
Sodium-Phosphate Cotransport in Human 
Red Blood Cells 

Kinetics and Role in Membrane Metabolism 

David G. Shoemaker, Catherine A. Bender, and Robert  B. Gunn 

From the Department of Physiology, Emory University School of Medicine, Atlanta, Georgia 
30322 

ABSTRACT Orthophosphate (Pi) uptake was examined in human red blood cells 
at 37~ in media containing physiological concentrations of  Pt (1.0-1.5 mM). Cells 
were shown to transport Pi by a 4,4'-dinitro stilbene-2,2'-disulfonate (DNDS) 
-sensitive pathway (75%), a newly discovered sodium-phosphate (Na/Pi) cotrans- 
port pathway (20%), and a pathway linearly dependent on an extracellular phos- 
phate concentration of up to 2.0 mM (5%). Kinetic evaluation of the Na/P i co- 
transport pathway determined the KI/~ for activation by extracellular Pi ([Na]o = 
140 mM) and extracellular Na ([Pi]o = 1.0 mM) to be 304 • 24/zM and 139 • 8 
mM, respectively. The phosphate influx via the cotransport pathway exhibited a 
V ~  of 0.63 _+ 0.05 mmol Pi (kg Hb)-l(h) -1 at 140 mM Na o. Activation of Pi uptake 
by Nao gave Hill coefficients that came close to a value of 1.0. The V=~, of the 
Na/P i cotransport varied threefold over the examined pH range (6.90-7.75); how- 
ever, the Na/P i stoichiometry of 1.73 • 0.15 was constant. The membrane trans- 
port inhibitors ouabain, bumetanide, and arsenate had no effect on the magnitude 
of  the Na/Pi cotransport pathway. No difference was found between the rate of 
incorporation of extracellular Pi into cytosolic orthophosphate and the rate of 
incorporation into cytosolic nucleotide phosphates, but the rate of incorporation 
into other cytosolic organic phosphates was significantly slower. Depletion of 
intracellular total phosphorus inhibited the incorporation of  extracellular Pi into 
the cytosolic nucleotide compartment; and this inhibition was not reversed by 
repletion of phosphorus to 75% of control levels. Extracellular S~P i labeled the 
membrane-associated compounds that migrate on thin-layer chromatography 
(TLC) with the Rf values of ATP and ADP, but not those of 2,3-bisphosphoglycer- 
ate (2,3-DPG), AMP, or Pi. DNDS had no effect on the level of extracellular phos- 
phate incorporation or on the TLC distribution of Pi in the membrane; however, 
substitution of  extracellular sodium with N-methyl-D-glucamine inhibited phospho- 
rylation of the membranes by 90% and markedly altered the chromatographic pat- 
tern of the membrane-associated phosphate. These results demonstrate the exis- 
tence of a Na/Pi cotransport system in the red cell membrane that is important in 
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the delivery of extracellular phosphate to the membrane compartment of human 
red cells. 

INTRODUCTION 

Orthophosphate (Pi) transport across cell membranes occurs by several different 
pathways. These transport pathways provide extracellular phosphate to the intracel- 
lular metabolic reactions. Regulation of plasma phosphate concentration is closely 
controlled by the proximal tubule cells of the kidney, which reabsorb over 90% of 
the filtered phosphate, and by other cell membranes whose transport pathways 
mediate equilibration of phosphate. There are two well-characterized phosphate 
transport pathways: the anion transport protein, band 3, of the human red blood 
cell (Gruber and Deuticke, 1973; Schnell and Besl, 1984; Runyan and Gunn, 1984), 
and the sodium-phosphate cotransport system (Na/Pi cotransport) of renal (Hoff- 
mann et al., 1976; Amstutz et al., 1985) and duodenal (Danisi et al., 1984) brush 
border membranes. This paper reports for the first time the presence of a Na~i  
cotransport pathway in the membrane of the human red cell that carries 20% of the 
phosphate influx in the presence of physiological concentrations of extracellular 
sodium. 

In the human red cell, there are several metabolic reactions and membrane 
enzymes that have Pi as a reactant or a product. Phosphate is used by glyceralde- 
hyde-3-phosphate dehydrogenase (GAPDH) in the formation of 1,3-bisphosphogly- 
cerate (1,3-DPG), by purine nucleoside phosphorylase in the formation of ribose- 
1-phosphate, and is liberated by the hydrolysis of 2,3-DPG via DPG phosphatase. In 
addition, phosphate is produced continually at the membrane by kinase (Babitch et 
al., 1984; Palfrey and Waseem, 1985), and Mg-ATPase activities (Hoffman, 1980; 
Patel and Fairbanks, 1986), actin polymerization (Oosawa and Kasai, 1971; Pinder 
and Gratzer, 1983), as well as by ATPases that are operating to maintain transmem- 
brane ion gradients (Glynn and Karlish, 1975; Schatzmann, 1975). Therefore, the 
transport of phosphate into and out of the cell must be of sufficient magnitude to 
meet the different rates of phosphate consumption and production by the cell dur- 
ing different physiological conditions. 

The compartmentation of glycolytic metabolism in human red cells has been 
reported by a number of laboratories (Parker and Hoffman, 1967; Okonkwo et al., 
1975; Mercer and Dunham, 1981a, b). The evidence for the compartmentation of 
metabolism resides primarily in the existence of a membrane-associated pool of ATP 
that can be used preferentially to phosphorylate the Na/K pump (Proverbio and 
Hoffman, 1977) and to mediate cardiac glycoside-sensitive sodium transport 
(Mercer and Dunham, 1981b). It has also been shown that the human red cell mem- 
brane contains substantial amounts of ADP as well as ATP (Shoemaker and Hoff- 
man, 1985). Together with the glycolytic enzymes that have been localized to the red 
cell membrane ~illman et al., 1975; De and Kirdey, 1977; Strapazon and Steck, 
1977; Tsai et al., 1982), these membrane-bound nucleotides form a separate glyco- 
lytic compartment that may provide energy for membrane-associated ATPase reac- 
tions. The association of GAPDH with the NH~-terminus of the band 3 protein has 
been shown to inhibit the glycolytic enzyme's activity (Tsai et al., 1982). This binding 
may serve to keep the GAPDH in proximity with the membrane rather than to pro- 
mote enzyme-substrate-enzyme coupling between band 3 and GAPDH of the type 
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described previously for GAPDH and phosphoglycerate kinase (PGK) (Srivastava 
and Bernhard, 1986). 

Several studies have attempted to investigate the role of extracellular phosphate 
in these membrane-associated glycol) tic reactions by examining the rate of incorpo- 
ration of extracellular phosphate into the three different c)tosolic phosphate pools: 
Pi, nucleotide phosphates, and other organic phosphates (Gerlach et al., 1958; Bart- 
lett, 1958; Chedru and Cartier, 1966; Reed and Young, 1967; Tenenhouse and 
Scriver, 1975). There is a discrepancy in these reports as to whether extracellular 
phosphate is first equilibrated into the c)tosolic Pi pool and subsequently into cytos- 
olic nucleotides, or whether the cytosolic nucleotide pools reach isotopic equilib- 
rium with extracellular phosphate before the c)tosolic Pi. Initial reports indicated 
that the rate of incorporation of extracellular 3~P i into cytosolic nucleotides 
exceeded the rate of incorporation into cytosolic Pi (Gerlach et al., 1958; Bartlett, 
1958). However, a subsequent study (Tenenhouse and Scriver, 1975) explained this 
result on the basis of the different cytosolic pool sizes of nucleotides and P~. Tenen- 
house and Scriver calculated the specific activity of the 3~p in these respective pools 
and found that the specific activities in Pi and ATP increase at equivalent rates. This 
result argues against the compartmentation of phosphate metabolism in the human 
red cell c)tosol. 

The nucleotide pool associated with the human red cell membrane, however, has 
not previously been examined for the kinetics of equilibration with extracellular 3,p,, 
but early studies report the existence of a membrane-associated phosphate-acceptor 
complex that achieves a specific activity higher than that of cytosolic ATP (Schauer 
and Hillmann, 1961). In addition, Mercer and Dunham (1981b) have demonstrated 
that it is possible to incorporate Pi into membrane-compartmentalized ATP in 
inside-out vesicles using the glycol)tic substrates of the membrane-associated 
GAPDH and PGK reactions together with extravesicular (intracellular) 3,pi. How- 
ever, the physiological function played by this membrane-compartmentalized pool 
of ATP has not yet been demonstrated in the intact red cell. 

The present work characterizes the kinetics of the Na/Pi cotransport system in the 
membrane of the human red cell and the kinetics of extracellular phosphate incor- 
poration into the three cytosolic phosphate pools (Pi, nucleotide phosphates, and 
other organic phosphates) as well as into the membrane phosphate compartment. 
We also examine the role played by each of the two major phosphate transport 
pathways, band 3 and Na/P~ cotransport, in providing the different phosphate pools 
with extracellular phosphate, and we investigate the metabolic dependence of  this 
process. We show that the Na/Pi cotransport is the transport pathway primarily 
responsible for importing phosphate to the rapidly labeled membrane-bound 
nucleotide compartment. Preliminary reports of these findings have been published 
previously (Shoemaker and Gunn, 1986; Shoemaker et al., 1987). 

