initial rupture of the membrane at the orifice of the perfusion pipette, the
perfusate was routinely switched to one containing papain (1 mg/ml) for 10-15 min.
This enzyme treatment has the effect ofdecreasing the time needed to change internal
ion concentrations . It is not an essential procedure, however, and in control experi-
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ments it was shown to have no measurable effect on the parameters reported in this
study. The adequacy of perfusion was checked by switching to internal solutions
without K+ (solutions containing Cs-glutamate or Tris-glutamate in place of K-
aspartate) and monitoring the amplitude of membrane potassium currents and the
potassium reversal potential with standard voltage-clamp procedures . A 90% reduc-
tion of IA and IK is routinely achieved in 20 min. The effect is reversible .
Thecompositions of saline solutions used to bath the cells and for internal perfusion

of cells are shown in Table I. 4-aminopyridine (4-AP) and 3,4-diaminopyridine (di-
AP) were obtained from Aldrich Chemical Co., Milwaukee, WI. 3-aminopyridine
(3-AP) was obtained from Sigma Chemical Co., St . Louis, MO . The drugs were added
fresh to the salines just before use and before final pH adjustment . Data were recorded
on film, chart paper, and FM magnetic tape, and analyzed either by hand or digitized
and analyzed with a laboratory microcomputer.

RESULTS

Transient potassium current, IA, activates with a delay upon depolarization,
reaches a peak in 30-50 ms, and then inactivates over an exponential time
course . The voltage dependence of IA is centered about the resting potential
of -40 mV. Inactivation is nearly complete at that voltage and is removed

TABLE I
SALINE SOLUTIONS

MM

	

Na K Ca Mg CI Sucrose Hepes pH EGTA
External 460 10 10 50 590 - 10 8 .0 0

Internal 50 375 - 5 16 300 20 7 .6 1
(aspartate)

over an exponential time course by a conditioning hyperpolarization . Com-
plete removal of inactivation normally occurs below -100 mV. Removal of
inactivation by hyperpolarizing conditioning pulses is shown in Fig. 1B .
Activation of IA increases with the size of depolarizing steps from a negative
holding voltage and first appears above -50 mV, as seen in Fig. 1A . Because
activation begins near the resting potential, there is a voltage range between
-50 and about -30 mV where IA can be studied in isolation, free of significant
contamination by other membrane currents (see Adams et al ., 1980) . At more
positive voltages, Na', Ca", and other K+ currents begin to activate and
contaminate the records of IA. Because the effects of aminopyridines on these
other currents are not known in detail, this study is mainly restricted to the
voltage range between -100 and about -30 mV.
The time course and voltage dependence of normal IA gating have been

described by Connor and Stevens (1971) and by Neher (1971) . Curves showing
the steady state voltage dependence of activation and of inactivation are
shown in Fig. 1C . The kinetics of both the activation and inactivation
reactions are not strongly dependent on voltage in the range studied here . At
-30 mV the activation time constant in different cells was 6-8 ms and the
inactivation time constant was 150-410 ms.



External and Internal AP Blocks IA
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The effect of external application of 3 mM 4-aminopyridine is illustrated in
Fig. 2, which shows a control current and subsequent test currents recorded at
5-min intervals after adding the drug to the bath . The drug caused a 60%
reduction in IA amplitude in this experiment, which developed over a 20-min
period . 3,4-diaminopyridine appears to be a more powerful blocking agent

FIGURE 1 .

	

Activation and inactivation gating of IA in normal external and
internal solutions . (A) Increasing activation with increasing depolarization . A
prepulse to -100 mV removes inactivation . (B) Hyperpolarizing conditioning
pulses remove inactivation . The cell was held at -40 mV, stepped to a series of
voltages between -100 and -50 mV and then stepped to -30 mV to activate
IA . (C) Voltage dependence of inactivation and activation .

