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ABSTRACT Negative regulation of the heartbeat rate involves the activation of an inwardly rectifying potassium
current (Igac,) by G protein—coupled receptors such as the m2 muscarinic acetylcholine receptor. Recent studies
have shown that this process involves the direct binding of Gg, subunits to the NHy- and COOH-terminal cytoplas-
mic domains of the proteins termed GIRKI and GIRK4 (Kir3.1 and Kir3.4/CIR), which mediate Igsc,. Because of
the very low basal activity of native Igscy, it has been difficult to determine the single channel effect of Gg, subunit
binding on Ig,¢, activity. Through analysis of a novel G protein—activated chimeric inward rectifier channel that
displays increased basal activity relative to Igacy,, we find that single channel activation can be explained by a G pro-
tein—dependent shift in the equilibrium of open channel transitions in favor of a bursting state of channel activity

over a long-lived closed state.
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INTRODUCTION

Secretion of acetylcholine (ACh)! by the vagus nerve
slows the heartbeat rate by activating an inward recti-
fier potassium current (Ig,cy,) in the pacemaker cells of
the sinoatrial node (Trautwein and Dudel, 1958; Hille,
1992). Inward rectifier potassium currents flow prefer-
entially when the membrane potential is negative or
slightly positive relative to the potassium equilibrium
potential (Eg). This increase in potassium permeability
at the cell’s resting potential strengthens the contribu-
tion of the Eg to the overall membrane potential. As a
result, it takes more time for depolarizing pacemaker
currents to bring the membrane potential to the activa-
tion threshold of voltage-gated currents that mediate
the action potentials, which ultimately trigger heart
muscle contraction.

The biochemical events underlying the stimulation
of Ixyc, have been well studied. ACh activates the m2
muscarinic acetylcholine receptor (mAChR) which, in
turn, catalyzes the exchange of GDP for GTP on the o
subunit of the heterotrimeric G protein G;. The dimer
of the G protein B and y subunits becomes dissociated
from the GTP-bound «a subunit and activates Ig,c, by a

Dr. Bard’s current address is Boston Biomedical Research Institute,
64 Grove Street, Watertown, MA 02472. Dr. Kunkel’s current address
Department of Anatomy and Neurobiology, Washington University
Medical School, St. Louis, MO 63110

Address correspondence to Joel Bard, Boston Biomedical Re-
search Institute, 64 Grove Street, Watertown, MA 02472. Fax: (617)
972-1761; E-mail:bard@bbri.org

LAbbreviations used in this paper: ACh, acetylcholine; GIRK, G pro-
tein—activated inward rectifier potassium channel; IRK, inward recti-
fier potassium channel; mAChR, muscarinic acetylcholine receptor.

ion channel ® patch-clamp ¢ G protein ® gating ® acetylcholine

direct, membrane-delimited mechanism (Soejima and
Noma, 1984; Breitwieser and Szabo, 1985; Pfaffinger et
al., 1985; Logothetis et al., 1987).

The molecular cloning of genes encoding the pro-
teins that form inward rectifier potassium channels has
allowed a more detailed understanding of how Gg, acti-
vates Igsc, (Kubo et al., 1993a,b). Inward rectifier potas-
sium channel proteins are divided into six subfamilies
(Doupnik et al., 1995); all share a similar topology in-
cluding two membrane spanning regions and a pore
domain, which is homologous to that of the voltage-
gated potassium channels. The subfamilies are distin-
guished by differing cytoplasmic NHy- and COOH-ter-
minal domains, which confer different sensitivities to a
variety of intracellular signals. Ig,c, is mediated by het-
erotetramers of the GIRK1 and GIRK4 (G protein-acti-
vated inward rectifier potassium channel) proteins
(Krapivinsky et al., 1995). The channels formed by
these proteins are very inactive in the absence of G pro-
tein signaling and are strongly activated by stimulation
of the m2 mAChR. In contrast, members of the Kir2
(inward rectifier potassium channel [IRK]) subfamily
can function as homotetramers, are constitutively ac-
tive, and are unaffected by m2 mAChR stimulation.