METHODS 

Preparation of Cells 

Whole blood was drawn from adult humans into heparinized tubes and spun at 12,000 g in a 
refrigerated centrifuge (RC-5B; DuPont-Sorvall Instruments Div., Newton, CT) at 4"C for 10 
min. Buffy coat and plasma were aspirated and the remaining cells were washed three times at 
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20% hematocrit in 165 mM NaCl. Cells were then prewashed twice at 10% hematocrit in 
media identical to that used in the influx and phosphorylation incubations, but without phos- 
phate. In experiments conducted at pH 7.75, cell suspensions were titrated to the appropri-  
ate pH in the final prewash medium with either 1.0 N NaOH or KOH. Cell suspensions were 
similarly adjusted to pH 6.90 with 1.0 N HC1. After the prewash, the packed red cells were 
added directly to the flasks to initiate the influx or phosphorylation incubations. Phosphorus- 
depleted cells were prepared by incubation for 24 h in (in millimolar): 140 NaC1, 20 HEPES, 
100 #g/nil penicillin G, and 100 #g/ml streptomycin; pH = 7.4 at 37~ ATP-depleted cells 
were prepared by being incubated for 2 h in (in millimolar): 130 NaC1, 10 KC1, 10 2-deoxy- 
D-glucose, and 10 Na~HPO4/2qaH~PO4; pH = 7.4 at 37~ Repletion of  phosphorus was 
achieved by incubation at 37~ for a minimum of  2 h in (in millimolar): 140 NaC1, 10 glucose, 
5 inosine, 2 adenosine, and 10 Na~HPO4/NaH~PO~; pH = 7.4. Depleted and repleted cells 
were washed four times at 37~ in phosphate-free media before the influx measurement to 
lower intracellular phosphate to levels comparable to control cells. 

Influx and Phosphorylation Studies 

For the majority of fluxes conducted in this study, a 0.75-ml volume of  packed red cells was 
added to 3.0 ml of temperature-equilibrated medium containing (in millimolar) 150 NaC1, 
0.83 Na2HPO~, 0.17 NaH2PO4, and 10 HEPES; pH = 7.4 at 37~ When required, the 
sodium was replaced with equal concentrations of  N-methyl-D-glucamine (Nrnog) or  potas- 
sium, and 10 mM glucose was added to activate the metabolism. The specific activity of  the 
S~PO4 was 4.0 mCi/mmol for the flux experiments and 40 mCi/mmol for membrane phos- 
phate incorporation studies. The specific activity for 2~Na in the flux experiments was 0.15 
#Ci/mmol. At a minimum of  five designated times (usually 6, 12, 18, 24, and 30 rain), a 
0.5-ml sample was removed from the incubation flask and added to 10 ml of  an ice-cold stop 
solution containing (in millimolar) 150 KCI, and 10 HEPES, pH z 7.4 at 0~ Sample tubes 
were spun at 3,000 g and the supematant  was aspirated. Cells were washed three times with 
8.0 ml stop solution, and the final cell pellet was hemolyzed in 1.0 ml of  ice-cold 10 mM 
HEPES titrated with 1 M KOH to pH 7.6 at 0~ (K/HEPES). From the hemolysate, duplicate 
50-#1 samples were added to 2.0 ml of  Drabkin's reagent (van Kampen and Zijlstra, 1961) and 
the optical density, from which the hemoglobin (Hb) concentration was calculated, was read 
at 540 nm on a Gilford Stasar I I I  spectrophotometer (Gilford Instrument Laboratories, Inc., 
Oberlin, OH). Subsequently, 0.5 ml hemolysate samples were added to 1.0 rnl 7% perchloric 
acid (PCA) in 1.9-ml S/P microcentrifuge tubes (American Scientific Products, McGaw Park, 
IL), and spun at 6,000 g for 2 rain in a Heraeus Biofuge B centrifuge (Heraeus-Amersil, Inc., 
Sayreville, NJ). The supematant was assayed for radioactivity, by first diluting 100- or  200-#1 
aliquots into 3.0 ml of  Ecoscint (National Diagnostics, Inc., Somerville, NJ) scintillation fluid, 
and then by counting the duplicates in a liquid scintillation counter (Packard Instrument Co., 
Downers Grove, IL). For analysis of  the 3tP i incorporated into nucleotides, 300-#1 aliquots of  
PCA extract were added to 1.2 ml of  0.2 g/ml Norit  A decolorizing carbon in 7% PCA, and 
then spun at 6,000 g for 2 min; afterwards 200-#1 aliquots of  the supernatant were taken for 
scintillation counting. The amount of 32p incorporated into nucleotides (primarily ATP and 
ADP) was then determined by the difference between the SZp counts in the PCA extract and 
those remaining in the Norit A supernatant (Crane and Lipmann, 1953). The fraction of  
radioactivity contained in Pi was determined by organic extraction of  the orthophosphomo- 
lybdate complex from the neutralized Norit A extract (Martin and Doty, 1949). When used, 
inhibitors of  transport processes were present at the following concentrations (in millimolar): 
0.2 DNDS, 0.1 bumetanide, 1.0 amiloride, 0.1 ouabain, and 20 arsenate. Uptake rates into 
the various phosphate compartments were judged to be initial rates by virtue of the linearity 
of  the plot of  counts per  minute (kg Hb) -~ versus time for the influx duration (usually 30-40 
min). Fluxes were always performed in duplicate. 



SHOEMAKER ET AL. Na/P i Cotransport in Human Red Blood Cells 453  

Membrane Preparation 

Membranes were prepared from the hemolysate after aliquots were taken for hemoglobinom- 
etry and PCA extracts. Hemolysates were diluted to 8.0 ml with ice-cold K/HEPES. The 
membrane suspensions were spun at 30,000 g for 10 min and the supernatant was aspirated. 
The membranes were washed twice more, resuspended in 0.5 ml K/HEPES, and frozen at 
-20~ until analyzed for protein concentration, for radioactivity, and by thin-layer chroma- 
tography ~LC). 

Assays 

Total intraceUutar phosphorus (Ames and Dubin, 1960), extracellular Pi (Forbush, 1983; 
Black and Jones, 1983), and intracellular orthophosphate (Vestergaard-Bogind, 1964; Parvin 
and Smith, 1969) were measured by previously published methods. Adenosine triphoshate 
was determined in 5.62 M K~COs-neutralized PCA extracts by the method of Ellis and Gard- 
ner (1980), and in boiled membrane extracts by the method of Kimmich et al. (1975), which 
employed purified luciferin-luciferase (L 0633; Sigma Chemical Co., St. Louis, MO). Protein 
concentrations were determined on membrane samples by the method of Lowry et al, (1951), 
and membrane concentrations and radioactivity were expressed per milligram of membrane 
protein. TLC was performed on thawed membrane samples or boiled membrane extracts (for 
5 rain at 100~ with the same results. We used the method of Randerath and Randerath 
(1967), using a 1 M CHsCOOH:4 M LiC1 (4:1, voi/vol)-running buffer on poly(ethyleneim- 
ine)-cellulose plates. Nucleotide standards were visualized with short-wave ultraviolet radia- 
tion using a Mineralight model UVGL-25 lamp (UVP, Inc., San Gabriel, CA) and acid labile 
phosphorus compounds by the method of Rosenberg (1959). TLC plates were cut in 2.0 x 
0.5 cm regions and counted with 3 ml of scintillation fluid. Organic extraction of the mem- 
brane was performed by the method of Ferrell and Huestis (1984) and inositol phosphate ion 
chromatography by the method of Berridge et al. (1983). 