and produces >90% reduction in amplitude at this concentration when tested
by the same protocol . A consistent feature of the effect of both drugs is a
dramatic change in the current waveform . The current does not inactivate
exponentially in the presence of aminopyridines (AP) but shows an initial
phase that has a time course somewhat faster than normal inactivation
followed by a later, very slow decline in current . These changes in time course
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develop as the drug takes effect and lead to crossovers in the current traces .
Because of the slow decline in current, the decay of IA lasts 8-10 times longer
than normal . The slow decline becomes more prominent with increased drug
concentration when repetitive depolarizations are applied, or when the dura-
tion of a conditioning hyperpolarization is increased . The changes in current
waveform suggest some interference by AP with the rate of inactivation at
depolarized voltages . Evidence presented below indicates that the slow phase
of current decay may result from slow, voltage-dependent unblocking of
channels during depolarization followed by inactivation of these newly un-
blocked channels .

It was found that 4-aminopyridine (4-AP) and 3,4-diaminopyridine (di-AP)
each had the same effects whether applied externally or internally . Both

FIGURE 2 .

	

Increasing block of IA as 3 mM external 4-AP takes effect . A control
pulse and subsequent test pulses applied 5, 10, 15, and 20 min after application
of the drug are shown. Note crossovers in time course of inactivation . Holding
voltage is -40 mV; conditioning pulse to -100 mV for 1 s ; test voltage is -30
mV. Normal internal solution .

compounds are monovalent cations at the pH used in this study (Albert,
1963) . 3-aminopyridine, which is uncharged at neutral pH, is a much less
potent blocker and causes only 15% block at a concentration of 5 mM applied
either externally or internally . 3-AP was not studied further.

In experiments that use less than saturating doses of blocker, some fraction
of IA channels remain unblocked at the beginning of test depolarizations .
Current in unblocked channels apparently accounts for the early peak IA in
Fig. 2 because the peak is reduced by higher concentrations of blocker .
Aminopyridines appear to have an effect on these unblocked channels . The
time to peak current is decreased and the initial time course of current decay
is speeded in the presence of AP (see Fig. 2) . These results could be explained
if AP has a TEA-like action on open channels, interacting with the channels
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to block current. By measuring the rate of decay of IA transients early during
depolarizations, it was determined that in 3 mM external 4-AP the apparent
time constant of inactivation was about two-thirds as large as the control
value. This could in itself account for as much as 15% of the observed block
ofIA . It is not surprising that, as organic amine cations, aminopyridines would
have this kind of effect for which there are many precedents in the literature
(for example see Armstrong, 1969) . This blocking action is difficult to study,
however, because of the very limited voltage range over which uncontami-
nated IA can be recorded and because of the complication of a later prolonged
decay of current . The late slow decline in IA differs from the effect on initially
unblocked channels and because of its slow time course is easily separable
from it .

Block Increases during Hyperßolarization

A consistent feature of the effect of AP is that the strength of block depends
on the protocol used to remove IA inactivation . This is illustrated in Fig. 3

FIGURE 3. Hyperpolarization increases block. In the trace labeled "1 s" the
cell was held at -40 mV and stepped to -100 mV for 1 s before a test
depolarization to -30 mV. In the other trace (labeled "30 s") the cell was held
at -100 mV for 30 s before the test step to -30 mV. External solution contained
1 .5 mM di-AP; normal internal solution . The rapid relaxation in the trace
labeled "30 s" is an artifact of the 1-kHz low-pass filter . Note crossover in
current traces during the falling phase of current .

where two current records taken from a cell bathed in 1 .5 mM di-AP are
superimposed . In one of the traces (labeled "1 s") the cell was held at -40
mV, stepped to -100 mV for 1 s, and returned to -30 mV in order to activate
IA. In the other trace (labeled "30 s") the cell was conditioned at -100 mV for
30 s before the step to -30 mV, with the result that the strength of block is
greatly increased at early times and somewhat lessened at late times. In a
normal saline solution without AP, these two traces would have superimposed .
The time course of this effect of conditioning hyperpolarization is shown in

Fig. 4, where the duration of a hyperpolarizing conditioning step to -100 mV
was progressively increased while the cell was internally perfused with 1 mM
di-AP. As the conditioning step was lengthened, the peak current first in-
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creased and then decreased (Fig . 4B) . This is not seen in the absence of drug
(Fig. 4A), where the peak current simply increases toward a saturating
amplitude as inactivation is progressively removed by longer conditioning
steps . The drug caused a 65% block of IA after a 2 .5-s conditioning hyperpo-
larization but only a 23% block after a 250-ms conditioning pulse . In this
experiment it appears that there are two simultaneous processes governing the

B

500w

500m

i 00ra

FIGURE 4 .

