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ABSTRACT Single channel currents through Ca**-activated K* channels of
bovine chromaffin cells were measured to determine the effects of small ions
on permeation through the channel. The channel selects strongly for K* over
Na* and Cs*, and Rb* carries a smaller current through the channel than K*.
Tetraethylammonium ion (TEA*) blocks channel currents when applied to
either side of the membrane; it is effective at lower concentrations when applied
externally. Millimolar concentrations of internal Na* reduce the average cur-
rent through the channel and produce large fluctuations (flicker) in the open
channel currents. This flickery block is analyzed by a new method, amplitude
distribution analysis, which can measure block and unblock rates in the micro-
second time range even though individual blocking events are not time-resolved
by the recording system. The analysis shows that the rate of block by Na* is
very voltage dependent, but the unblock rate is voltage independent. These
results can be explained easily by supposing that current flow through the
channel is diffusion limited, a hypothesis consistent with the large magnitude
of the single channel current.

INTRODUCTION

In the process of permeation through a selective ion channel, ions must interact
with one or more specific chemical sites that distinguish between the various
ionic species, allowing some, but not others, to pass. Some of the important sites
for ion interaction are those where ions may bind stably (energy wells), while
other ion-selective sites may be points of maximum resistance to ion passage
(energy barriers). These chemical sites can be studied by the same approach used
for other specific sites on proteins: analogues of the natural ligand may be used
as probes to determine the specifics of ligand interaction with the sites. This
approach has been productively applied to many ion channels to measure the
physical and chemical specificity of their permeability pathways (reviewed by
Hille, 1975; Latorre and Miller, 1983), in an effort to understand the mechanism
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that allows up to 10® jons per second to cross the membrane while distinguishing
miniscule differences (0.4 A) in ionic radius. I have used this approach to study
permeation in the large-conductance, Ca**-activated K* channels of bovine
chromaffin cells. Some small ions pass through this Ca**-activated K* channel,
and others block the current normally carried by K ions.

Channel blockers constitute a class of molecules that reduce the current
through ion channels by a common mechanism: they completely obstruct channel
current for some short period of time. Various channel blockers produce differ-
ent changes in the appearance of single channel records, an observation that may
be explained by supposing that individual blockers obstruct channel currents for
different lengths of time, relative to the bandwidth of the recording system.
Three classes of blockers of the Ca**-activated K* channel can be distinguished
on this basis. Slow blockers, such as nonyltriethylammonium ion (Cs) and Ba ion,
produce clearly resolved interruptions in single channel currents; each block
event looks like a closing of the channel. Fast blockers, such as internally applied
Cs ion, produce frequent, extremely brief interruptions of the channel current
that can only be detected as an apparent reduction in the level of open channel
current. An intermediate class of blockers, including internally applied Na*,
produces rapid fluctuations in current during a channel opening, because of
interruptions long enough to detect but too brief to resolve as individual events.
Such fluctuations may be called “flicker,” and the blockers that produce them,
“flickery blockers.”

Information about the rates of block and unblock for different blockers under
different conditions can tell us about the chemical nature of the channel and its
interaction with ions. Each class of blocker must be studied with a different kind
of measurement. Fast blockers are studied by measuring the fractional reduction
in the apparent open channel current. Slow blockers can be studied simply by
measuring the frequency and duration of the interruptions in channel current.
Flickery blockers can be studied by the new method, described here, of amplitude
distribution analysis. This analysis extracts the block and unblock rates from the
shape of the distribution of current amplitudes during channel flicker.

MATERIALS AND METHODS

Experimental Methods

Ca**-activated K* channels from bovine adrenal medullary chromaffin cell membranes
were studied in detached inside-out or outside-out membrane patches as described by
Horn and Patlak (1980) and Hamill et al. (1981). The cultured chromaffin cells were a
generous gift of T. Hoshi and Dr. J. Rothlein (Yale University School of Medicine), and
were prepared by the method of Kilpatrick et al. (1980) as modified by Wilson and
Viveros (1981). Patch pipettes were prepared as described in Hamill et al. (1981), using
Boralex borosilicate micropipettes (100 ul; Rochester Scientific, Rochester, NY) coated
with Sylgard (Dow Corning, Midland, MI) and heat-polished to ~0.5 gm i.d. They typically
had a resistance of 4 M when filled with any of the isotonic salines used. All of the salines
used were filtered immediately before use with a 0.2-um membrane filter (Acrodisc;
Gelman Sciences, Ann Arbor, MI) to remove small particles, which might interfere with
the sealing of pipettes to the cells. A bare, chloridized Ag wire was used as the electrode
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within the patch pipette, and a similar wire within an agar/saline bridge was used as the
bath ground. The patch clamp amplifier used essentially the same circuit as that described
by Hamill et al. (1981), with the addition of a sample-and-hold amplifier for automatically
adjusting a junction potential correction to give zero current. The junction correction
was adjusted immediately before sealing onto a cell. It was routinely checked after
recording from a patch, when the patch had broken,; it was usually <1 mV and never >5
mV different from the true zero-current potential, measured with the pipette tip in the
bath solution used for recording. This suggests that neither drift in the circuitry nor
liquid junction potential differences are a serious problem in these experiments. Significant
electrode polarization was not expected because of the small size of the currents.

All experiments were performed at room temperature (21-25°C). Experimental values
are reported as mean + SEM, except where indicated.

PERFUSION Solutions were delivered to the exposed face of the detached membrane
patch by a variation of the multiple-barrel perfusion system described earlier (Yellen,
1982). The patch pipette with a membrane patch at the tip was moved into the mouth of
a perfusion pipette containing the desired solution, and the solution was allowed to flow
continuously during the recording. Flow through the perfusion pipettes was turned on or
off by a screw clamp attached to the supply tubing; only the solution currently in use was
allowed to flow.

SOLUTIONS Saline solutions were always prepared with a mixture of the chloride
and hydroxide forms of the alkali metal of interest, and their pH was adjusted with HCI
so as to have precisely the nominal concentration of the alkali metal ion and no significant
content of other alkali metals. All external solutions (used in the pipette for inside-out
patches, and in the perfusion system for outside-out patches) contained 2 mM CaCl,, 1
mM MgCl,, and 10 mM HEPES at pH 7.2, in addition to 160 mM of the alkali metal
cation with CI~ as the couriterion. All of the permeation information presented here is
from analysis during a time when just a single channel was open. Typically, patches from
chromaffin cells contained 3-10 of these large Ca**-activated K* channels (as judged
roughly from the highest overlap level seen during large depolarizations). The internal
solutions always contained a Ca®*/EGTA buffer to set the free Ca®* at a level high enough
to activate channels at depolarized potentials, but low enough to prevent too many
overlapping openings. The free Ca®* used was nominally either 0.3 or 1 uM, as computed
from the binding constants given in Martell and Smith (1974) and corrected for H ion
activity. The standard internal solution with 0.3 uM free Ca®* contained (in mM): 160
KCI/KOH, 10 HEPES, 1 MgCly, 5 EGTA, and 3.8 CaCl; at pH 7.2. The 1-uM free Ca®*
solution had 5 EGTA and 4.57 CaCl;. When TEA” or Cs* was used in the internal
solution, a sufficient amount of 1-M stock solution was added to the standard internal
solution to make the desired concentration.