In a previous study (Kunkel and Peralta, 1995), we
used chimeric fusion proteins of GIRK1 and RB-IRK2
(a2 member of the Kir2 subfamily) to define the se-
quences within GIRKI that are required for Gg, activa-
tion. We constructed a chimeric molecule (termed
GR7.1) in which the NH, terminus and the distal por-
tion of the COOH-terminal cytoplasmic domains of
GIRKI were fused to the pore region and proximal
COOH-terminal cytoplasmic domain of RB-IRK2 (see
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Fig. 1). The homomeric channels formed by GR7.1
have a high basal activity similar to that of RB-IRK2, but
are further activated by stimulation of m2 mAChRs.
Furthermore, G protein By subunits bind directly to
bacterially expressed glutathione—S-transferase fusion
proteins of the GIRKI domains included in the chi-
mera, suggesting that activation occurs through a direct
interaction between the G protein and the channel.

The link between binding events involving the intra-
cellular domain of the channel and gating of the chan-
nel pore remains unclear. One approach to this prob-
lem is to measure the properties of single channels be-
fore and after activation to see which parameters are
affected. This has not been possible for GIRK1/GIRK4
channels because of their very low basal activity. In this
study, we take advantage of the relatively high basal ac-
tivity of GR7.1 to determine the single channel effect of
G protein binding. We find that activation of single
channels by mAChR stimulation leads to an increase in
the mean duration of bursts of channel openings.
These observations suggest a simple molecular model
of G protein activation of inward rectifier potassium
channel activity.

MATERIALS AND METHODS

Xenopus oocytes were injected with cRNA for the m2 mAChR
(~10 ng) and either a mixture of GIRK1 (~10 ng) and GIRK4
(~1ng), GR7.1 (~10 ng), or RB-IRK2 (~0.5 ng; Kunkel and Per-
alta, 1995). Cells were checked for the expression of receptor
and channels after 12-72 h using two-electrode voltage clamp
whole-cell recordings. Patch-clamp studies were done using a pi-
pet holder that had been drilled to accept a tube through which
solutions could be delivered to the inside of the pipet while re-
cording (Soejima and Noma, 1984; Tang et al., 1992). Pipettes
were pulled from glass capillaries (model 8161; Corning) and
had tip resistances between 0.8 and 4 M().

Recordings of Patches Containing Multiple Channels

Cell-attached patches having many channels were subjected to a
voltage protocol consisting of a pulse to —60 mV for 800 ms fol-
lowed by a pulse to +60 mV for 800 ms; both were repeated every
5s. 3 ul of 10 mM carbachol was added to a 3-ml bath volume af-
ter ~~100 s and allowed to mix by diffusion. In control whole cell
experiments, this generally led to activation within 2 min. After
100 episodes, the perfusion tube was transferred to a reservoir
containing 20 uM carbachol and the pipet was perfused by suc-
tion until the volume of the pipet solution had doubled. The ob-
served delay in activation reflects the time required for the drug
to diffuse to the tip of the pipet and varied considerably with pi-
pet geometry.

Recordings of Patches Containing Single Channels

Patches that appeared to contain only one channel were sub-
jected to voltage ramp protocols to determine rectification prop-
erties, and were recorded continuously for 500 s at —60 mV. The
data were filtered at 1 kHz, and the sampling frequency was 10
kHz. After the initial recording, the pipet was perfused as before.
After several minutes, during which the drug was allowed to dif-
fuse to the tip of the pipet, another 500 s of data were acquired.

Single channel data were idealized using Fetchan (Axon Instru-
ments) with a filter frequency of 150 Hz for GR7.1 and RB-IRK2;
no filter was applied for the GIRK1/GIRK4 analysis. Analysis of
the dwell-time histograms was performed using Pstat (Axon In-
struments). The burst delimiter for burst analysis was deter-
mined by finding the minimum of the fit between the second
and third exponential terms. It was generally between 175 and
300 ms.