	

Time course of block during conditioning hyperpolarization . (A)
Control record . The cell was held at -40 mV and stepped to -100 mV for
intervals between 250 and 2,500 ms with the interval changing in 250-ms
increments . IA is seen on depolarizing to -30 mV after each conditioning pulse .
30 s separated each trial. Normal internal and external solutions. (B) Repeat of
the experiment while the cell was internally perfused with saline containing 1
mM di-AP.

number of IA channels available for activation by depolarization . The normal
process of removal of inactivation during a hyperpolarizing conditioning pulse
is superimposed upon a progressive, slower increase in the number of blocked
channels . From the control record (Fig . 4A), it was determined that the time
constant of removal of inactivation at -100 mV in this cell is 319 ms. The
progressive increase in the number of blocked channels in Fig. 413 occurs



exponentially but much more slowly and can be described by a time constant
of 2 .4 s . This slow time constant presumably reflects the rate of interaction of
AP with some site on or near the channel at this voltage .
The fact that block increases with hyperpolarizing conditioning pulse raises

the possibility that the strength of block may be dependent in some way on
the process of inactivation gating. The voltage dependence of block by AP
was measured in a three-pulse experiment and is compared with the voltage
dependence of normal inactivation in Fig . 5 . The voltage command program
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FIGURE 5 .

	

Comparison of voltage dependence ofblock with the voltage depen-
dence of normal inactivation . The curve labeled "block" shows the strength of
block as a function of conditioning voltage and was calculated using the method
described in the text and the pulse paradigm shown in the figure insert . The cell
was exposed to 1 mM diAP externally; normal internal saline . The curve labeled
"inact." shows the voltage dependence of inactivation for the same cell in
normal internal and external salines .

used to measure the voltage dependence of block is shown in the figure insert .
The cell was bathed in 2 mM external di-aminopyridine and held at -40 mV
for 30 s between trials . Voltage was stepped to a series of different conditioning
voltages (pulse 1) for 10 s, followed by a step to -100 mV for 1 s (pulse 2) .
The purpose of this second pulse is to allow complete removal of inactivation
in unblocked channels . A depolarization to -30 mV was used as a test step
(pulse 3) . The peak amplitude of IA seen during the test step gives a measure
of the level of block achieved during the conditioning pulse (pulse 1) . Peak
currents after each conditioning pulse were normalized by dividing by the
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current observed with a pulse-1 conditioning voltage of -30 mV. The curve
labeled "block" in Fig. 5 was then constructed by plotting one minus the
normalized peak current against the voltage during pulse 1 . It is a curve of
the strength of block at different conditioning voltages in 2 mM di-AP. The
other curve shown in Fig. 5 (labeled "inact .") is the voltage dependence of IA
inactivation measured in the same cell before AP was applied. The points in
this curve are the peak amplitudes of IA observed on stepping to -30 mV
from a series of different 1-s-long conditioning voltages . Normalized peak
current was plotted against conditioning voltage to construct the curve. These
experiments were repeated eight times with consistent results. The data shown
are from one cell in this series .

It is apparent from Fig. 5 that the voltage dependence of block covers the
same voltage range as normal inactivation gating and that the two curves
have approximately the same shape. The curve depicting the voltage depen-
dence of block lies -5 mV toward the right of the curve for inactivation . Also,
the voltage dependence of block appears to be somewhat steeper than that of
inactivation .
The similarities between the two curves in Fig. 5 suggest that the effective-

ness of AP as a blocker may be dependent on the state of inactivation gating .
Alternatively, the blocking action might be simply voltage dependent and
insensitive to inactivation gating. For the second alternative to occur, it is
generally postulated that the free energy of binding of the charged blocking
molecule to a site in the channel is altered electrostatically by the membrane
voltage field. Although this kind ofaction is not ruled out by these experiments,
it is noted that the steepness of the voltage dependence of AP block (9.5 mV
for e-fold change in blocking strength) is greater than the maximum of 25 mV
for e-fold change expected for a monovalent blocking molecule responding
only to the membrane voltage field. It is concluded, therefore, that the steep
voltage dependence of block does not result simply from electrophoresis of AP
to a site within the membrane, and it is suggested instead that access to the
blocking site or formation of the site depends on the open state of inactivation
gating.