DATA ACQUISITION AND STIMULATION Membrane current was filtered with an eight-
pole tunable low-pass Bessel filter (model 902LPF; Frequency Devices, Haverhill, MA)
and sampled into a PDP 11/23 computer (Digital Equipment Corp., Maynard, MA) at
intervals of between 10 and 400 us using a 12-bit analog-to-digital converter (DT2782A;
Data Translation, Marlboro, MA). The usual sampling rate was one point per 100 us; the
usual filter setting was 4 kHz. Voltage stimuli were delivered to the clamp command input
by a 12-bit D/A converter controlled by the computer and run synchronously with
sampling.

USE OF RAMP STIMUL] TO DETERMINE OPEN CHANNEL I-V RELATIONSHIP A rapid
ramp voltage clamp stimulus was used to measure quickly the open channel current-
voltage relationship for single channels (Yellen, 1982). The current measured during a
ramp stimulus corresponds to the leakage characteristics of the seal when no channels are
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open, and to the leakage plus the open channel current when one channel is open. If a
ramp stimulus is applied repeatedly to a patch of membrane with an active channel,
channel openings occur at random during the ramp (for an example, see Yellen, 1982).
To construct a complete I-V relationship, segments of each record that contained zero or
one channel open were manually identified to the computer, which averaged them point
by point. The open channel I-V was obtained by subtracting the average leakage I-V (with
zero channels open) from the average I-V with one channel open.

There are three sources of artifacts in determining channel I-V curves from ramp data.
The first is channel flicker: if there are many unresolved closings during a long channel
opening, the apparent open channel current measured from ramps may be smaller than
the apparent current obtained by visually drawing a line through the top of the channel
currents in steady state records. All of the data presented here have little problem in this
respect; channel currents observed at steady state correlate quite well with those measured
by ramps. However, it is important to avoid including brief closings in the open channel
segments chosen for averaging. The second source of artifact is capacitive current; this
can be eliminated by electronic compensation. In any case, the open channel I-V’s were
measured as the difference between two experimental I-V curves with exactly the same
capacitive artifacts. The third and most serious source of artifact is heterogeneity among
individual channels of the same general type. Individual Ca**-activated K* channels, as
reported elsewhere (Methfessel and Boheim, 1982), may vary by ~20% in their conduct-
ance. The cumulative average of open channel ramp records was displayed while selecting
ramp segments to include in the average, and traces that showed significantly different
open channel currents from those in the cumulative average were not included in the
average. The I-V curves shown here and their relationship to each other are consistent in
experiments done on at least four different patches, with several hundred individual ramp
traces under each ionic condition for each patch.

To collect ramp data for these voltage-dependent, Ca**-activated K* channels, the
likelihood of seeing channel openings at less depolarized voltages was increased by stepping
to a depolarized voltage to activate the channels, and then applying a rapid, descending
ramp stimulus. Results obtained from ascending and descending ramps are exactly
comparable.

MEASUREMENT OF WELL-RESOLVED OPEN AND CLOSED DURATIONS Records of chan-
nel openings interrupted by Cy blocking events were analyzed by marking a threshold at
50% of the open channel level and considering each sample point above the threshold to
be open and each point below to be closed. The virtues of the 50% threshold are discussed
by Colquhoun and Sigworth (1983).

Analysis of Channel Flicker from Amplitude Distributions

Channel flicker can be analyzed by assuming that it is composed of filtered (unresolved)
transitions between two discrete levels. The analysis consists in comparing the measured
amplitude distribution of the flicker with a theoretical amplitude distribution that depends
on the filter cut-off frequency and the transition rates between the two states, and finding
the transition rates that produce the best fit between theory and experiment. The theory
makes two assumptions: (a) that the flicker is composed of filtered fluctuations between
two states of known conductance, and (b) that the transition process is described by a two-
state Poisson process.

This section treats the theory that describes the amplitude distribution for a filtered,
two-state process. The theory for a two-state process and a first-order filter can be solved
exactly; it has been treated in detail by FitzHugh (1983), and is briefly described in the
Appendix. For a simple two-state (open and blocked) Poisson process filtered through a
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single time constant filter, the shape of the amplitude histogram of the filtered process
bears a simple relationship to the unblocking and blocking rates o and # and the filter
time constant 7.

The open state is the unblocked state of the channel; it is assumed to pass a current
equal to one (dimensionless); the blocked state is assumed to pass zero current.

AMPLITUDE DISTRIBUTION WITH A FIRST-ORDER FILTER The differential equations

governing the simple case of a two-state blocking-unblocking process and a first-order
filter are derived in the Appendix. They describe the amplitude distribution of a two-
state process with rates & and # after filtering with a first-order filter of time constant 7.
The steady state solution to these equations gives the amplitude distribution of the filter
output (y), which is a beta distribution described by the following probability density
function, fy):

f5) =571 —9*""/B, b), (1)
where
a=ar, b = Br, (2a, b)
and
B(a, b) = JO‘ ' (1 —y9"'dy (beta function). (3)

On the range of amplitudes (y) from 0 to 1, the probability of finding a filter output
amplitude in the interval (y, y + dy), where dy is very small, is equal to fy) dy.

AMPLITUDE DISTRIBUTION WITH A MULTISTAGE FILTER The form of the amplitude
distribution for a process filtered with a multistage (higher-order) filter cannot be solved
using the same mathematical approach, since the trajectory of the filtered process depends
not only upon the state of the original process (open or blocked) and on the value of the
filter output (y), but also on the value of the time derivatives of y. The filtered process is
no longer a simple function of a two-state Markov process, but is now a multivariate,
continuous state space process, for which it is difficult to find an analytical solution. It is
impractical to use a single time constant filter for single channel recording experiments,
because the attenuation of noise at high frequencies is very poor (e.g., for a 1-kHz single-
pole filter, noise at 10 kHz is only attenuated by a factor of 10). However, I have measured
the amplitude distribution for a simulated two-state process filtered by the eight-pole
Bessel filter used for experiments, over a large range of opening and blocking rates. For
fast processes, the amplitude histograms from the simulation can be described excellently
by beta distributions, and the parameters of the beta distribution can be predicted by
positing an equivalent single-pole filter corresponding to a particular setting of the tunable
Bessel filter. The empirical formula relating the 3-dB attenuation frequency of the Bessel
filter (f) to the equivalent single-pole filter frequency (fo) is

Jo=0.7f, (4a)
and the effective time constant (7) is
7 = 0.228/f. (4b)

. This value is 57 us for the usual filter setting for these experiments of 4 kHz. The
correspondence to the theory for the single-pole filter is good for a, b > 2; for processes
slower than this, the density near the ends of the interval [0, 1] deviates from the theory.
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These slower processes may be studied by refiltering the data using a lower filter setting
(see below).

SHAPE OF THE AMPLITUDE DISTRIBUTION For a very slow process, all of the density
of the amplitude distribution is near zero and one, because the filtered process still has
well-resolved openings and closings (Fig. 1A). For a very fast process, the amplitude
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distribution is a single sharp peak (Fig. 1B) corresponding to the time-averaged value
determined by the blocking and unblocking rates (Coronado and Miller, 1979). For a fast
process that does not correspond to this limiting case, the distribution has a single peak
which is narrow and Gaussian, and which becomes broader as the process gets slower (Fig.
1C). Broader distributions are not exactly Gaussian in shape. Unequal blocking and
unblocking rates give a skewed distribution (Fig. 1D). The shape of the amplitude
distribution is quite sensitive to changes in the blocking and unblocking rates over a range
for @ and b from ~2 to 20.