RESULTS

To use GR7.1 as a model channel for G protein activa-
tion, we first needed to demonstrate that this chimeric
channel is activated through a similar mechanism to
that of Igsc,. Membrane-delimited activation by G pro-
tein—coupled receptors is a hallmark property of Igscy,.
In cell-attached patches from rabbit atrial cells, the ad-
dition of a mAChR agonist to the recording pipet acti-
vates the current, whereas the addition of the same ago-
nist to the bath does not (Soejima and Noma, 1984).
This implies that cytoplasmic kinases, phosphatases,
or second messengers, which can diffuse across the
boundary of the patch pipet, are not involved in chan-
nel activation.

To test whether activation of GIRK1/GIRK4 and chi-
mera GR7.1 occurs by a similar membrane-delimited
mechanism, we recorded from patches containing mul-
tiple channels while adding the mAChR agonist carba-
chol first to the bath and then to the pipet. Oocytes ex-
pressing GIRK1/GIRK4 and m2 mAChRs showed very
little activity in the absence of carbachol or when carba-
chol was added to the bath. However, when carbachol
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FIGURE 1. Schematic representation of inward rectifier channel
topology. Sequence from GIRKI is in light gray. Sequence from
RB-IRK? is in black. Chimera GR7.1 contains amino acids 1-84
and 290-501 of GIRKI fused to amino acids 85-289 of RB-IRK2.
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FIGURE 2. GIRK1/GIRK4 and GR7.1 currents are activated via similar membrane-delimited pathways. Cell-attached patches containing
multiple channels from oocytes expressing GIRK1/GIRK4 (A), RB-IRK2 (B), or chimera GR7.1 (C), were held at —60 mV for 800 ms, and
then depolarized to +60 mV for 800 ms every 5 s for the duration of the experiment. Carbachol was added to the bath at the indicated
time by hand pipetting. Carbachol was perfused into the pipet by suction (see Materials and Methods) over the indicated time period.
Each point on the larger plot represents the integrated current over the portion of the trace at one holding potential for that time point.
The insets show representative traces from before the addition of carbachol to the bath (left), after addition to the bath (center), and after
addition to the pipet (right). The transient increase in outward current during the perfusion reflects activation of the oocyte’s endoge-
nous stretch-activated channels by the suction applied to the pipet. D shows the average percent change in integrated current after carba-
chol addition to the bath and to the pipet for GR7.1 (filled bars, n = 5) and RB-IRK2 (open bars, n = 5); error bars represent SEM. Be-
cause there is virtually no current before addition of carbachol to the pipet for GIRK1/GIRK4, the percent change is undefined.

was added to the pipet, there was a large increase in ac-
tivity (Fig. 2 A). Patches from cells expressing RB-IRK2
or GR7.1 showed significant activity in the absence of
carbachol. This activity did not increase upon addition
of the agonist to the bath. Importantly, the addition of
carbachol to the pipet had no effect on RB-IRK2, but sig-
nificantly increased the activity of GR7.1 (Fig. 2, B-D).
These results show that activation of GR7.1 and GIRK1/
GIRK4 share the feature of membrane-delimited regula-
tion as originally defined for Ig,cy,.

To examine the mechanism of channel activation by
G protein binding, we analyzed recordings of individual
GR?7.1 channels before and after perfusion of the patch
pipet with carbachol. The trace in Fig. 3 A shows the ac-
tivity of a single GR7.1 channel before addition of ago-
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nist to the pipet. Bursts of activity are separated by long
inactive periods of up to several seconds. The trace in
Fig. 3 B shows the activity of the same channel after ad-
dition of carbachol to the pipet. For this channel, there
was a 60% increase in open probability (0.20 before car-
bachol and 0.32 after carbachol), which is wholly ac-
counted for by a similar increase in the burst duration
(1.2 s before carbachol and 2.1 s after carbachol; see
Fig. 4, E and F). This enhanced open probability results
both from an increase in the duration of openings
within bursts (94 ms before carbachol and 126 ms after
carbachol; Fig. 4, A and B) and an increase in the num-
ber of openings per burst (13.2 before carbachol and
16.2 after carbachol). Since each opening within a
burst is preceded and followed by a closing, an increase
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FIGURE 3. Single channel recordings of GR7.1. (A) Excerpt from
a recording of a single GR7.1 channel before addition of carba-
chol to the pipet. (B) Excerpt from a recording of the same patch
after addition of carbachol to the pipet. Bars to the left of traces in-
dicate the current level when the channel is closed. Insets show the
indicated region of the trace with a magnified time scale.