Frequency Dependence

The fraction of channels blocked by AP is modified by applying repetitive
test steps and is sensitive to the frequency of repetition . To produce the records
shown in Fig. 6, voltage-clamp steps were applied at a rate of 1/s both in
normal saline (Fig . 6A) and during internal perfusion with 2 mM 4-AP (Fig .
6B) . The cell voltage was held at -40 mV, and stepped to -100 mV for 1 s
to remove inactivation . The voltage was then stepped to -30 mV to activate
IA . With repetitive clamp steps in AP there is a progressive decrease in peak
outward current . Also, the time course of current changes progressively due to
an increase in the prolonged phase ofcurrent decay that leads to crossovers in
the current traces . The changes in current during repetitive activation mirror
the changes seen over time as the drug takes effect as shown in Fig. 2. These
effects are not seen in the absence of AP (Fig . 6A) . Both the incremental
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increase in the number of blocked channels and the fraction of channels
blocked in the steady state increase at higher rates or repetition . Frequency
dependence is seen whether the drug is applied internally or externally and is
more pronounced with the stronger blocker, di-AP.
One explanation for frequency-dependent block is that the fraction of

channels that are blocked increases during the 1-s hyperpolarizing condition-
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FIGURE 6. Frequency-dependent block by AP. (A) Control record . The cell
was held at -40 mV and a pulse sequence consisting of a prepulse to -100 mV
for 1 s and a test pulse to -30 mV for 1 s was repeated five times with a 1-s
interval between pulses . Normal internal and external salines. (B) The experi-
ment was repeated on a different cell, which was internally perfused with 2 mM
4-AP . Normal external saline .

ing step used to open inactivation gates. This process proceeds slowly (Fig .
4B) so that during repetitive clamp steps using the protocol of Fig. 6, an
increasing number of channels may be blocked during each successive condi-
tioning hyperpolarization, resulting in a reduction in IA amplitude when the
membrane is subsequently depolarized.
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Recoveryfrom Block on Depolarization
From the record shown in Fig. 3, it is apparent that a significant recovery
from block occurs at the holding potential of -40 mV relative to the level of
block at -100 mV. Other evidence for removal of block by depolarization is
shown in Fig. 7. Repetitive depolarization at 1-s intervals from a holding
potential of -100 mV to a test potential of -30 mV results in a progressive
increase in peak IA when AP is present . In normal saline there is no change in
current amplitude with repetition at this frequency . Apparently some per-
centage of blocked channels becomes unblocked during the pulses to -30 mV.
Unblocking of IA channels during a single depolarization is shown in Fig. 8.
The cell was bathed in 2 mM external di-AP and held at -100 mV for 30 s

loom
FIGURE 7.

	

Frequency-dependent unblocking . The cell was held at -100 mV
and pulsed three times to -30 mV for 1 s with a 1-s interval between pulses .
The external solution contained 1 mM di-AP ; the internal solution was normal .
The peak outward current increases during the three trials . With continued
repetition this effect saturates .