There is a range of processes that are too slow to be measured critically by this method
but too fast to be resolved as individual openings and closings. These processes can be
studied by refiltering the data with a slower filter before compiling the amplitude
histograms, which effectively raises @ and & into this range by raising 7. This was
accomplished by converting the digitized data back into an analog signal, filtering the
analog signal with the same eight-pole Bessel filter used for experiments, and redigitizing
the filtered signal.

COLLECTION AND PROCESSING OF AMPLITUDE HISTOGRAMS  Sections of single channel
records that contained one active channel, usually including small sections of baseline (no
channels open), were selected for inclusion in amplitude histograms. Individual amplitude
histograms contained contributions from an average of 200 ms of open channel flicker;
at least two to three histograms were compiled for each experimental condition for each
experiment that was used in the analysis. The usual amplitude bin size for histogram
collection was 0.8 pA. A Gaussian curve was fitted to the peak corresponding to the
baseline; the average standard deviation was 1.1 bin for records collected at 4 kHz. The
Gaussian curve was then subtracted from the histogram to remove the closed channel
contribution to the histogram; this procedure did not sigmficantly change any of the fits
to the histograms, since histogram analysis was not attempted when the baseline signifi-
cantly overlapped the open channel level.

FITTING OF A BETA DISTRIBUTION TO THE MEASURED AMPLITUDE HISTOGRAMS A
computer-generated beta distribution was fitted by eye to each amplitude histogram by
adjusting the two parameters, a and b, of the theoretical distribution. In order to
compensate for the broadening of the experimental distribution by unrelated noise, the
theoretical distribution was also broadened by convolving it with the Gaussian curve used
to fit the amplitude distribution of the baseline (closed channel) noise. Fits were almost
always quite good (but see below). The unblocking and blocking rates « and 8 were then
computed from the measured a and b of the redistribution using the definitions of @ and
b in Egs. 2a and b and the empirical filter time constant from Eq. 4.

Before fitting a beta distribution, it was necessary to know the open channel current
through the unblocked channel in order to normalize the amplitudes of the experimental

FIGURE 1. (opposite) Theoretical behavior of amplitude distributions. These com-
puted amplitude distributions are computed beta distributions (see Eq. 1 and
Appendix) with the peak density normalized to be constant. The probability density
on the ordinate is plotted against amplitude on the abscissa. The abscissa ranges
from 0 to 1 (divided into tenths); 0 corresponds to the closed channel current
amplitude and 1 to the open channel. Each theoretical distribution is convolved
with a Gaussian with a half-width equal to 5% of the open channel amplitude; this
accounts for the effect of experimental noise on the measured amplitude distribu-
tions, and is similar to the procedure employed in fitting experimental amplitude
distributions. The values a and b are relative rate constants, defined at the bottom
of the figure and in the text. See text for further details.



164 THE JOURNAL OF GENERAL PHYSIOLOGY - VOLUME 84 - 1984

distribution. The variation in the conductance of the channel from experiment to
experiment made it advisable to determine the open channel current amplitude for each
experiment. This was easily done with experiments on inside-out patches by switching to
an internal solution with no Na*. For experiments with outside-out patches, however, it
was necessary to extrapolate the open channel current from the peak amplitude of the
currents when the block was relieved by moderate amounts (~20 mM) of external K* (see
Yellen, 19845). This extrapolated channel size was used to analyze all of the histograms
from a single experiment. Varying the size used in the analysis by +20% did change the
absolute values measured for « and g, and usually made the fits worse than with the
extrapolated value, but never changed the qualitative results concerning changes in a and
8. Rates measured from different patches agreed quite well, but critical comparisons to
ascertain the effects of changes in ion concentrations were always done between measure-
ments on the same patch.

There are two potential artifacts that probably account for the occasional experiment
that fails to give amplitude distributions that are well fitted by beta distributions (in the
range of rates that would be expected to give good fits despite the Bessel filter). The first
of these is baseline drift, which can smear out the histogram because the contribution
from one record will fail to align properly with the next. This could usually be corrected
by automatically finding and subtracting the closed channel baseline for each record
before including it in the histogram. The second artifact is produced by inhomogeneity
in the open channel current among different Ca**-activated K* channels in the same
patch. Including channel flicker from several channels of different sizes in the same
histogram will tend to smear out the histogram, causing an underestimate of the block
and unblock rates, and sometimes making the histogram too different from a beta
distribution to give a reasonable fit. Care was taken to avoid including channel events of
different mean amplitudes in the same histogram; it was necessary to include only long
bursts, as bursts of only a few milliseconds would show a naturally large fluctuation about
the mean.

It is possible to obtain a reasonably smooth amplitude histogram from just a single
burst (see the single-burst amplitude histograms in Fig. 8). Such amplitude histograms are
free from both types of artifact discussed here. In several experiments, these amplitude
histograms were compared with those compiled from many bursts and found to agree
well.

RESULTS

Channel Conductance and Selectivity

The Ca®*-activated K* channel in chromaffin cell membranes (described by
Marty, 1981) has a slope conductance at 0 mV of 265 + 20 pS (mean £ SD, n =
8) in symmetrical 160 mM KCI solutions at 20-22°C, with a range of observed
conductances between 190 and 330 pS. This variability in the channel conduct-
ance of Ca®?*-activated K* channels has been noted by other workers (Methfessel
and Boheim, 1982). The relative permeation properties of different cations seem
to be quite comparable in individual Ca**-activated K* channels of different sizes
seen in this preparation, and the variation in the blocking kinetics described
below seems to be uncorrelated with and smaller than the variation in size.

The current-voltage (I-V) relationship measured by ramps in symmetrical K*
is nearly linear (ohmic) over a range from —60 to +70 mV; outside of this range,
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the conductance of the channel decreases with increasing voltage (Fig. 2 A); thus,
the I-V is said to be sublinear, since the slope falls below that of a straight line at
extreme voltages. This sublinearity is not an artifact of the ramp method; the
same I-V can be measured from the open channel current measured in steady
state records at different voltages. A rapid voltage-dependent block, perhaps by

A K//K B Na//K
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3
C Rb//K D Cs/K

/ V4
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FIGURE 2. Open channel I-V relationships with different external cations. The I-
V curves were measured from ramps under biionic conditions, with a 160-mM
concentration of test cation (as labeled) outside and 160 mM K* inside (other
components of the solutions are described in Materials and Methods). Vertical scale:
one box equals 8 pA. The smooth lines are fits to the I-V's generated from the
model described below and in Fig. 11. The model has two ion binding sites, repulsion
between ions in the channel, and diffusion limitation of ion flow. The sublinearity
of the K*//K* I-V is produced in the model by the diffusion limitation on ion flow.
In the model, Na™ is considered to be inert with respect to the channel when applied
to the outside, Rb* binds more tightly to K* to one of the sites in the channel, and
Cs* can reach both sites from the outside of the membrane, but cannot pass the
innermost barrier to reach the inside solution.

H ions (cf. Cook et al., 1983), might produce this sublinearity. It could also be
produced by the intrinsic permeability properties of the channel, or by the
phenomenon of diffusion-limited ion flow (see below).