R E S U L T S  

Characterization of Phosphate Influx Pathways 

Phosphate uptake into human  red cells was examined in a medium containing phys- 
iological concentrations o f  sodium (150 mM) and phosphate (1.0-1.5 raM). As 
shown in Fig. 1, the majority o f  the phosphate enter ing the cell under  these condi- 
tions (75%) was through a 4,4'-dinitro stilbene-2,2'-disulfonate (DNDS) -inhibitable 
pathway, presumably mediated by band 3, the anion transport  protein; however, 
there was a substantial phosphate uptake (20%) mediated by a sodium-dependent  
pathway. The sodium-dependent  port ion of  the influx was equivalent in the pres- 
ence or absence o f  DNDS when sodium was replaced isoionically with Nnmg. When 
potassium was the replacement cation, however, the magnitude of  the sodium- 
dependent  flux in the absence of  DNDS was always significantly less than its magni- 
tude in the presence of  DNDS, In addition, there was a DNDS-insensitive, sodium- 
independent  residual port ion (5% at 1.0 mM [Pi]o) o f  the influx whose magnitude 
was linear with phosphate  concentrations o f  up to 2.0 mM Pi (data not shown). The 
sodium-dependent  pathway was only slightly elevated in the top 15% of  the cells that 
were separated by density using the Murphy technique (1973), relative to the bot- 
tom 15% (data not shown), which indicates that the measured influx was not simply 
the expression of  a very active reticulocyte transport  pathway. The DNDS-sensitive 
flux, the sodium-dependent  flux in the presence of  DNDS, and the residual flux in 
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FIGURE I. Initial rate of orthophos- 
phate influx into human red cells in 
the absence and presence of the 
anion transport inhibitor, DNDS. 
Phosphate influx was measured in 
media containing (in millimolar): 150 
NaC1, KCI, or  NmI)g; 0.83 
Na~HPO4 or K~HPO4; 0.17 NaH2PO4 
or KH2PO4; and 10 HEPES; pH 7.4 
at 37"C. Influx values are the means 
of at least three determinations. The 
error bars indicate the SE of the 
mean. The error bars for the two 
rightmost bars are contained within 
the width of the line. 

the presence of  DNDS and the absence o f  sodium define for us three components 
of  the phosphate influx into human red cells. 

Inhibition Studies 

The effect o f  a few inhibitors o f  membrane transport processes on the uptake o f  Pi 
([Pi]o = 1.0 mM) can be seen in Fig. 2. Ouabain, an inhibitor of  the Na/K pump, 
and bumetanide, an inhibitor of  Na/K/Cl  cotransport, had no significant effect on 
phosphate influx. DNDS and the phosphate analogue arsenate (Asl) significantly 
inhibited the uptake. Ast has previously been shown to be a competitive inhibitor of  
glyceraldehyde-3-phosphate dehydrogenase (Needham and Pillai, 1937), as well as 
of  the Na/Pi cotransport found in renal brush border  membranes (Hoffmann et al., 
1976; Rabito, 1983). Surprisingly, the partial inhibition observed was limited to 
DNDS-sensitive phosphate uptake, presumably mediated by the band 3 protein. Asi 
had no effect on phsophate uptake in the presence o f  DNDS at the concentration o f  
phosphate employed. 

Phosphate Activation of Sodium-dependent Phosphate Transport 

The activation of  the sodium-dependent phosphate influx by extracellular phos- 
phate is depicted in Fig. 3. The phosphate influx in the absence of  sodium was sub- 
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FIGURE 2. The effect of transport 
inhibitors on Pi influx. Phosphate 
uptake was measured in a media con- 
taining (in millimolar): 155 NaCI, 5.0 
KCI, 0.83 Na2HPO4, 0.17 NaHPOo 
and 10 HEPES; pH 7.4 at 37"C. 
Sodium chloride was replaced isosmo- 
tically with NaAsi; such that the 
sodium concentration was 162 mM at 
20 mM Na~HAsO4/NaHv~tsO4. The 
error bars indicate the SE of the 
mean. The inhibition by A~ in the 
absence of DNDS was significant at 
the P =< 0.05 level. 
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replacement anion for the phosphate was used. The data are representative of three similar 
experiments. The kinetic constants were derived from a line fit to the data using a nonlinear 
least square regression analysis by the method of Wilkinson (1961). K~/~, 0.28 _+ 0.03 mM; 
V~,  0.56 -+ 0.02 mmol Pi (kg HI)) -I (h)-I; [Na]o, 140 mM. 

tracted at each phosphate concentration used. All fluxes were performed in the 
presence of  DNDS. The phosphate concentra t ion-dependence exhibited a Klrz for  
activation (K~z) of  304 _+ 14 taM total phosphate, which represented 69 tam H~PO; 
and 235 taM HPO~ -2 at pH = 7.4 (monovalent phosphate has a pI~ o f  6.87 at phys- 
iological ionic strength). The V ~  that was determined from the analysis is 0.63 +_ 
0.05 mmol Pi (kg Hb) -I (h) -l  at physiological concentrations o f  extracellular 
sodium. 

Analogous experiments were carried out at pH 6.90 and 7.75, and the data are 
presented, along with the data obtained at pH 7.40, in Table I. The pH range was 
kept small to minimize effects on the transport protein per se as reported previously 
for the rabbit proximal tubule transporter  (Cheng and Sacktor, 1981). Upon initial 
inspection, the K]/~ values obtained at the three different pH values appeared to 
reflect specific activation o f  the transport system by monovalent phosphate anion 
(due to the relative constancy of  K~/~ for H2PO;) .  The marked effect o f  pH on V ~  
of  the transport system, however, indicates that one cannot simply explain the 
results in terms o f  the variation in the H P O ~ / H 2 P O ~  - ratio. The data were there- 

T A B L E  I 

Effect of pH on Phosphate Activation of Sodium-dependent Phosphate Influx 

Kinetic Phosphate pH 
constant species 6.90 7.40 7.75 

Total t68  • 76* 304 • 14 831 • 114 
phosphate 

Kl/,t 0d4) H2PO~- 81 • 37 69 • 3 97 • 9 
HPO~ ~ 87 • 39 235 • 11 734 • 105 

V ~  (mmol Pi(kg Hb)-l(h) -l) 0.33 • 0.03 0.63 • 0.05 0.94 • 0.14 

Effect o f  pH on the kinetic constants o f  phosphate activation of  sodium-dependent phosphate influx. Data for 
pH 7.40 includes the data in Fig. 3 together with two additional experiments. Data at pH 6.90 and 7.75 repre- 
sents the results from two experiments at each pH value. Values are presented for the Kl/i for phosphate acti- 
vation by total phosphate together with the calculated K1/2 values for H2PO~ and H P O ;  2 at each of  the 
respective pH values using a pK. of  6.87 for the dissociation of  monovalent phosphate. *SEM. 
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fore inconsistent with simple Michaelis-Menten activation of  the transport by a sin- 
gle species of  phosphate, and a more complex scheme must be invoked to explain 
the observed results. 

Sodium Activation of Sodium.dependent Phosphate Transport 

Extracellular sodium activated the DNDS-insensitive influx of  phosphate. Both 
potassium and NmDg were used as sodium replacements, and similar activation was 
obtained. The phosphate influx in zero sodium was subtracted from the influx at 
each of  the sodium concentrations used. This activation could be fit by a Michaelis- 
Menten function as shown in Fig. 4 A. No sigmoidicity was observed in any of  the 

0.6  

T• 0.5 

, 0 .4  

0.3 

0.2 

E o.1 

0.0 
0 

0.20 

0.00 

S" 
-0 .20  

-0.40 

o, -0.60 
3 

- 0 . 8 0  

- 1,00 
1.20 

I n I , ,  J t t | 

20 40 60 80 1 O0 120 140 

[Extracellulor Sodium] mM 

i t I , t t 

1.40 1.60 1.80 2,00 2.20 

Log [Extrocellulor Sodium] 

FIGURE 4. (A) Sodium con- 
centration dependence of the 
phosphate influx in the pres- 
ence of 200 #M DNDS. The 
influx media consisted of (in 
millimolar): X NaCl, 140-X 
NmDgCI, 0.83 Na2HPO4, 0.17 
NaH~PO4, 5.0 KCI, 1.0 MgCI 2, 
10 dextrose, and 10 HEPES; 
pH 7.4 at 37~ Data points 
are duplicate measurements 
on independent incubations. 
This figure is representative of 
results obtained in three simi- 
lar experiments. Potassium was 
also used to replace sodium 
with similar results being 
obtained. Kinetic constants are 
derived from the nonlinear 
least squares regression analy- 
sis. K1/2, 131 _+ 25 mM; V~,  
0.98 -+ 0.11 mmol Pi (kg Hb) -1 
(h)-~; [Pi]o, 1.0 mM. (B) Hill 
plot of the data obtained in A. 
The slope was 1.05. The Hill 
coefficients from three experi- 
ments at 1.0 mM extraceUular 
Pi were 1.02, 1.05, and 1.28. 

three sodium activation experiments. The nonlinear regression analysis of  the data 
gave a Kl/~ for sodium activation (K~/~) of  139 + 8 raM. the V~=, value obtained for 
the sodium activation o f  phosphate influx was almost twice that seen for the phos- 
phate activation because the sodium concentration used in the K~)2 experiments was 
equal to the K~/~(~I40 mM) of  the process. For the experiments o f  sodium activa- 
tion at 1.0 mM extracellular phosphate, the value of  the Hill coefficient was 1.14 + 
0.08 (Fig. 4 B). The Hill coefficient indicates the minimum number of  sodium ions 
required to activate phosphate transport across the membrane. 
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Demonstration of Cotransport of Sodium with Phosphate 

Experiments were also carried out to examine the possibility of the coupled trans- 
port of sodium with phosphate, as well as to further characterize the pH depen- 
dence of the sodium-dependent phosphate transport. The 22Na tracer influxes were 
measured in incubation media with and without 1.0 mM Pi (no anion replacement), 
together with 3~P i tracer influxes with and without 150 mM Na (isoionic replace- 
ment with NmDg). Our results are summarized in Table II. Varying the pHo ~ pHi 
(the pHi was calculated to be 6.91, 7.34, and 7.63 at pHo values of 6.90, 7.40, and 
7.75, respectively [Gunn et al., 1973]) had a slight effect on the sodium-dependent 
phosphate influx. The magnitudes of the Pi-stimulated sodium influxes remained 
statistically indistinguishable at all pH values (tMN~ = 0.73 _+ 0.04 mmol P~ (kg Hb) -~ 
(h)-X). The sodium-stimulated Pi influx at pH 6.90 was found to be significantly dif- 
ferent from the influx at pH 7.75, and presumably reflects the differences obtained 
for the Vm~, values for the transport system at these respective pH values (Table I). 