before a depolarization to -30 mV. Just after the depolarizing step there is a
rapid outward current transient that results from activation of initially
unblocked channels . After the initial IA transient there is a secondary slow
growth of current followed by a very prolonged current decay that could
result from the unblocking of IA channels followed by their inactivation .
The kinetics of the unblocking reaction were studied in a three-pulse

experiment (not shown) where the duration of a conditioning depolarization
(pulse 1) was changed and the percentage of unblocked channels was assessed
from the peak amplitude of IA during a later test pulse to -30 mV (pulse 3) .
An intermediate pulse to -100 mV for 1 s (pulse 2) was applied to remove
inactivation from unblocked channels . The results of this experiment indicated
that block is removed over an exponential time course with a time constant of
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between 1 .5 and 4.0 s in different cells . The value of this time constant is not
dependent on voltage when measured between -60 and -20 mV. It is
apparent that the unblocking reaction is very slow compared with the kinetics
of normal gating . At the time of peak IA, ^-30 ms, unblocking would have
proceeded to a very small extent and would not perceptibly disturb the
amplitude . The current caused by unblocking only becomes apparent later,
after the IA transient and after current in normal channels had inactivated
significantly .
These observations on the rate of unblocking, combined with the fact that

inactivation, which is a much faster process, is normally complete (i .e ., h = 0)
above -40 mV, lead to a paradox. If unblocking is slow compared with
inactivation, and if inactivation goes to completion at the test voltage, why is
a redevelopment of current seen caused by the unblocking of channels on

1
50mV
50nA

500ms
FIGURE 8.

	

Unblocking during a single pulse. The cell was bathed in 2 mM di-
AP. Holding voltage was -40 mV. A conditioning step to -100 mV for 1 s
preceded a test step to -30 mV. A slow recovery and decay of IA is seen after
the transient current caused by activation and inactivation of unblocked chan-
nels is over . Normal internal solution .

depolarization? This might be explained, and the reappearance of current
understood, if blocked channels do not inactivate and if inactivation can only
proceed after unblocking and opening of channels . Such an effect would be
seen if the binding of AP to the channel shifted the voltage dependence of
inactivation toward more depolarized voltages or ifby some other mechanism
the blocking ion prevents the closing of inactivation gates. This explanation
is supported by the observation that the rate of recovery from block measured
at a given voltage in a three-pulse experiment (for example, 1 .7 s at -30 mV),
is very similar to the final slow rate of decay of IA during a single depolarization
to the same voltage (1 .5 s in 3 mM external 4-AP) . It appears that the rate-
limiting step governing the slow decay of current is the unblocking rate rather
than the rates of activation or inactivation of newly unblocked channels . The
slow fall of current during depolarization indicates that AP interferes with the
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normal process of inactivation, preventing it from occurring when AP is at its
blocking site .

Multistate Modelfor Frequency-dependent Block
A multistate sequential model for IA channel gating and channel drug
interactions was developed that simulates the voltage-dependent and fre-
quency-dependent blocking action ofAP. The model is based on that proposed
by Yeh et al . (1976a) for AP block of delayed outward current in squid axons.
It differs from their model by the addition of an inactivation step, by the
stipulation that AP interferes with the process ofinactivation, andby including
AP block of open channels during depolarization .
The model for IA gating and AP blocking reactions is summarized in this

reaction scheme:
ki ks

R

	

O --1

ks I[ ke kz ks I[ k7 ka
BR BO

The channel is thought to exist normally in one of three states : a resting state
(R), an open state (0), and an inactivated state (1) . It is assumed that
transitions between states occur according to a linear reaction sequence and
that the kinetics of channel gating arise from the voltage dependence of the
rate constants for the various transitions. This reaction sequence is a simpli-
fication because it does not predict the characteristic delay in activation of IA
during depolarization . This can be corrected by adding three or four noncon-
ducting states to the left of R (for example see Yeh et al ., 1976a; Armstrong
and Bezanilla, 1977), but this elaboration is not necessary for the present
purpose of modeling the block by AP.

Aminopyridines are thought to act by binding a site or sites at the channel
with the result that current in the channel is blocked. It is assumed that
channels in the resting state with open inactivation gates are susceptible to
block and can enter a blocked state (BR) . This blocking reaction shows a
voltage dependence similar to the removal of inactivation as shown in Fig. 3 .
In addition, open channels are susceptible to block caused by a more rapid
interaction with AP during depolarization as shown by the transition from 0
to BO.