The channel is strongly cation selective, as indicated by the reversal potential
for channel currents in the presence of transmembrane salt gradients. When the
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outside solution contains 32 mM KCI (plus sucrose to balance the osmotic
strength) and the internal solution contains 160 mM KClI, the channel currents
reverse at =39 £ 1 mV (n = 2). The Nernst potential for K* under these
conditions is =40 mV; the Nernst potential for Cl” is +40 mV. A perfectly cation-
selective channel would be expected to reverse at —40 mV.

This K* channel also selects very strongly for K* over Na*, as indicated by the
current-voltage relationship with NaCl outside and KCl inside (Fig. 2B). As the
membrane potential is made more negative, the outward K* current becomes
smaller, but no inward current (which would necessarily be carried by Na*, since
the channel is cation selective) is detected over the range of potentials studied
(+160 to —120 mV). Indeed, even at =70 mV, there is an outward current flow
through the channel of nearly 1 pA. It appears that the reversal potential, if
current does reverse, is more negative than —80 mV; this corresponds to an
upper limit for the Na*/K* permeability ratio (as defined by the reversal
potential) of ~0.03.

Rb ions can carry inward current through this K* channel, as through a variety
of other K* channels (Chandler and Meves, 1965; Hagiwara and Takahashi,
1974; Hille, 1973; Coronado et al., 1980; Reuter and Stevens, 1980; Gorman et
al., 1982). The permeability of Rb* through the chromaffin cell Ca**-activated
K* channel is nearly the same as that of K?*, as determined from the biionic
reversal potential with RbCl outside and KCl inside (Viey = —4.8 £ 1.1 mV, n =
3). However, the conductance of the channel at negative potentials, where the
current is carried by Rb*, is much smaller than the conductance when the current
is carried by K* (cf. Fig. 2,C and A). This result suggests that Rb* decreases its
own current by binding to a saturable site in the channel (Hille, 1972; Adams et
al., 1981). Rb binding might also be expected to reduce the outward K* current
below that seen in symmetrical K*; the failure of Rb* to do so and the sharp
corner near the reversal potential in the I-V with Rb* outside indicate that the
block by Rb* must be very voltage dependent.

Cs™* Blocks Channel Currents from Either Side of the Membrane

Like external Na*, external Cs* carries no detectable inward current even at
very large negative potentials (Fig. 2D). However, the outward currents mea-
sured at negative potentials with Cs* outside are smaller than those measured
with Na* outside, which indicates that Cs* blocks outward current flow through-
out the channel in a voltage-dependent fashion (cf. Chandler and Meves [1965]
and Adelman and French [1978] on squid axon, and Dubois and Bergman [1977]
on node of Ranvier).

Internal Cs ions also block Ca®*-activated K* channel currents (Fig. 3), as they
do delayed rectifier currents (Chandler and Meves, 1965; Adelman and Senft,
1966; Bezanilla and Armstrong, 1972) and the sarcoplasmic reticulum K* chan-
nel (Coronado and Miller, 1979). The apparent open channel current is reduced
(Fig. 3 A), and the reduction is more pronounced at depolarized voltages, which
should drive internal Cs ions into the channel (Fig. 3 B).

We can measure the voltage dependence of Cs* block in the following way.
Blockade of Cs* is much too fast for us to observe the discrete open and blocked
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states of the channel. Rather, we see the time-averaged value of the current
through the channel (Woodhull, 1973; Coronado and Miller, 1979; Horn et al.,
1983). The equilibrium between the open and blocked states depends on voltage;
in a simple model for blockade, the voltage dependence arises because the
blocking ion binds to a site inside the channel, within the transmembrane electric
field. This model predicts that the equilibrium between the blocked and open
(unblocked) state will be

blocked/unblocked = [B)/K(0)exp(F8V/RT), (5)

where [B] is the blocker concentration, K(0) is the zero-voltage equilibrium
constant, and 6 is the fraction of the voltage felt at the blocking site (equivalent
to the “effective valence” for monovalent ions; Woodhull, 1973). Assuming that
the blocked state of the channel carries no current, the time-averaged channel
current will be

(i(V)) = io(V) [1 + [B)/K(O)exp(FSV/RT)]™", (6)

where i9(V) is the current through the unblocked channel (Coronado and Miller,
1979). For block by internal Cs*, i, is the current in the absence of internal Cs*;
for block by internal Cs*, it seems reasonable to take the current measured with
Na* outside as iy, since the shallow slope of the I-V in Na* indicates that if
external Na* blocks at all, the block is not very voltage dependent. The value of
6 measured by this method for block by external Cs* is quite high (1 £ 0.2, n =
3; Fig. 3 C); this corresponds to a change in affinity of e-fold per 25 mV. Blockade
by internal Cs* has a low affinity (two experiments with 10 mM internal Cs*
suggest a Kq of ~100 mM); the 6 for block by internal Cs* is 0.25 £ 0.1 (n = 2;
see Fig. 3C).

External and Internal TEA™ Block at Different Sites

Tetraethylammonium ion (TEA*) has been used pharmacologically to block the
currents through K* channels in many preparations and to probe the channel’s
structure (Tasaki and Hagiwara, 1957; Armstrong and Binstock, 1965; Arm-
strong, 1966; Hille, 1967; Armstrong and Hille, 1972; Thompson, 1977; Her-
mann and Gorman, 1981; Wong et al., 1982). TEA* is an effective blocker of
the chromaffin cell Ca**-activated K* channel when applied from either side of
the membrane. Internal TEA* block appears as a reduction in open channel
current (Fig. 4A); the block and unblock events must be much too fast to detect.
External TEA® is effective at lower concentrations than internal TEA*, and its
block is a slower process: it can be detected as a rapid flicker in the channel
currents (Fig. 4B). One experiment for each condition was analyzed quantita-
tively.

Internal TEA* produces the reduction in the open channel I-V shown in Fig.
5A. At zero voltage, 10 mM internal TEA" reduces the current by 26%; this
corresponds to a K4 of 27 mM, which agrees well with Vergara’s (1983) value of
35 = 7 mM for the Ca®*-activated K* channel in skeletal muscle T-tubule
membranes. The voltage dependence of the block is very small (§ = 0.1, measured
as described above for Cs*; Fig. 5B).
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A

CDONTRDL + 10 mM INTERNAL TEA

B

CONTROL + 1 mM EXTERNAL TEA
20 pA

e

FIGURE 4. Block by internal and external TEA* is different. (4) Single channel
currents in control solution (160 Na*//160K*) and with 10 mM TEA* added to the
internal solution. The membrane voltage was +60 mV; filtered at 4 kHz. (B) Single
channel currents in control solution (160 Na*//160 K*) and with 1 mM TEA*
added to the external solution. The membrane voltage was +120 mV; filtered at 4
kHz.

External TEA* is much more effective: a concentration of 1 mM reduces the
channel currents by 75% even at +120 mV, and the voltage dependence of this
block is also small [§ = 0.2, Ka(0) = 0.2 mM]. If TEA* blocked at the same site
regardless of which side it was applied to, the sum of the &’s for block from each
side (that is, the sum of the fractional electrical distances) should be at least 1. In
fact, the sum of the 6’s measured is much smaller than 1, which indicates that
TEA®* blocks at different sites when applied to the outside or the inside. The
different kinetics and affinities of the block are consistent with this (cf. Armstrong
and Hille, 1972).