T A B L E  I I  

Effea of pH on Na and Pi Influx 

Na influx Na influx Pi-stimulated Pi influx P~ influx Na-stimulated N a Z i  

p H  plus Pi minus Pi* Na influx plus Na minus Na t Pi influx ratio 

6.90 

(n - 6) 3.97 • 0.261 3.31 • 0.29 0.66 • 0.39 0.72 • 0.04 0.34 • 0.02 0.38 • 0,04 1.74 • 0.39 

7.40 

(n - 4) 3.99 • 0.05 3.25 • 0.08 0.74 • 0.09 0.52 • 0.05 0.09 • 0,06 0.43 • 0.08 1.72 • 0.12 

7,75 

(n - 3) 4.80 :t: 0.12 4.01 • 0.16 0.79 • 0.20 0.52 • 0.02 0.06 • 0.01 0,46 • 0.02 1,72 • 0.20 

Effect o f  p H  o n  Na-st imulated phospha t e  influx a n d  Pi-stimulated sod ium influx, The  P~stimulated Na  influxes 

w e r e  n o t  significantly di f ferent  a t  P > 0 ,500.  The  Na-st imulated Pi influxes a t  p H  6.9 a n d  7.4 (P -< 0 .400)  a n d  a t  

7.4 & 7.75 (P _< 0.500)  were  n o t  significantly different ,  however ,  the re  was a significant d i f fe rence  be tween  the  

influxes at  p H  6.9 a n d  7.75 (P-< 0.025).  * -< 25 #M; : ~ 0.5 mM; tSEM 

A stoichiometry of 1.70-1.75 mol of sodium transported/mol of phosphate trans- 
ported was obtained in all cases for this mutually ion-dependent pathway. This was 
statistically different from 2.0 at pH 7.4 and 7.75, but as yet we have no explanation 
for the difference (see the Discussion). At this stage in the characterization of the 
transport pathway, we cannot rule out the possibility of other sodium-dependent 
transport pathways of differing stoichiometries in the red cell membrane. The 
sodium-independent phosphate influx was the same at pH 7.40 and 7.75, but was 
elevated at 6.90. In contrast with this finding, the phosphate-independent sodium 
influx was equal at the two lower pH values and increased at pH 7.75. Therefore 
the magnitude of the Na-Pi cotransport system remained relatively constant in the 
face of the asymmetric behavior of the co-ion-independent fluxes. The relatively 
constant value for Na/Pi influx over the pH range examined could be due to a vari- 
ety of different factors. The direct relationship between the K~h and V ~  values 
(Table I) at the different pH values would explain the findings if the transporter 
carried HPO~ ~, or did not distinguish between HPO~ ~ and H2PO~. The inverse 
relationship between [H~PO~] (as the pH is raised from 6.90 to 7.75 the [H~PO~] 
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falls) and Vm~, in the presence of  a constant Kl/2 for H2PO~-, would also explain the 
findings if H2PO~- was the transported species. 

IntraceUular Distribution of Imported Phosphate 

The fate of  this extracellular phosphate upon entry into the red cell was examined 
by determining the rate of  influx of  extracellular ~2P i into the three cytosolic pools 
of  phosphate: Pi, adenosine nucleotides, and all other  organic phosphates. Extracel- 
lular S2Pi accumulated twice as fast in the nucleotide phosphate pool as in the Pi pool 
(data not shown); however, the cytosolic concentration of  adenosine nucleotides 
(~1.7 mM) in these experiments was roughly twice that of  the intracellular Pi con- 
centration (~-0.8 mM), and consequently the rate of  increase in the specific activity 
of  these two cytosolic phosphate pools was not different (Fig. 5). The other organic 
phosphates (primarily, 2,3-DPG) were labeled at a significantly slower rate due pri- 
marily to the relatively low rates of  the 2,3-DPG shunt (only 10-15% of  glycolysis) 

FIGURE 5. Distribution of extracel- 
lular phosphate once it has entered 

1.0 the red cell. Incubation media was 7~o 
(in millimolar): 140 NaCI, 0.83 
Na~HPO4, 0.17 NaH~PO4, 5.0 KC1, 72 o.8 
1.0 MgCl2, 10 dextrose, and 10 7._. o.6 
HEPES; pH 7.4 at 37"C. Phosphorus 
incorporation into the nucleotide ~ 0.4 
fraction was determined by adsorp- 0y 

-6 0,2 
tion to Norit-A. Nonnucleotide orga- 
nophosphorus was determined by 0.0 
subtracting the inorganic phosphate 
plus the Norit-A adsorbable pbos- 

ortho- nucleotide 
phosphote phosphote 

other 
orgonic 

phoephote 

phate from the total phosphate. Ordinate was determined by dividing the influx by the con- 
centration of the intracellular pool of exchangeable phosphate. Therefore Px was intracellular 
[Pi] (0.81 _+ 0.32 mM) for Pi, [ATP] + [ADP] + [AMP] (1.71 _+ 0.41 mM) for nucleotide 
phosphates, and the total concentration of the remaining exchangeable cytosolic organic 
phosphate (9.6 _+ 1.1 mM) for other organic phosphates. 

and the pentose phosphate cycle (10%), but also to the heterogeneous pool of  phos- 
phorus compounds that required more than one enzyme reaction to label some 
compounds. The relative rate of  incorporation of  inorganic phosphate into these 
three pools (inorganic, nucleotide, and nonnucleotide [Norit-A nonadsorbable] 
organic) was not affected by the presence of  DNDS or the removal of  sodium from 
the medium. 

Metabolic State Dependence of Phosphate Transport and IntraceUular Distribution 

Pi is an essential metabolite in the glycolyzing human red cell, acting as a substrate 
for  the GAPDH and the purine nucleoside phosphorylase reactions. We therefore 
examined what effect the metabolic rate of  the red cell had on the requirement for 
extracellular phosphate. Initial experiments indicated the rate of  phosphate uptake 
via all pathways was equivalent whether in the presence or absence of  glucose; how- 
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ever, glycolysis was presumably still operating in the absence of  glucose by using 
gaiactose as the primary substrate. The metabolic dependence of  the red cell's phos- 
phorus requirements can better  be examined by placing the cell in a phosphorus- 
depleted metabolic state. By incubating red cells for 24 h at 37~ in the absence of  
phosphate or  glucose, it was possible to reduce total intracellular phosphorus from 
26.4 +_ 0.8 to 5.5 _+ 0.3 mM. When red cells were phosphorus-depleted in this man- 
ner, there was a marked effect on the rate of  phosphate influx (Fig. 6). The DNDS- 
sensitive and the Na/Pi cotransport  influx pathways were both markedly inhibited 
but there was no observed effect o f  phosphorus-depletion on the magnitude o f  the 
phosphate influx carried by the DNDS-insensitive, sodium-independent pathway. 