Blocked channels may occupy either resting or open states but experimental
evidence suggests that blocked channels are prevented from inactivating . It is
assumed that recovery occurs during depolarization because the transition
from the blocked resting state (BR) to the resting state (R) is favored at
depolarized voltages . The two blocked states (BR and BO) are treated
separately . This is equivalent to the assumption that there are twoindependent
binding sites for AP.
An attempt was made to use experimentally measured rate constants in the

model, and for this purpose an exemplar cell was chosen for which areasonably
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complete set of data existed. The exemplar cell was the same as that shown in
Fig. 2. In general, the rate constants used in the model were derived from
measured time constants using the relationship

T

TABLE II
RATE CONSTANTS FOR BLOCKING MODEL

kQ +kb'

where T is the time constant and ka and kb are forward and backward rate
constants. In simulating channel gating and the transitions between the
blocked state BR and the resting state R during depolarization, the backward
rate constant for each transition was set to zero and the forward rate constant
was taken to be the reciprocal of the measured time constant . Just the opposite
was done during hyperpolarization. This is a simplification because the
forward and backward rate constants would in reality be continuous variables
that depend on voltage . This approach was adopted because there is insuffi-
cient data available on the mechanism of IA gating and on the voltage
dependence of individual rate constants to justify a more thorough treatment .
The chosen rate constants are shown in Table II .

For the block of open channels, the forward and backward rate constants
were assigned in the following way. The initial rate of fall of the IA transient
was measured in the presence of 3 mM external 4-AP and compared with the
rate of inactivation of channels measured without blocker. It was found that
the initial fall is 1 .5 times faster in AP (T = 78 ms compared with 150 ms) .
This means that if the blocking reaction follows an exponential time course it
must proceed with a time constant of 100 ms. The strength of the block of
open channels is not known in detail, and because of this the ratio of forward
to backward rate constants for this reaction was varied systematically in order
to achieve a reasonable fit to the data (Table II) .

Solutions of the model were calculated using the point-slope method
implemented on a PDP 1103 microcomputer. Conductance waveforms were
calculated from the assumption that conductance is proportional to the
number of open channels, o(u,r) .

Rate

-40 mV

constant

-100 MV Source

k, 100 0 Connor and Stevens (197 t)
kz 0 l00
ks 6.7 0 Fig. 1
ka 0 6.7
ks 0.63 0 Results
k6 0 0.63
k7 3.4 3.4 Results
ke 3.4 3.4
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Two solutions of the model are shown in Fig. 9. Panel A shows the change
in conductance time course with exposure to AP and should be compared
with the experimental results shown in Fig. 2. For this example, a holding
voltage of -100 mV was assigned so that all channels would be in either the
resting state R or the blocked state BR. The larger trace shows the time course
of conductance in the absence of blocker, whereas the smaller trace shows the
time course when the steady state blocking level is 50%. Panel B shows
frequency-dependent block during three repetitions of a voltage-clamp pro-
gram wherein the cell was held at -40 mV, stepped to -100 mV for 1 s, and
then returned to -40 mV. This pulse schedule was repeated at 1 Hz . The
initial level of steady state block was 30%. This record should be compared
with the experimental data shown in Fig. 6B . During repetitive hyperpolari-
zations in the model, blocked channels accumulate because hyperpolarization
favors the blocking reaction and because recovery from block proceeds slowly
and is incomplete during the interpulse interval .
The model presented here provides a plausible mechanism for AP block

and will reproduce several features of the data . These include frequency-
dependent and voltage-dependent block, crossovers during the falling phase
of current, prolongation of the final return to baseline during depolarization,
shortening of the time to peak, and hastening of the initial fall of the IA
transient . Quantitatively the model fails at several points . The time at which
blocked and unblocked currents cross is too late in the model and, therefore,
the crossover occurs at too low a current level. Also the decrease in time to
peak is not as prominent as that seen in experiments where di-AP was the
blocking ion .