Comparison of Co Block Analyzed Directly and from Amplitude Histograms

Nonyltriethylammonium ion (Co), a derivative of TEA with a long hydrocarbon
chain attached, is known to block K* channels with high affinity (Armstrong,
1971; Armstrong and Hille, 1972; Vergara, 1983). When applied to the inside

FIGURE 3. (opposite) Blockade by Cs*. (A) Single channel records in control solu-
tion (160 Na* outside, 160 K* inside; written 160 Na*//160K*) and with 10 mM
Cs* added to the internal solution. The membrane voltage was +70 mV; filtered at
4 kHz. (B) Open channel I-V curves under the same condition as in A, measured
from ramps. (C) The voltage dependence of internal and external Cs* block was
measured as described in the text, according to Eq. 6. Internal Cs* block was treated
by dividing the two ramps in B, point by point. The straight line was fitted to the
data by a linear least-squares fit; it corresponds to values of K4V = 0) = 85 mM, &
= 0.18. Points below 0 mV were not plotted, as they were significantly affected by
noise in the I-V curves. External Cs* block was treated by dividing the two ramps in
Fig. 2, B and D, treating the Na*//K* I-V in Fig. 2D as the unblocked current .
The least-squares straight line corresponds to values of K¢(0) = 160 mM, § = —0.95.
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face of Ca®*-activated K* channels from T-tubule membrane, it produces a
clearly resolvable block of current through the channels (Vergara, 1983), which
is similar to the action of local anesthetics on endplate channels (Neher and
Steinbach, 1978). Cy is also an effective slow blocker of the Ca?*-activated K*
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FIGURE 5. Voltage dependence of block by internal TEA*. (4) Open channel I-V
curves from ramps, under the same conditions as for Fig. 3A. (B) The data from
panel A were treated as described for Fig. 3 C to measure the voltage dependence
of block. The straight line corresponds to values of K4 = 24 mM, 6 = 0.1.

channel in chromaffin cells. Fig. 6 shows the effect of 10 uM Cy applied
internally to a patch with Ca**-activated K* channels.

In order to test the validity and accuracy of the amplitude distribution method
for determining block rates from records of flickery block, I studied blockade
by this slow blocker, whose kinetics could be either measured directly from the
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well-resolved records of blocking and unblocking, or analyzed by the amplitude
distribution method.

The block and unblock rates of Cg can be measured directly from the distri-
butions of open and blocked durations during an opening burst. The open and
closed time duration distributions, shown in Fig. 6, B and C, are reasonably well
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FIGURE 6. Block by internal C,. (4) Single channel records in control solution
(160 Na*//160 K*) and with 10 uM C, added to the internal solution. The
membrane voltage was +60 mV; filtered at 8 kHz. (B and C) Open and closed
lifetime duration distributions, with number of events (N) plotted against duration.
The smooth lines were derived from straight lines fitted by eye to semilog plots of
the data. The time constants are indicated. The closed lifetimes for normal channel
closures were much longer than those due to Cs block, and could be ignored on
this time scale.
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fitted by single exponentials; long closures and very brief flickers perturb the
histograms very little, since the number of these events is small compared with
the number of blocking events. The average blocked time measured by this
method is 0.25 ms; the average open time (between block events) with 10 uM Cy
is 0.49 ms.

It is also possible, by heavily filtering the data with a filter slower than these
block and unblock rates, to cause the blocking events to be ill resolved, and then

T AT VU

20 pA Vi 60
Wms (160 ms)

FIGURE 7. Re-analysis of Co block using the amplitude distribution method. (4)
Refiltering of an 8-kHz record of internal Cy block to simulate the poor resolution
of the block produced by internal Na*. Conditions as for Fig. 6A. The top trace is
the original data; the middle trace was refiltered at 150 Hz; the bottom trace is the
refiltered data on a 16-fold-compressed time scale. (B) Amplitude histogram (heavy
line) of Co block records refiltered at 150 Hz. The smooth line was the best fit (by
eye) to the data; it corresponds to values of Topen = 0.47 MS, Telosea = 0.27 ms.

to apply the amplitude distribution analysis to the same data. Data from channel
currents with Cg block were refiltered at 150 Hz to make the individual opening
and closing events poorly resolved. As can be seen from a comparison of the
150-Hz refiltered data with the original 8-kHz data (Fig. 7A), each flicker
corresponds to many blocking and unblocking events. An amplitude histogram
was compiled from the refiltered data, and the parameters a and b were adjusted
to give the best visual fit to the shape of the amplitude histogram (Fig. 7B).
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Changes in a and b of ~2% give noticeable changes in the goodness of fit; in this
case, where the open channel current in the absence of blocker is precisely
known (from the unfiltered data, or from the control experiment without Cy),
the ambiguity in fitting an individual empirical histogram is ~5% for each
parameter. The open and blocked times determined by fitting the amplitude
histogram are in excellent agreement with those determined by measuring the
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FIGURE 8. Flickery block by internal Na*. (Left) Single channel records with the
indicated concentration of Na* added to the internal solution containing 160 K*
(the external solution contains 160 Na*). The records are 40 ms long, and the lines
indicate the baseline and open channel current (difference of 24.4 pA). The
membrane voltage was +80 mV, and the data were filtered at 4 kHz. (Right)
Amplitude histograms for each of the individual channel openings at left, plotted as
number of occurrences (N) on the ordinate vs. amplitude on the abscissa. The left
vertical line corresponds to the baseline amplitude and the right vertical line to the
open channel amplitude (24.4 pA). Vertical scaling is arbitrary. The smooth curves
superimposed on the lower three histograms are the theoretical beta distributions
fitted empirically to the average histograms for many records.

durations directly. For the experiment shown, the average block time from the
amplitude distribution fit was 0.27 ms, and the average open time was 0.47 ms.

Flickery Block by Internal Na*

Millimolar quantities of Na* added to the medium bathing the intracellular face
of a patch with Ca®*-activated K* channels cause the open channel currents to
diminish and to appear very noisy or flickery (Fig. 8; see also the report by
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Marty, 1983)."! The reduction in current increases with increasing Na concentra-
tion and is enhanced by positive membrane potentials, which suggests a voltage-
dependent block of the channels by Na*. Even at the practical recording limit of
my patch clamp electronics (~10 kHz), the flicker induced by internal Na* cannot
be resolved into discrete closings and openings that would correspond to blocking
and unblocking events. The flicker can, however, be analyzed by the amplitude
distribution method to determine the block and unblock rates.