We therefore examined the rate of  phosphate incorporation into the Pi nucleo- 
tide, and nonnucleotide organic phosphate pools in fresh, phosphorus-depleted, 
and phosphorus-repleted red cells in an effort to determine the effect of  phospho- 
rus depletion on the mechanism of  cytosolic phosphate distribution (Table III). 
These experiments indicate that the fraction of  extracellular phosphate entering the 
cell (mediated entirely by the DNDS-sensitive pathway) that remained as intracellu- 

3.0 1 

T~, 2.5 

T~2.O 
T 

1.5 

-6 1.0 
E 
E 0.5 

0,0 
NaCl NoCl KCI 

+DNDS +DNDS 

FIGURE 6. One representative ex- 
periment demonstrating the effect of 
phosphorus depletion on phosphate 
transport in human red cells. Phos- 
phorus depletion was carried out by 
incubating the cells for 24 h in 150 
mM NaCI and 10 mM HEPES; pH 
7.4 at 37~ Influx media consisted 
of (in millimolar): 140 NaCI or KCI; 
0.83 Na~HPO4 or K~HPO4; 0.17 
NaH~PO~ or KH2PO~; 5.0 KCI; 1.0 
MgCI~; 10 dextrose; and 10 HEPES; 
pH 7.4 at 37~ The concentration 
of DNDS was 200 #M. D, fresh cells; 
[], depleted cells. 

lar Pi, was increased in both depleted and repleted cells. In addition, both the exper- 
imental cell types incorporated significantly less extracellular phosphate into cyto- 
solic nucleotides during the time course of  the influx (30 min). Finally, the influx of  
extracellular phosphate into the nonnucleotide organic phosphate species was 
equivalent in control and depleted cells, and if anything slightly stimulated in the 
depleted cells. The lack of  incorporation o f  S2Pi into cytosolic nucleotides in the 
depleted cells was probably secondary to the depletion of  adenosine nucleotides, 
since de novo synthesis of  the nucleotides does not occur in the absence o f  added 
organic substrates. In the repleted cells the level of  ATP was restored to approxi- 
mately one-tenth the level o f  fresh cells, and the rate o f  phosphate incorporation 
into nucleotides was still inhibited by >90%. To examine if the decreased ATP con- 
centration per se was responsible for the inhibition of  phosphate transport and the 
lack of  incorporation o f  phosphate into nucleotides, we depleted the cells o f  their 
nucleotides by an alternative method. After the cells were incubated in the presence 
of  2-deoxy-D-glucose for 2 h, the ATP levels were reduced to 0.15 _+ 0.03 mmol (1 
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TABLE I I I  

Rate of lncorporation of Extracellular Phosphate 

Phosphate compartment Influx pathway Control Depleted Repleted 

(,,mot P,(*g Hb)-'(h)-') 
Total phosphate DNDS-sensitive 1.60 + 0.10 1.00 • 0.09 1.20 + 0.08 

Na+-dependent 0.58 • 0.05 0.16 + 0.02 0.18 • 0.05 
Orthophosphate DNDS-sensitive 0.33 + 0.05 0.89 + 0.09 0.88 + 0.07 

Na+-dependent 0.19 + 0.04 0.16 + 0.04 0.22 • 0.04 
Nucleotide phosphate DNDS-sensitive l. 17 • 0.09 0.0 0.12 • 0.03 

Na+-dependent 0.35 + 0.05 0.0 0.0 
Other organic phosphates DNDS-sensitive 0.10 + 0.02 0.14 • 0.02 0.21 + 0.03 

Na+--dependent 0.04 + 0.01 0.0 0.0 

Effect of phosphorus depletion and repletion on the DNDS-sensitive and sodium-dependent incorporation of 
extracellniar phosphate in human red cells. Depletion was carried out by incubating the cells for 24 h in 150 
mM NaCi and 10 mM HEPES; pH 7.4 at 37"C. Repletion was carried out for 9 h at 37"C in (in millimolar): 130 
NaCI; 10 Na~HPO4, 10 dextrose, 5.0 inosine, 2.0 adenosine, and 10 HEPES; pH 7.4 at 37"C. The concentration 
of intracellular Pi was 0.7 + 0.2, 2.7 + 0.6, and 0.8 • 0.3 mmol (1 cells) -I for control, depleted, and repleted 
cells, respectively, immediately before the initiation of the influx incubation. Intracellular ATP was 1.6 • 0.1, 
0.010 • 0.005, and 0.14 + 0.03 mmol (1 cells) -~ for control, depleted, and repleted cells, respectively. The 
intracellular total phosphate was 16.4 + 0.5, 3.4 • 0.2, and 12.2 • 0.6 mmol (cells) -~ for control, depleted, and 
repleted cells, respectively. Influx media consisted of (in millimolar): 140 NaC1 or NmI:~CI, 0.83 Na~HPO4 or 

I~zHPO ,, 0.17 NaH2PO 4 or KH2PO4, 5.0 KCI, 1.0 MgCI 2, 10 dextrose, 10 HEPES, and +250 #M DNDS; pH 7.4 
at 37"C. 

cells)-1 ( a b o u t  t h e  s a m e  levels as t h o s e  f o u n d  in  t h e  r e p l e t e d  cells). Cells  d e p l e t e d  in  

th is  m a n n e r  w e r e  n o t  d i f f e r e n t  f r o m  f r e s h  cells o r  c o n t r o l s  i n c u b a t e d  f o r  2 h in t h e  

p r e s e n c e  o f  g l u c o s e  wi th  r e g a r d  to  t h e i r  r a t e  o f  p h o s p h a t e  u p t a k e  o r  p h o s p h a t e  

i n c o r p o r a t i o n  i n t o  n u c l e o t i d e s .  T h e r e f o r e ,  it d o e s  n o t  a p p e a r  to  b e  t h e  d e c r e a s e d  

c o n c e n t r a t i o n  o f  A T P  t h a t  is r e s p o n s i b l e  f o r  t h e  p e r s i s t e n t  i n h i b i t i o n  o f  p h o s p h a t e  

t r a n s p o r t  a n d  lack o f  p h o s p h a t e  i n c o r p o r a t i o n  i n t o  n u c l e o t i d e s  in  t h e  cells t h a t  w e r e  

p h o s p h o r u s - r e p l e t e d  a f t e r  i n c u b a t i o n  f o r  24 h in  t h e  a b s e n c e  o f  s u b s t r a t e .  

FIGURE 7. Thin layer chroma- 
50 

tog ram o f  h u m a n  red  cell 

membranes  p repa red  f rom red  m 40 
cells incubated in the presence  
o f  extracellular S2P i for  15 s. ~ 30 
Membranes  were p repared  by ~_o 

hypotonic hemolysis o f  human  ~- z 20 I M  

red  cells and by washing them 

in 10 mM Na/HEPES,  pH 7.6 ~ 10 
at 0*C. Membranes  or  boiled 
membrane  (5 min) supema-  0 
tants were applied to the thin 
layer plate with similar results. 
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The incubation medium was (in millimolar): 140 NaCI or  NmDgC1 (sodium free); 0.83 
Na~HPO4 or  K~HPO4; 0.17 NaH~PO4 or  KH~PO4; 5.0 KCI; 10 dextrose;  and 10 Na or  K /  
HEPES; pH 7.4 at 37~ e ,  control; I ,  DNDS; A, sodium free. 
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Incorporation of Extracellular Phosphate into Membrane-associated Nucleotides 

In fresh red cells extracellular Pi was also incorporated into a membrane-associated 
pool of  phosphate that migrates on thin-layer chromatograms with Rt values that 
approximated those o f  the nucleotides ADP and ATP (Fig. 7). The human red cell is 
known to have membrane-associated ATP (Mercer and Dunham, 1981b; Shoe- 
maker and Hoffman, 1985) and presumably it is into this same pool o f  ATP that the 
extracellular S2P i was incorporated during these experiments. The higher level of  
incorporation of  S2Pi into ADP than into ATP on the chromatograms is consistent 
with the higher concentration of  ADP (2.6 _.+ 0.8 • 10 -9 mol ADP [mg membrane 
protein] -l) than ATP (0.26 _+ 0.11 • 10 -9 mol ATP [mg membrane protein] -1) in 
the membrane of  human red cells (Shoemaker and Hoffman, 1985; Shoemaker, 
unpublished observations). There was insignificant radioactivity corresponding to 
the Rf values for Pi, AMP, ribose-l-phosphate, and ribose-5-phosphate, all o f  which 
are likely candidates to have incorporated extracellular phosphate with a rapid time 
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FIGURE 8. Phosphorylation levels of 
human red cell membranes exposed 
to extraceUular phosphate in the 
exact same protocol as described in 
Fig. 7. Note the logarithmic scale of 
the ordinate. The sodium-dependent 
phosphorylation was 4.1 _+ 0.7 x 
10 -l~ and 2.7 • 1.3 x 10 -l~ mol Pi 
(mg membrane protein) -l in the 
absence and presence of DNDS, 
respectively. The addition of DNDS 
has no effect on the phosphorylation 
level in the presence of extracellular 
sodium but causes a significant 
reduction in the level of phosphory- 
lation in the absence of extracellular 
sodium. MGCI is NmDg Cl. 

course. The compound 2,3-DPG did not migrate from the origin in the experimen- 
tal solvent system and therefore was often difficult to resolve from the ATP peak. 
However, in chromatograms where the two compounds were resolved, the counts 
per minute in the ATP peak were sixfold higher than the origin. This finding, cou- 
pled with the fact that there are no known reports of  membrane-associated 2,3- 
DPG, makes ATP the most likely molecular candidate to have incorporated the 
extracellular phosphate. The Rf value for 1,3-DPG could not  be determined because 
the compound is not  available commercially, but  would presumably be equivalent to 
2,3-DPG. Organic extraction failed to remove significant amounts o f  the radioactiv- 
ity present in the membranes. The inositol phosphates were also likely" candidates to 
have incorporated phosphate with a rapid time course under  the conditions o f  the 
present experiments. Application of  the S~Pi-labeled aqueous red cell membrane 
fraction to a Dowex-1 anion-exchange column equilibrated with 3.0 M ammonium 
formate, produced 82% of  the recovered radioactivity in the initial deionized H20  
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wash. The highest recovery of the radioactivity in an inositol-phosphate fraction was 
11.4% in the peak coeluting with inositol (1,4,5)P3. 