in the number of openings per burst is reflected in the
closed time distribution as an increased population of
the region of the distribution corresponding to short
closings that occur during bursts (Fig. 4, C and D, left-
most peaks). Importantly, the interburst interval re-
mains unchanged after stimulation implying that bursts
do not occur more frequently after stimulation (Fig. 4,
G and H). Similar activation was seen in five out of
seven single channel experiments with GR7.1; it may be
that there were no mAChRs in those patches where no
activation was observed. Except for a small change in
open duration, no significant changes in single channel
properties were observed in control experiments with
RB-IRK2 (Fig. 4 1).

To determine whether wild-type channels display sim-
ilar changes in single channel activity, we recorded
from oocytes injected with cRNAs encoding GIRKI,
GIRK4, and the m2 mAChR. Because of the low basal
open probability of GIRK1/GIRK4 channels, we could
not conclusively determine if our unstimulated patches
contained only a single channel and, therefore, could
not perform the sort of quantitative analysis applied to
GR7.1. However, there is a clear qualitative similarity
between the activation of GIRK1/GIRK4 and that of
GR7.1. When carbachol is not present in the pipet, re-
cordings from cells expressing GIRKI1/GIRK4 and m2

mAChRs are characterized by brief, solitary openings.
This can be seen in Fig. 5 A, which shows the current
from a patch containing multiple GIRK1/GIRK4 chan-
nels in the absence of carbachol. In contrast, when car-
bachol is present in the pipet, GIRK1/GIRK4 single
channel activity is similar to that of GR7.1: bursts of
openings are separated by long closings (Fig. 5 B). As
with GR7.1, this enhanced tendency to remain in the
bursting state appears as a large peak representing
short closings within bursts in the closed time distribu-
tion observed with carbachol in the pipet (Fig. 5 D).
The corresponding region of the closed time distribu-
tion for patches containing an unknown number of
channels in the absence of carbachol contains very few
events (Fig. 5 C).

DISCUSSION

We have used patch-clamp methodology to study the
mechanism of activation of inward rectifier potassium
channels by mAChRs. Our results confirm that GIRK1/
GIRK4 and chimera GR7.1 channels are both activated
by a similar membrane delimited mechanism. Further-
more, at the single channel level, activation appears as
an increase in the duration of bursts of channel open-
ings.

There have been a number of studies in which the
single channel properties of GIRKs were examined in
the presence of various concentrations of neurotrans-
mitters or exogenously applied Gg, (Ivanova-Nikolova
and Breitwieser, 1997; Ivanova-Nikolova et al., 1998;
Yakubovich et al., 2000). Such studies have revealed
that GIRK channels have a variety of gating modes, and
it has been proposed that binding to G proteins alters
the modal preference such that the channel spends
more time in modes with higher open probabilities. A
detailed model of the nature of this shift has been diffi-
cult to formulate, however, because of the complexity
and number of gating modes, as well as the difficulty of
obtaining recordings of single, unstimulated GIRK
channels.

The simpler single channel behavior and robust un-
stimulated activity of GR7.1 enable us to investigate the
role of the G protein signal in the regulation of single
channel kinetics of this model system. If one assumes a
simplified model of a bursting channel in which a sin-
gle open state (O) can be exited either to a short-lived
intraburst closing (Cs) or a long-lived interburst closing
(CL), then both the increased duration of bursts and
the increased 7, of activated GR7.1 can be explained if
the relative probability of exiting an opening to G,
rather than Cg is decreased upon binding to Gg,,.