Each amplitude histogram in the right half of Fig. 8 was compiled from the
corresponding single channel opening event on the left. Many such bursts of
channel activity were used to compile overall amplitude histograms for each
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FIGURE 9. Block and unblock rates for internal Na* determined from amplitude
distribution analysis. (A) Block rates (). (B) Unblock rates (a). Each point is the
mean * SEM of between two and six separate histograms from experiments on four
different patches. The external solution for all of these experiments contained 160
mM Na* and no K.

condition, and the block rate 8 and unblock rate a were adjusted to give the best
fit of the theoretical distribution to the data. These theoretical fits are superim-
posed on the single-event amplitude histograms in Fig. 8. Fig. 9 shows the
blocking and unblocking rates for Na* as determined from many such fits to
amplitude histograms of channel flicker. The block rate increases linearly with
Na* concentration, and the unblock rate is unaffected by Na* concentration.
This is consistent with the hypothesis that Na* binding to the channel blocks

! All of these Na* block experiments were performed with an external solution that contained
160 mM NaCl and no K*. External K* relieves block by Na*, as described in the companion
paper (Yellen, 19845).
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current flow, and that Na* dissociation from the channel allows current to pass
again.

gBlock by internal Na™ is very voltage dependent. The individual block and
unblock rates measured by the amplitude distribution method show that the
large voltage dependence of block resides almost entirely in the blocking rate.
Fig. 10 shows the voltage dependence of the Na* entry rate (data pooled from
38 separate measurements on 4 patches at 3 different internal Na* concentra-
tions). The block rate has a § of 0.86, whereas the unblock rate has a §
indistinguishable from zero. This large and asymmetric voltage dependence
proves to be critically important in deciding among models for permeation and
blockade.
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FIGURE 10. Voltage dependence of Na* entry and exit rates. The molar entry
rate was determined by dividing the block rate (from Fig. 9) by the concentration
of blocker (Na*). The exponential curve is a best-fit exponential that rises e-fold per
29 mV; this corresponds to a value of 3 = 0.86. The horizontal line corresponds to
8 = 0. The points are mean + SEM for pooled results from four patches, with n =
7, 13, and 18 for +40, +60, and +80 mV, respectively.

The Properties of Diffusion-limited Ion Flow Help Explain the Large Voltage
Dependence of Na* Block

An Eyring rate theory model with two sites for ion binding and the possibility of
multiple occupancy (Hodgkin and Keynes, 1955; Hladky, 1972; Lauger, 1973;
see Hille and Schwarz, 1978, for a review) can easily explain all of the current-
voltage data presented above for the Ca**-activated K* channel in chromaffin
cell membranes. Similarly, the Woodhull (1973) model for block can explain the
voltage dependence of Na* block. It is difficult, however, to explain both the
permeation properties of the channel and the large voltage dependence of block
in the context of a straightforward Eyring model for permeation (Yellen, 1984a).
A common explanation for high voltage dependence of block in a multi-ion
channel is that proposed by Hille and Schwarz: that a second ion enters the
channel after the blocking ion and traps it (that is, slows its net exit rate). The
voltage dependence of the entry of the second ion contributes to the net voltage
dependence of block. This explanation cannot apply to the present case of Na*
block, since the dominant voltage dependence of Na* block lies in the Na* entry
step, not in the exit step.
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A natural and likely explanation for the high voltage dependence of Na* block
is diffusion limitation of ion flow through the channel. The rate of ion flux
through high-conductance K* channels like those studied here is so large as to
be comparable to the expected rate of ion diffusion up to the mouth of the
channel (Hille, 1970; Hall, 1975; Latorre and Miller, 1983). Even the much
smaller currents through the gramicidin A channel can be limited by diffusion
under extreme conditions (Andersen and Procopio, 1980; Andersen, 1983a—c).
Including such a diffusion limitation in the model for ion permeation through
the Ca**-activated K* channel helps in two ways to explain the high voltage
dependence of Na* entry into the channel.

First, diffusion limitation produces a decrease in channel occupancy at high
voltages. When the K ion flow through a channel becomes comparable to the
rate at which ions can diffuse up to the mouth, K* becomes depleted in the
region near the mouth of the channel (the quantitative arguments for the effects
discussed here were made by Lauger, 1976). The lowered concentration of K*
near the mouth reduces its entry rate into the channel. This effect results in a
lowered slope and eventually in saturation of the I-V curves at extreme voltages;
hence sublinearity. The lowered entry rate also reduces the occupancy of the
channel, increasing the opportunity for Na* to enter a vacant channel. Thus, the
change in occupancy with voltage is one factor leading to an increased voltage
dependence of Na™ entry.

Second, diffusion limitation causes Na ions to be concentrated at the mouth
of the channel at high voltages. Depletion of K* from the region near the mouth
of the channel increases the resistance of the solution. Current flowing through
the channel causes a voltage drop across this diffusional access resistance. This
means, for positive voltages, that the voltage at the inner mouth of the channel
will be more negative than the voltage of the internal solution. Thus, any cation,
like Na*, that is passively distributed (unlike K*, which is depleted from this
region by the high flux) will be concentrated at the mouth of the channel. This
effect may be quite substantial. In order to achieve the high conductances
observed for this channel, the intrinsic resistance of the channel must be nearly
as low as the diffusional access resistance (Latorre and Miller, 1983), so the
voltage drop across the diffusional access resistance may be a significant percent-
age of the total. If 30% of the transmembrane voltage were to drop across the
diffusional access resistance on the intracellular side, then Na* entry into the
channel would have an effective valence of 0.3, even in the absence of any other
contributions to the voltage dependence of Na* entry.

Both sources of voltage dependence affect only the entry rate and not the exit
rate. The perturbation in ion concentrations that produces the effects disappears
very quickly when ion flow stops, as when a Na ion enters and blocks the
channels. This relaxation probably takes on the order of 107" s (Lauger, 1976),
as compared with a residence time for the Na ion on the order of 107%s.

A Model That Fits the I-V and Voltage Dependence Data

In order to show that the properties of diffusion-limited ion flow can explain the
voltage dependence of Na® entry, a numerical model was constructed that
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combines diffusion limitation with a two-site Eyring rate theory model for
permeation. The details of the model are shown here only to demonstrate its
adequacy, and they should not be understood as a detailed description of the
channel.

This model incorporates features of the model for ion permeation through
gramicidin A (Hladky, 1972; Eisenman et al., 1978; for a review, see Finkelstein
and Andersen, 1981) and features of the single-file, multi-ion model for delayed
rectifier K* channels (Hodgkin and Keynes, 1955; Armstrong, 1975a, b; Hille
and Schwarz, 1978). The essential features of the model are the presence of two
sites for ion binding that may both be occupied simultaneously, repulsion between
ions occupying the two sites, and diffusion limitation of ion flow.

Liuger (1976) solved the radially symmetric electrodiffusion problem of a
hemispherical channel mouth, with boundary conditions for the voltage and ion
concentrations far from the channel mouth (r = ®). Outside of this hemisphere,
free electrodiffusion obtains; inside this hemisphere, the channel has the usual
restricted diffusion (jump) properties of an Eyring permeation model (Eyring et
al., 1949) with saturable sites and multiple occupancy.

An iterative procedure was used to solve simultaneously the electrodiffusion
equations for diffusion-limited ion flow and the rate equations for the two-site
Eyring model. Fig. 11 shows the model scheme and the numbers used in
modeling; these numbers should not be taken at all literally, since they depend
on the (unknown) absolute frequency factors in Eyring rate theory, and since
many possible combinations of values give a reasonable fit to the experimental
data. Cs* and Na* were treated as impermeant species; Rb* was treated as a
permeant species distinct from K*. The effective capture radii postulated in the
model are 0.2 and 0.14 nm for the outside and inside mouths of the channel,
respectively (the capture radius is roughly the difference between the radius of
the hemisphere and the radius of the diffusing ion; Liuger, 1976; Andersen,
1983a). These values are comparable to that hypothesized for the gramicidin A
channel (0.05 nm) on the basis of both physical and electrophysiological data
(see Andersen and Procopio, 1980). The energy barriers to K* entry are very
small, which keeps the intrinsic resistance of the channel low and comparable to
the diffusion resistance. The small barriers only slightly perturb the rate of entry
of ions to the channel, which is essentially limited by electrodiffusion.