The incorporation of extracellular S2P i into red cell membranes was not signifi- 
cantly affected by the presence of DNDS in the incubation media; however, replace- 
ment of extracellular sodium with Nmbg inhibited incorporation by 90% (Fig. 8) 
and the residual radioactivity displayed a different chromatographic profile (Fig. 7). 
The incorporation of extraceUular 3~P i in the absence of sodium was still confined to 
the aqueous phase, so the most likely candidates for the residual phosphate incorpo- 
ration continued to be those compounds listed in the previous paragraph. However, 
the peak did not correspond to the Rf value of any of these compounds, and since 
the integral under the sodium-free curve represented only 10% of the control incor- 
poration, the importance of the new peak was perhaps of litde significance. 

These data indicate that the Na/Pi cotransport was principally responsible for 
providing the membrane-bound nucleotide with extracellular phosphate. The rate 
of incorporation of phosphate into this membrane-nucleotide pool was very" fast. 
The pool equilibrated within 6 s of the addition of the cells to the isotope. This 
result indicates that the extracellular phosphate that labels the membrane nucleo- 
tides does not first equilibrate with the intracellular cytosol, as the specific activity of 
the cytosolic Pi compartment continues to increase over 1 h, while the specific activ- 
ity of the membrane compartment does not change significantly during the time 
course of the incubation after 6 s. 

Comparison of the amount of sodium-dependent Pi incorporated into the mem- 
branes (0.41 _+ 0.05 x 10 -9 mol Pi [mg membrane protein] -1) with the amount of 
bound ATP and ADP (2.9 -+ 1.1 x 10 -9 mol [mg membrane protein] -l) indicated 
that only 14% of the membrane-bound nucleotide pool was equilibrated with the 
32P i derived from the extracellular solution. The current results are therefore consis- 
tent with a role for the Na-Pi cotransport pathway in providing extracellular phos- 
phate for the synthesis of a significant fraction of the membrane-associated nucleo- 
tide. 

DISCUSSION 

The results of this study have demonstrated the presence of a Na/Pi cotransport 
system in the membrane of the human red cell. This transport system was shown to 
be responsible for 20% of the influx of phosphate under the experimental condi- 
tions employed. The Na/Pi cotransport system of the red cell shares some properties 
with the well-characterized cotransporter found in renal and intestinal brush border 
membranes, but also has some distinct differences. One physiological function of 
the NaZi  cotransport system in the red cell appears to be to deliver the majority of 
extracellular phosphate that can be used by the GAPDH/PGK reactions to label 
membrane-associated nucleotides rapidly. 

Characterization of Phosphate Influx Pathways 

The phosphate uptake into the cell can be characterized by a DNDS-sensitive path- 
way, a Na/@i cotransport pathway, and a "leak" pathway that was not inhibited by 
any of the compounds tested, and whose magnitude was linearly dependent on 
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phosphate concentration of up to 2.0 mM. Phosphate uptake into human red cells 
in high-sodium media was inhibited by DNDS and Asl, while ouabain, an inhibitor of 
the Na/K pump, and bumetanide, an inhibitor of the Na/K/CI cotransporter, were 
without effect. The 70% inhibition of the phosphate influx by DNDS at 37~ was 
significantly less than the 95% inhibition reported by Runyan and Gunn (1984) in a 
high-potassium (sodium-free) medium at 20~ The reason for this discrepancy was 
the use of higher concentrations of phosphate in the former study (125 mM) and 
the operation of the DNDS-insensitive Na/Pi cotransport pathway in the current 
study. The higher concentration of phosphate used in the previous study increases 
the fraction of the DNDS-sensitive phosphate flux for two reasons: (a) the higher 
concentration of phosphate relative to its KD (15 mM) on band 3 (R. B. Gunn, 
unpublished observations), and (b) the replacement of chloride by phosphate 
decreases the competitive inhibition by chloride. 

Maximum inhibition of band 3-mediated phosphate transport was not achieved 
until relatively high concentrations of DNDS (200 #M) were used. This can be 
simply explained by the known competition between DNDS and chloride (Fr6hlich, 
1982) at the external anion binding site of band 3, and the high chloride concentra- 
tion of the medium in the phosphate influx experiments. Under the conditions of 
the experiments conducted in the current work, chloride as well as DNDS were act- 
ing as competitive inhibitors of phosphate transport via band 3. DNDS was the 
more effective inhibitor at the concentrations used because of its higher affinity 
(K~ = 90 nM) for the external anion binding site compared with that of chloride 
(K~/~ = 4 mM). 

By virtue of its structural homology with phosphate, Asi was thought to be an 
excellent candidate for a specific inhibitor of phosphate influx in light of its inhibi- 
tion of other phosphate-utilizing systems: GAPDH (Needham and Pillai, 1937) and 
the renal brush border Na/Pi cotransport system (Hoffmann et al., 1976). The stud- 
ies of Na/Pi cotransport in renal brush border membrane vesicles (Hoffmann et al., 
1976) and in pig-kidney-derived LLC-PKl cells (Rabito, 1983) indicate that Asi has a 
KI of I raM, which is an order of magnitude lower in affinity for the transport path- 
way than phosphate's. In human red cell resealed ghosts the Na/K pump and anion 
transport protein have been shown to use Asi as a substrate in place of intracellular 
phosphate (Kenney and Kaplan, 1988), but a previous report on the inability of 
extracellular As~ to inhibit phosphate influx or accelerate phosphate efflux has also 
appeared (Schrier, 1970). A comparison of the red cell data on the anion transport 
protein is complicated by the presence of chloride in all experiments. Since chloride 
is also a competitive inhibitor of phosphate flux, the As~ effects are no doubt atten- 
uated to a large extent due to the high chloride concentrations, and depend on the 
affinity of all the anions (P~, A~., C1, and DNDS) for the anion transport protein at 
one or both sides of the membrane. We found 20 mM As i caused only partial inhi- 
bition of total phosphate uptake ([Pi]o ~ 1.0 mM) and no inhibition of phosphate 
uptake in the presence of DNDS, as phosphate uptake was mediated primarily by 
the Na/Pi cotransport pathway. These results may well be consistent with the previ- 
ous data existing on the interaction of Asi with the anion transport protein, once the 
affinities for all the anionic species are known. The results do, however, indicate a 
significandy different interaction of Asl with the phosphate uptake mediated by the 
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Na/Pi cotransport of  the human red cell than what has been noted previously in 
epithelial tissue, as a concentration of  20 mM As i should be sufficient to cause 86% 
inhibition of  transport if the KI for Asi is 1 mM. Even a sixfold increase in the KI for 
A s  i would still yield >50% inhibition assuming there is purely competitive inhibi- 
tion. 

The lack of  significant inhibition of  transport by ouabain or  bumetanide indicates 
the specificity of  the phosphate transporters in the red cell. The results presented 
here are in agreement with the inability of  ouabain to inhibit the transport of  phos- 
phate unless it is derived from the gamma phosphate of  intracellular ATP while the 
Na/K pump is operating in the uncoupled mode of  transport (Marin and Hoffman, 
1988). Also, phosphate has not been previously shown to be capable of  substituting 
for any of  the chloride-dependent, bumetanide-sensitive cotransport pathways, so 
the lack of  significant inhibition by bumetanide (which has been shown to bind to a 
chloride site on the Na:K:2C1 cotransport system [Haas and McManus, 1983]) was 
consistent with previous findings. 

In the presence of  DNDS, the sodium-phosphate cotransport system of  the red 
cell membrane has a requirement for sodium that was not satisfied by either potas- 
sium or NmDg. Previous reports indicate an absolute requirement for sodium in the 
renal transport system (Hoffmann et al., 1976; Brown et al., 1983). In the absence 
of  DNDS, however, phosphate influx in potassium was always significantly greater 
than the corresponding influx in Nmvg. When the extracellular phosphate concen- 
tration was raised to 1.5 raM, there was no longer a difference in the rate of  phos- 
phate influx when sodium was replaced with potassium. The sodium-dependent 
influx was still evident when NmDg was the substitute cation, however, indicating 
that potassium and NmDg interact differently with the phosphate influx pathways. 

Characterization of Na/Pi Cotransport 

The activation of  the Na/Pi cotransport  system by extracellular phosphate in human 
red cells appeared to have a higher K~)~ than renal membranes. Renal brush border  
vesicles have a KIPh of  50-100/zM total phosphate in the presence of  high external 
sodium concentrations (Hoffmann et al., 1976; Cheng and Sacktor, 1981), while 
LLC-PK~ cell membranes have an equivalent or lower K~)2 (Rabito, 1983; Biber et 
al., 1983). Brush border  membrane vesicles from rabbit duodenum, however, have a 
K~)2 ~-200 #M (Danisi et al., 1984) which is intermediate between that found in the 
kidney and that found here for red cells (300 #M; Fig. 3). The differences in these 
values are significant but probably should not be used as evidence for nonidentical 
transport mechanisms in the three systems, since the ion gradients and tempera- 
tures of  these studies were different. 