DISCUSSION

Pelhate and Pichon (1974) first found that AP blocks the outward current in
cockroach axons. Yeh et al . (1976a, b) studied the kinetics of block of delayed
outward current in squid axon in detail . Several comparisons can be drawn
between the action of aminopyridines on delayed outward currents and their
action on IA . In both cases block is removed by strong depolarization, by
longer depolarization, and by increased frequency of depolarization . These
results were interpreted in terms of a model in which AP molecules are
thought to bind to closed K+ channels and to be released from open K+
channels in a voltage-dependent manner (Yeh et al ., 1976a) . The unblocking
reaction is slower than normal gating, as is the re-establishment of block on
hyperpolarization, and therefore one sees use-dependent recovery from block
during repetitive depolarization in squid axon delayed outward current as
well as in IA channels . Recovery from block upon depolarization has also been
reported for voltage-dependent delayed outward current at the node of
Ranvier (Ulbricht and Wagner, 1976) and in molluscan nerve cell bodies
(Herman and Gorman, 1981) . There are additional effects of AP on IA that
are not shared by delayed outward currents in axons. These additional effects
appear to involve the inactivation mechanism.

In IA channels the voltage dependence of block follows to a close approxi-



FIGURE 9. Simulation of AP block using the sequential model . The rate
constants used in these calculations are given in Table 11 . (A) Change in
conductance time course on exposure to blocker. The larger trace is a control
corresponding to a cell held at -100 mV and stepped to -30 mV in normal
saline . The smaller trace simulates the effects of exposure to AP. The initial
occupancies of states used in these calculations were: (1) unblocked ; R _ 100% ;
all other states equal 0%; and (2) blocked ; R = 50%; BR _ 50%; all other states
equal 0% . (B) Frequency-dependent block, The voltage was initially -40 mV so
that inactivation could be assumed to be complete . An initial steady state block
of 30% was assigned . Three repetitive hyperpolarizing pulses to -100 mV for 1
s were applied and the time course of conductance on stepping back to -40 mV
is shown . Hyperpolarizations were repeated at a rate of 1 Hz . The percentage
of channels blocked just before each depolarization was : (1) 30% ; (2) 65% ; (3)
69.5% .
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mation the voltage dependence of normal inactivation gating . One interpre-
tation of these data is that the strength of AP block is modulated by
inactivation either because in the inactivated state access of AP to a receptor
site in the channel is prevented or because the formation of a receptor for AP
depends on the open state of inactivation gates. This may be viewed as a
competition between the normal inactivation process and AP block. The two
processes have identical effects, i.e., they block current and are separable in
these experiments only because the kinetics of AP reactions with the channel
are so much slower than channel gating.
Aminopyridines interfere directly with the process of inactivation . The

pronounced slow phase of current during depolarization in AP could only
occur if inactivation gating of blocked channels were prevented in some way.
This might be explained if in the presence of drug, blocked channels cannot
proceed to an inactive state, but as unblocking slowly occurs during long
depolarizations or incrementally during repeated depolarizations, newly un-
blocked and conducting channels can proceed with inactivation . This is
interpreted as evidence for the sequential model for IA gating that was
presented in Results . It is not yet clear how AP prevents inactivation, but it
may act by shifting the voltage dependence of inactivation gating toward
more depolarized voltages so that channels with bound AP do not inactivate
at voltages where inactivation normally goes to completion . Alternatively,
when AP interacts with the channel it may prevent inactivation gating by
steric interactions . These effects bear a similarity to the action of N-methyl-
strychnine and pancuronium ions on sodium channels . Both of these com-
pounds evidently compete with the normal inactivation mechanism prevent-
ing inactivation while blocking the channel (Cahalan et al ., 1980) .

Aminopyridines provide useful pharmacological tools for blocking IA . The
strong voltage dependence of blocking action means, however, that some care
must be used in interpreting the results of experiments wherein AP is used to
pharmacologically separate IA from other membrane currents so that the
activation of these other currents can be measured . Since the block is largely
removed at voltages near the resting potential in these molluscan cell bodies,
test pulses would have to be preceded by a sufficiently deep and long
conditioning hyperpolarization in order to ensure adequate suppression of IA .
To verify the separation ofIA from other membrane currents it is not adequate
to test for block of IA with a single protocol . Instead, it will be necessary to
show that the block is effective for the voltage command programs and
repetition frequencies used in experiments .
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