The model gives current-voltage relationships for the channel under biionic
conditions; these are shown superimposed upon the experimental I-V’s in Fig. 2.
The energies for the outer barrier and site were constrained to be the same for
K*, Cs*, and Rb*, because of the identical efficacy of these three ions in relieving
Na* block (see Yellen, 1984b). After fitting the I-V in symmetrical K*, the I-V
with Na* outside was well fitted simply by assuming that Na* acts as an inert,
impermeant substitute for K* outside.

Multiple occupancy and repulsion between ions in the channel are included in
the model to explain the “knock-off” effect that external K, Rb, or Cs ions have
on block by internal Na* (Yellen, 19845). When a 10-mM concentration of one
of these ion species is present in the external bathing medium, the rate of Na*
exit in the model is increased 2.9-fold, which is comparable to the experimental
value of ~3.
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The voltage dependence for Na* entry near +60 was computed, taking into
account three contributing factors: the intrinsic barrier structure, the concentra-
tion of Na* in the convergence region, and the change in channel occupancy.
The voltage dependence conferred by the intrinsic barrier structure was reduced
by the effect of diffusion limitation: in the model used, 40% of the transchannel
field fell across the entry barrier, but this was only 22% of the total trans-
membrane field, since some of the voltage drop fell across the convergence
regions. The voltage drop of ~35% of the field across the inner convergence
region raised the Na* concentration over that in the bulk solution by a factor of
exp(0.35 X FV/RT), causing an additive increase of 0.35 in 6. The availability of
the inner site of the channel increased by 10% on raising the voltage from 50 to
60 mV; this corresponds to an effective increase in 8 of 0.22. The total voltage
dependence of Na* entry in the model has a value of § = 0.79, which is close to
the experimental value of 0.86. Thus, including diffusion limitation in the
permeation model helps explain the high voltage dependence of Na* entry
together with the permeation properties of other ions in the channel.
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DISCUSSION
Channel Selectivity

The selectivity of this chromaffin cell Ca**-activated K* channel is not unusual
among K* channels. Only a few ions have been studied in the present work, and
they follow a familiar pattern: K* passes through the channel much better than
does Na*, Cs* blocks the channel, and Rb* is nearly as permeable as K* but also
blocks the channel. The behavior of these ions in this channel is similar to their
behavior in the delayed rectifier of squid (Chandler and Meves, 1965; Adelman
and Senft, 1966; Bezanilla and Armstrong, 1972) and node of Ranvier (Bergman,
1970; Hille, 1973), though different from that in snail neuron, which is not
blocked by Rb*, and which passes Cs* current (Reuter and Stevens, 1980). This
channel is more selective than the large-conductance K* channel in sarcoplasmic
reticulum, which has a significant permeability to Na* (Coronado et al., 1980).
The permeability properties of a very similar Ca®*-activated K* channel from
skeletal muscle T-tubule membranes has been studied by Vergara (1983); re-

FIGURE 11. (opposite) Features of a permeation model for the Ca®*-activated K*
channel. At the upper left is a cartoon of the channel showing the wide vestibules;
by the reasoning of Latorre and Miller (1983), the region of restricted diffusion for
this channel should traverse only a fraction of the transmembrane distance. At the
upper right is an expanded diagram of the small part of the channel; between the
two hemispherical boundaries at the mouths, restricted diffusion (Eyring-model)
obtains. The two broader regions in the channel indicate the location in the model
of the two binding sites (they do not denote a swelling of the channel diameter).
Beneath this diagram (lower right) is the energy diagram for a K ion traversing the
channel, with labels for the two barrier energy peaks (B1, B2) and the two energy
wells (W1, W2). The fractional electrical distance from the inside solution (in the
absence of ion flow) is indicated on the ruler; electrical distance need not be
congruent with physical distance. When current flows, part of the total voltage drop
falls between the bath solution and the hemispherical boundary at the mouth of the
channel (i.e., across the diffusional access resistance). The model is an Eyring rate
theory model, like that of Hille and Schwarz (1978), with two sites for ion binding.
The sites are at equilibrium with one another; the jump rate to the outside is
relatively slow. Diffusion limitation has been added to the model, as described in
the text; the capture radii chosen for the fit are 2 and 1.4 A for the outside and
inside mouths of the channel, respectively. The repulsion between ions is expressed
by two factors: the entry rate of an ion to one site is reduced by a factor of 5 when
the other site is occupied {fi. = Y5), and the exit rate of an ion is increased by a
factor of 40 when the other site is occupied (fouw = 40). The pre-exponential
(frequency factors, vin and vou, used in the model are both equal to 10''. The barrier
and well energies for each ion are given in the lower left part of the figure. Energy
values are in units of kT (approximately equal to 0.6 kcal/mol). Asterisks (s++) mean
that the indicated part of the channel is inaccessible to each ion. The very small
barriers to ion entry are too small to satisfy the assumptions of absolute rate theory;
they must be understood only as small perturbations to the entry rate, which is
determined by diffusion limitation.
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markably, the T-tubule channel does not pass Rb* (Pre/Px < 0.1, as defined by
the reversal potential; current does not reverse below +60 mV with K* outside,
Rb" inside), whereas the chromaffin cell channel is quite permeable to Rb* (Prs/
Px =~ 0.83 from the reversal potential of =5 mV with Rb* outside and K* inside).

Open Channel Flicker

The present paper shows that one cause of flicker in single channel currents can
be ionic blockade. Internal Na* increases the flicker in single open channel
currents through Ca**-activated K* channels, in a fashion consistent with voltage-
dependent blockade by Na™.

This flicker can be analyzed by analyzing its amplitude distribution. The
analysis depends on two assumptions: first, that the flicker is composed of filtered
fluctuations between two discrete conductance states of known conductance, and
second, that the transitions between the two states are described by a simple two-
state Poisson process. In the present case of Na* block, the first assumption seems
reasonable. In the absence of Na*, the conductance of the open channel can be
determined; in the presence of excess Na*, current through the completely
blocked channel is zero. It seems reasonable to think that at intermediate Na*
concentrations, the channel fluctuates between the completely blocked and
completely open states. The second assumption seems to be correct in cases
where the blocking events can be well resolved in time, like the Cg block described
in the present paper and the local anesthetic block of endplate channels (Neher
and Steinbach, 1978). The excellent fits between the predicted amplitude distri-
butions and the measured distributions support the assumption in the present
case, as do the reasonable results of the analysis, which show that the rate of
entering the blocked state depends linearly on [Na*] and that the rate of
reopening is independent of [Na™].

The method of amplitude distribution analysis can be applied to any process
that satisfies the assumptions and has transition rates slower than ~20 times the
settling rate of the recording system. The latter is a practical limitation; processes
faster than this are so poorly resolved that the analysis will depend critically on
background noise. Noise from the instrumentation and from the open channel
(see below) always tends to broaden the amplitude distribution; this makes only
a small fractional change in the broad distributions produced by slow processes,
but a significant change in the narrow distributions produced by fast processes.
Processes slower than twice the settling rate must be rcfiltered with a slower
filter if they are to be analyzed by this method, since the fits of the amplitude
distributions of very slow processes are also very uncritical. It is also difficult to
analyze processes whose forward and backward rates are very different (more
than about fivefold); this is no problem in studying block processes, whose
forward rates can be manipulated by changing the blocker concentration.