The K1~ of  the red cell transporter in the presence of  a sodium gradient was high 
(140 mM) in comparison with the value of  50-100 mM seen in the majority of  vesi- 
cle studies from different tissue sources in the presence of  a sodium gradient (Hoff- 
mann et al., 1976; Biber et al., 1983; Danisi et al., 1984; Amstutz et al., 1985). The 
Kp/~ appears to increase, however, in the absence of  a sodium gradient (Cheng and 
Sacktor, 1981) or at acidic pH values (Hoffmann et al., 1976; Amstutz et al., 1985). 
The sodium gradient in our  experiments was substantial ([Na]o/[Na]i = 15) so one 
would not expect large differences in the kinetic constants on this basis. The renal 
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studies were done with sodium-free vesicles, however, so it is conceivable that the 10 
mM Na inside the red cell alters the kinetic properties of  the transport pathway. 

A more striking difference is the unanimous value of  2.0 found for the Hill coef- 
ficient of  sodium activation in previous studies and the value of  1.0 found in the 
present work. The Hill coefficients of  2.0 were consistent with at least two sodium 
ions being transported per phosphate ion (Hoffmann et al., 1976; Burckhardt et al., 
1981; Amstutz et al., 1985). Investigations in proximal-tubule-derived LLC-PK1 
cells (Rabito, 1983), as well as duodenal brush border membrane vesicles (Danisi et 
al., 1984), have also found Hill coefficients of  2.0 for the Na/cPi cotransport present 
in these membranes. The simplest interpretation of  the data obtained in this study 
was that more than one sodium ion was required to activate transport, and that 
these activating sodium ions were cotransported with phosphate (Table II). How- 
ever, the Hill coefficient of  1.0 obtained in the red cell makes it necessary to invoke 
nonidentical sodium sites on a single transporter or multiple transporters to explain 
the data (see below). 

By varying the pH of  the intracellular and extracellular medium at physiological 
concentrations of  sodium and phosphate, we were able to examine the response of  
the transporter to varied proton/hydroxide concentrations (pHi ~ pHo), as well as 
the stoichiometry of  the transporter. It was clear that at the three pH values exam- 
ined the sodium influx stimulated by Pi was 1.7 times the phosphate influx stimu- 
lated by sodium (and significantly different from 2.0 at pH = 7.4 and 7.75). This 
value represents the first time the stoichiometry of  a Na/Pi cotransport system has 
been determined by simultaneously measuring the coupled 3~Pi and ~Na fluxes in a 
given preparation. The stoichiometry obtained in this study is in close agreement 
with the previously reported values obtained in renal vesicles (Hoffmann et al., 
1976), LLC-PK~ cells (Biber et al., 1983), and duodenal vesicles (Danisi et al., 1984). 
However, these stoichiometries were all estimated by Hill analysis of  sodium activa- 
tion of  phosphate transport. The interpretation of  the Hill analysis limits us to say- 
ing that at least two sodium ions are transported for each phosphate crossing the 
membrane. Thus it only provides a lower boundary on the stoichiometry and not a 
measured value. 

The pH dependence of  the V~, of  the Na/Pi cotransport we observed in red cells 
(Table I) was consistent with the data reported by most investigators of  other sys- 
tems, who found a stimulation of  transport at more alkaline pH values (Hoffmann 
et al., 1976; Cheng and Sacktor, 1981; Rabito, 1983; Amstutz et al., 1985). These 
investigators have used this alkaline stimulation to suggest the possibility that the 
divalent species is the transported anion, reasoning that the flux increases at more 
alkaline pH values due to the increment in the divalent anion concentration. How- 
ever, the possibility of  pH having additional effects on the transport, besides simply 
modulating the monovalent/divalent phosphate ratio, has been addressed as well. 

Cheng and Sactor (1981) showed that the pH causes not only a change in the 
proportion of monovalent and divalent species but also has effects on the transport 
system per se. They demonstrated an increase in the phosphate uptake into renal 
brush border vesicles with increasing pH whether the divalent anion species was 
allowed to increase with increasing pH or if it was kept constant by decreasing total 
phosphate correspondingly. It was therefore impossible for these authors to come 
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to any conclusions regarding the species of  phosphate that was transported. How- 
ever, they found no electrical potential dependence of  Na/Pi cotransport and so 
concluded that if either of  the two phosphate species is preferred, the divalent spe- 
cies is transported together with the two sodium ions, which is consistent with the 
Hill analysis. 

Concomitantly with the variation in the H2POs -2 ratio, any change in pH 
can theoretically affect the affinities of  the transport system for sodium or phos- 
phate as well as the rate coefficient for translocation by titration of  groups on the 
transport protein. The data contained in Table I indicate that varying the pH from 
6.9 to 7.75 causes profound effects on the Vmax of  the transport system. The study 
of  Amstutz et al. (1985) found that protons had a marked effect on the affinity of 
the transport system for sodium, the K~B for sodium increasing two to threefold as 
the pH was lowered from 7.4 to 6.4. It may be this sort of  interaction of  protons 
with the sodium transport site in the red cell Na/Pi cotransport pathway that con- 
tributed to the variation in Vm~ with pH. The results contained in Table I also indi- 
cate that the phosphate species whose affinity remains constant over the pH range 
examined was H~PO4. Therefore, from the Ki/~ data alone it seems most likely that 
the transporter does not transport the two phosphate species indiscriminately, or 
the divalent species as is found in epithelial brush borders, but rather prefers the 
monovalent species. In the face of  such large effects of pH on the V~, of the sys- 
tem, however, interpreting the K~/~ data independently seems rather improvident. 
Nevertheless, if the monovalent species was transported, then the Na/Pi cotransport 
stoichiometry would have to be more complex than the generally accepted 2 Na§ 1 
HPO4 ~ of  epithelial tissue (see the succeeding paragraph), or the transporter must 
necessarily be electrogenic (2.0 Na+:l.0 H~PO4). 

In the vesicle preparations it is generally assumed that two sodium ions are 
cotransported with divalent phosphate so there is zero current. Our stoichiometry 
in the red cell system was 1.7 Na:1.0 Pi, and is approximated by a model of  transport 
that includes two sodium binding sites of  markedly different affinities. Two sodium 
sites with binding constants of  10 and 140 mM will give an apparent Km of  140 mM 
with a Hill coefficient of 1.0. The difference in stoichiometry of  1.7 Na:l .0 Pi from 
the theoretical 2.0 Na:l.0 Pi may be explained by a systematic experimental error, 
though no basis for one could be found. Also, no indication of  sigmoidal activation 
at micromolar sodium concentrations was observed. Therefore, an alternative 
model with a single transporter that reconciles both the Hill coefficient of 1.0 and 
the stoichiometry of  1.7 Na:l.0 Pi is one in which the NaHPO4 ion pair is trans- 
ported, and sodium is capable of  being cotransported either with H~PO4 or 
NaHPO4. At physiological concentrations of  sodium, there is a reasonable possibil- 
ity that the NaHPO4 ion pair could exist (Smith and Alberty, 1956). I f  Na § and 
H2PO ~ makes up 30% of the cotransported species and Na § and NaHPO4 makes 
up the remaining 70%, then a stoichiometry of  1.7 will be obtained. The K~/~ of  140 
mM for sodium would then reflect the binding of  the ionized sodium to the H~PO4- 
or  NaHPO4-1oaded system, and the electroneutrality of the transport mechanism 
would be preserved. Of  course, more complicated schemes with multiple transport- 
ers could explain the data. There are several reports in the literature of  multiple 
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Na/Pi cotransport systems in the proximal-tubule brush border membrane (Bru- 
nette et al., 1984; Walker et al., 1987; Bindels et al., 1987). 

It has been demonstrated (Cheng et al., 1983) that a high phosphorus diet will 
induce a lower affinity sodium-dependent phosphate uptake in rabbit brush border 
vesicles. The data presented in Fig. 3 of  that paper give a K~/~ of  135 + 17 mM and a 
Hill coefficient of 0.99 -+ 0.16, values not significantly different from the ones 
obtained in this study. In addition, the magnitude of  the pathway shows little depen- 
dence on varying the pH from 6.5 to 8.5. However, the phosphate affinity remained 
similar to control values, in the range of  50-100 #M, significantly different from the 
value in this study. Nevertheless, the red cell Na/Pi cotransport characteristics were 
much more closely related to the properties of  this inducible form of  the trans- 
porter in the kidney than that form which is dominant in control animals. 