The conductance of the two states that contribute to the flicker must be
known. In the present case, we can be confident that the conductance of the
blocked channel is negligible, since high Na* concentrations drive the current
amplitude to the zero-current level.
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Other Sources of Flicker and Noise in Open Channel Currents

Processes other than block can produce brief closings or flickers. Conformational
changes have been proposed to explain flicker in the Ca**-activated K* channel
(Magleby and Pallotta [1983] in myotubes; Moczydlowski and Latorre [1983] in
reconstituted channels from rat muscle) and in the acetylcholine (ACh)-activated
channel (Colquhoun and Sakmann, 1981; Dionne and Leibowitz, 1982).

Opening and closing processes that are much slower or much more infrequent
than the flicker produced by block do not significantly interfere with the
amplitude distribution analysis. No attempt is made to avoid including brief
closings (of ~1-5 ms) in compiling the amplitude histograms. There cannot be
more than ~100 of these events included in the typical histogram, which contains
~10,000 blocking events (based on the total time and the rates of the block
process). These closures contribute only to the baseline peak of the amplitude
histogram, which is separated and subtracted before analyzing the histogram to
determine block rates.

Excess noise in the open channel currents (above the noise present when the
channel is closed) has been studied by Sigworth (1982). He attributes the high-
frequency component of this open channel noise in the ACh-activated channel
of myotubes to rapid block by H ions. This corresponds to a very fast flicker
process. There is, in addition, a low-frequency component to the noise that may
reflect small fluctuations in the open channel conductance, perhaps because of
channel breathing.

Processes such as these that increase the noise of the open channel will tend
to broaden the amplitude distributions and produce errors in the values derived
from amplitude distribution analysis. There is no evidence for any significant
excess open channel noise for currents through the Ca**-activated channel.

Diffusion-limited lon Flow

The work presented here contains no direct evidence for the importance of
diffusion limitation of ion flow through the Ca**-activated K* channel. Diffusion
limitation nevertheless seems likely to be important for this channel. Latorre and
Miller (1983) have directly discussed the apparent paradox of such a large-
conductance channel that is also very selective; they show that this combination
is not merely counter-intuitive but actually quantitatively difficult to explain.
The difficulty is that the high rate of flux through a channel like this Ca®*-
activated K* channel is comparable to the rate of diffusion up to a small aperture.
Thus, it takes special effort to design a model for a channel that carries as much
current as this one does, and that model is likely to show diffusion-limited ion
flow.

The ease of explaining the voltage dependence of Na* block when diffusion
limitation is added to an Eyring model also makes diffusion limitation an
appealing hypothesis for this channel. Diffusion limitation has been shown to be
important for the gramicidin A channel. Andersen and Procopio (1980) showed
that the current through the gramicidin A channel saturates at high voltages,
with permeant ion concentrations of <1 M. This limiting current can be reduced
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by raising the viscosity of the bathing solution with sucrose, which has the effect
of slowing ion diffusion through the solution. This decrease, as well as the
magnitude of the limiting current, is consistent with the predictions for diffusion-
limited ion flow (Liuger, 1976). Andersen (1983a—c) has provided further
support for the importance of diffusion limitation for the gramicidin A channel.
It should be possible by a similar series of experiments to test directly the
hypothesis that diffusion limitation is also important for the Ca**-activated K*
channel.

APPENDIX

Amplitude Distribution with a First-Order Filter

FitzHugh (1983) has treated this problem generally and in detail. I present here a less
general and less rigorous but simpler derivation, which is suggested by the treatment of
diffusion in one dimension.

The filtered, two-state process is composed of a deterministic process (the filter
relaxation) and a stochastic process (blocking and unblocking). For a first-order filter, the
time derivative of the filter output y is described by

y=-(y-oalr, (Al)

where ¢ is the value at the filter input and 7 is the time constant of the filter.

The first step in combining the filtering process with the blocking-unblocking process
is to describe the amplitude of the output of the filter in probabilistic terms. Let us
consider an ensemble of 1,000 identical filters (systems) with time constant r and a random
distribution of starting values (). The starting values can be described by a probability
density function:

f(y) dy = probability of a starting value in the interval (y, y + dy)
= (number of filters with outputs between y and y + dy)/1,000.

At time 0, we drive the input of all of the filters to zero. We can describe the evolution
of the filter outputs in the next instant d¢ by using the differential Eq. Al with ¢ = 0 to
find that y = —y/7. This means that a filter whose output was exactly y at time 0 will have
an output of y — 8(y) at time dt, where

8(y) = y/7 dt. (A2)

Thus, filters that started with outputs between y + &(y) and y + dy + 8(y + dy) will decay
into the interval (y, y + dy); those that started in the interval [y, y + 8(y)] will decay below
y. The net change in f(y) will be the former minus the latter, or

dfiy) dy = fy + dy)d(y + dy) — f(5)5(y)- (A3)

Dividing both sides by dt and dy gives an expression for the time derivative of the density
function:

dfiy)/dt = d/dy [f(y) y/7]- (A4)

This is analogous to a modified one-dimensional diffusion process, where f(y) is a
concentration and y/7 is the rate of flux at y.

We can now include the blocking-unblocking process. Let the transition rate from
blocked to open be &, and from open to blocked, 8. The probability of a channel being
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open, po, is af(a + B); the probability of a channel being blocked is p» = 8/(« + ). In a
small period of time dt, the probability that a blocked channel will become unblocked is
adt, and similarly the probability that an open channel will become blocked is Bdt. Now
let us take 1,000 channels, measure their current with 1,000 patch clamps, and pass the
output through our 1,000 filters.

When a channel is blocked, the filter output relaxes toward zero (and eventually reaches
a constant value of zero); when a channel is open, the filter output relaxes toward one.
Thus, we will define two separate conditional probability density functions fi(y) and f(y)
to describe the filter behavior when the channel is blocked or open, respectively. The
joint probability that a channel is open and that the filter output lies in (y, y + dy) is given
by p.fo(y)dy, so the number of systems fitting this description is 1,000p,f.(y)dy. When one
of these open channels becomes blocked, this number will decrease by one, and the
corresponding number of blocked channels 1,000p,fu(y)dy will increase by one. We can
finally write a pair of differential equations describing the filtered process:

d/dt [ pufi(3)] = d/dy [ pufily) 3/71 = apufily) + Bbofy) (Aba)
dfdt [pofo(y)] = d/dy [pofo(y) (y — 1)/7] = Bpofly) + apufi(y)- (Abb)

In each equation, the first term corresponds to the filter relaxation process, the second
term to the channels leaving the indicated state, and the third to the channels entering
from the other state. These equations can be solved in the steady state (with the left-hand
sides set to zero) to yield an overall probability density for the amplitude of the filter
output:

JO) = pofo(y) + pofely) (A6)
=y*'(1 = y)""'/B(a, b), (A7)
where
a=ar, b=pr, (A8a, b)
and
B(a, b) = j: y'(1 =" 'dy  (beta function). (A9)

This distribution, defined for y on the interval (0, 1), is called a beta distribution; the beta
function serves to normalize it. It describes the amplitude distribution of a two-state
process with rates « and § after filtering with a first-order filter of time constant 7.
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