Intracellular Distribution of Imported Phosphate 

Newly imported Pi can be divided generally into three cytosolic pools: inorganic 
phosphate, adenosine nucleotides, and other organic phosphates (Tenenhouse and 
Scriver, 1975). The rates of  incorporation of 3~P i into the Pi pool and the nucleotide 
pool were comparable, while the rate of  incorporation into the remaining organo- 
phosphorus compounds was slower. These results are in agreement with the find- 
ings of  Tenenhouse and Scriver (1975), while differing from those obtained by Ger- 
lach et al. (1958) and Bartlett (1958). The reason for this discrepancy is the failure 
of  the latter authors to account for the intracellular concentration of Pi and ATP. 
When these pool sizes are considered, the rates of  incorporation of  extracellular 
phosphate into intracellular Pi and ATP are not significantly different. The retarded 
rate of  incorporation of  extracellular phosphate into the nonnucleotide organo- 
phosphorus compounds reflects the fact that a precursor for many of  these reac- 
tions was ATP, which was approaching isotopic equilibrium during the course of  the 
incubation, and the number of  sequential reactions that must be followed to equili- 
brate the differing phosphate-containing ")rganic species. In addition, the phospho- 
rylation rate for both the 2,3-DPG shunt and the pentose phosphate cycle proceed 
at a rate roughly an order of magnitude slower than the glycolytic rate. There was 
no significant difference in the cytosolic distribution of  the transported phosphate 
in the presence of  DNDS in the presence or absence of  sodium, indicating that each 
of the three transport pathways delivers extracellular phosphate to a common intra- 
cellular pool, from which it was dispensed to the cytosolic phosphorus-containing 
compounds. 

Metabolic State Dependence of Phosphate Transport and Intracellular Distribution 

A much different observation was made when the distribution of  imported phos- 
phate was studied in red cells in which the total phosphorus concentration has been 
reduced by incubating them overnight in the absence of  phosphorus and substrates. 
These cells no longer incorporate extracellular S~P i into the nucleotides, and as a 
result the rate of  incorporation into Pi was accelerated. This result can be explained 
since the incorporation of  inorganic phosphate into nucleotides would not be possi- 
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ble until the adenosine diphosphate level was reestablished at a sufficient level. 
However, in repleted cells the ATP levels were partially restored and yet there was 
still minimal incorporation of  extracellular Pi into nucleotides. This failure of  the 
repleted cells to incorporate extracellular phosphate into nucleotides was not simply 
due to the depressed ATP level. Reducing the ATP to comparable levels by incubat- 
ing the cells with 2-deoxy-D-glucose failed to alter control rates of  phosphate influx 
or its incorporation into nucleotides. Therefore,  the explanation for the persistent 
inhibiton of  phosphate influx and incorporation cannot be attributed to the ATP 
concentration alone, but  rather to something resulting from the prolonged 24-h 
incubation in the absence of  substrates. 

The irreversible nature of  the depletion-induced inhibition of  phosphate trans- 
port  was distinct from the reversible inhibition that has been seen previously for 
other cotransport systems in red cells depleted of  ATP (Palfrey, 1983; Adragna et 
al., 1985). Our  irreversible inhibition of  phosphate incorporation into nucleotides 
was true whether the phosphate was delivered to the cytosol via the Na/Pi cotrans- 
port  pathway or the leak pathway. Only partial restoration of  the control rate of  
incorporation into nucleotides was observed (<10%) via the DNDS-sensitive path- 
way. This low rate of  incorporation of  extracellular Pi into nucleotides corre- 
sponded with the low ATP levels (0.15 mM) measured in these cells. Peculiarly, all 
the repleted cells still demonstrated lactate production rates that did not differ sig- 
nificantly from control cells. 

One possibility to explain the lack of  incorporation of  extracellular phosphate 
into the intraceUular nucleotide in repleted cells is that the PGK reactions is not 
participating in the phosphorylation of  ATP. The increased flux through the 2,3- 
DPG shunt (whose existence is necessary to explain the control glycolytic rate in the 
repleted cells) may have contributed to the lowered levels of  ATP. One might also 
expect phosphate to be incorporated into nucleotides via the pathway used to 
replete the cells. The inosine used to replete the ATP levels was still present in the 
cells due to the relatively slow rate of  nucleoside transport (Jarvis et al., 1982). The 
phosphate incorporated with inosine into ribose-l-phosphate via the nucleoside 
phosphorylase reaction must pass through the pentose phosphate cycle before the 
phosphate can be distributed to ATP via the pyruvate kinase reaction of  the 
Embden-Meyerhof pathway. Due to the length of  the reaction pathway and the rel- 
ative inactivity of  the pentose phosphate shunt relative to the Emden-Meyerhof 
pathway (11%), this labeled phosphate would not be apparent in the nucleotides 
during the 30-min incubation periods used in this study. 

Incorporation of ExtraceUular Phosphate into Membrane-associated Nucleotides 

The membrane compartment of  nucleotide in the red cell was shown to reach steady 
state with extracellular Pi within 6 s. This rate of  equilibration was much faster than 
that found for the cytosolic compartments of  phosphate, which did not reach steady 
state after 60 min under  the conditions employed. The phosphorylation of  glyceral- 
dehyde-3-phosphate by inorganic phosphate via the GAPDH reaction is the first 
step in the synthesis of  these membrane-associated nucleotides. The 1,3-DPG thus 
formed donates the 3~p to ADP via the phosphoglycerate-kinase reaction, with the 
S2p being distributed to ADP by the high adenylate kinase activity of  red cells (Nils- 
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Fmg~  9. Functional organization of the pathways followed by extraceUular phosphate dur- 
ing its incorporation into cytosolic- and membrane-associated nucleotides. The primary 
sodium-dependent pathway of phosphate incorporation into the membrane is indicated by 
the bolder arrows. AMP, ADP, and ATP, adenosine mona, di-, and triphosphate; AK, adeny- 
late kinase; G3P, glyceraldehyde-3-phosphate; NAD and NADH, oxidized and reduced nicoti- 
namide adenine dinucleotide; GAPD, glyceraldehyde-3-phosphate dehydrogenase; 1,3-DPG, 
1,3-bisphosphoglycerate; PGK, phosphogtycerate ldnase; DPC, M, diphosphoglycerate mutase; 
2,3-DPG, 2,3-bisphosphoglycerate; DPGP, diphosphoglycerate phosphatase; 3-PG, 3-phos- 
phoglycerate. 
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son and Ronquist, 1969). The apparent  access of  adenylate kinase to the membrane- 
compartmentalized nucleotide was surprising in light of  the finding of  Mercer and 
Dunham (1981b) that the compartmentalized ATP fueling the Na /K pump is inac- 
cessible to hexokinase. The higher level of  incorporation o f  32p into ADP than into 
ATP on the chromatograms was consistent with the higher concentration o f  ADP 
than ATP in the membrane o f  human red cells (Shoemaker and Hoffman, 1985; 
Shoemaker, unpublished observations). The presence of  DNDS had no effect on the 
rate o f  incorporation or the distribution o f  asp in the membrane fraction of  the 
human red cell; however, the removal of  sodium decreases the level of  incorpora- 
tion by 90%, which indicates the requirement of  the Na/Pi cotransport system for 
mediating the delivery of  extracellular phosphate to the rapidly labeled membrane 
pool of  nucleotides. This further indicates the compartmentation of  phosphate 
metabolism in the human red cell, in that only 20% of  the phosphate entering the 
cell under  physiologic conditions was carried by the sodium phosphate cotransport  
system; and yet it accounts for 90% of  the extracellular phosphate incorporated into 
the membrane-bound nucleotides. 

A diagram illustrating the major routes of  extracellular phosphate transport and 
metabolism is shown in Fig. 9. Phosphate enters the cell by one of  th6se pathways, 
band 3-mediated,  Na/Pi cotransport,  or  DNDS-insensitive, sodium-independent 
transport. These three pathways deliver phosphate to the cytosol in the percentages 
shown. The Na/Pi cotransport  is the pathway primarily responsible for the delivery 
to the membrane-associated nucleotide capable of  being labeled rapidly. Adenylate 
kinase, known to be asscoiated with red cell membranes (Nilsson and Ronquist, 
1969), is postulated here to have access to the membrane-associated nucleotides by 
virtue of  the rapid distribution of  extracellular a2P i into ADP. A slow exchange of  
cytosolic nucleotides with the membrane-associated nucleotides would explain the 
negligible rate of  incorporation of  extracellular ~2P i into the membrane compart- 
ment in the absence o f  extracellular sodium. The fraction of  the membrane nucleo- 
tide pool rapidly accessed through the sodium-dependent transport o f  extracellular 
phosphate makes up 14% of  the total membrane-bound nucleotide. The physiolog- 
ical function of  this compartment of  membrane nucleotide has yet to be demon- 
strated in the intact red cell. 

We would like to thank Adrienne McLean for editorial assistance and for drawing the illustration 
in Fig. 9. 
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