This explanation of activation by Gg, can be ex-
tended to account for our qualitative observations of
the single channel behavior of GIRK1/GIRK4 chan-
nels. In this case, the rare solitary openings observed in

648 Single Inward Rectifier Kt Channel Activation by mAChRs



0w Before s After
S Carbachol 8 ] Carbachol
® ©
2 e %1
7} [
@B 50 @ %0
o O
O w0 O
G G 3]
5 5,
_g 20 _g 20
S 10 5 10
= L o VSN o ! ;
0 50 100 150 200 250 300 350 400 450 500 0 50 100 150 200 250 300 350 400 450 500
Open Dwell-time (ms) Open Dwell-time (ms)
o 0 »
f= c
S ol S
g g
¢ 0] o
o 0
O e}
O 3y o
- -
5] ©
o 20 P
I} )
e} =}
£ 109 S
3 =3
Zz [ =
0 05 1.0 15 20 25 30 35 40 45 50 55 05 10 15 20 26 30 35 40 45 50 55
Log Closed Dwell-time (ms) Log Closed Dwell-time {ms)

20 20

Number of Observations
Number of Observations

0 20 40 20

Log Burst Duration (ms)

8.0 0

304

254

20

Number of Observations
Number of Observations

Log Burst Duration (ms)

6.0

FIGURE 4. Analysis of GR7.1 single channel pa-
rameters. (A-H) Dwell-time histograms from the
channel shown in Fig. 3 before (left) and after
(right) perfusion of the pipet with carbachol. Max-
imum likelihood fits to exponential functions are
shown for each. All except the closed time histo-
grams were fit to single exponentials. The closed
time histograms were fit to sums of three exponen-
tials. The fits of the Before Carbachol data are

4.0 60 )

2‘0 20
Log Interburst Duration (ms) Log Interburst

o

| 150

&
2 1
©
5
T 80
=
9}
o
e
o O
a c
<}
S C c c 24
0l 5§ B g8 co 2E
3 5 LPs g £ 3
& A £z28 g go
<Y 4—4 meOB o ®
gm 0O oo
o

the absence of stimulation can be considered as the
limiting case of bursts with only a single opening, i.e.,
the probability of leaving O for C; is much larger than
for Cs. A decrease in the probability of exiting O for Cp
might allow the bursts that are observed in the pres-
ence of stimulation to occur. Although such an expla-
nation can account for the large-scale differences be-
tween GIRK channels in the presence and absence of
Gg,, it cannot account for the observation of Ivanova-
Nikolova and Breitwieser that the P, within a burst in-
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4.0

6.0
Duration {ms)

shown as a dotted line in the After Carbachol his-
tograms for comparison. (I) Mean change in sin-
gle channel properties after addition of carbachol
to the pipet for 5 GR7.1 channels (filled bars) and
4 RB-IRK2 channels (open bars). Stars above bars
indicate the significance level of the difference be-
tween the properties of each channel before and
after carbachol treatment based on a paired ¢ test.
Stars above brackets indicate the significance of
the difference between the percent changes for
each of the two types of channel based on a Kol-
mogorov-Smirnov test. (¥¥%) P > 99%; (**) P >
95%; (*) P> 90%. Error bars represent SEM.

creases when the concentration of Gg, is increased
(Ivanova-Nikolova and Breitwieser, 1997). It may be
that binding of G proteins to GIRK affects multiple
conformational changes involved in gating, whereas
binding to GR7.1 affects only one of these.

Our recordings suggest that the only difference be-
tween GR7.1 and IRK2 is in the G protein sensitivity of
the transition from the bursting state to the long closed
state. Because the sequences of these two channels dif-
fer only in their intracellular domains, it is likely that
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this transition is mediated by conformational changes
in this intracellular domain. This would be the case if,
as several groups have suggested (Dascal et al., 1995;
Kunkel and Peralta, 1995; Pessia et al., 1995), the intra-
cellular domain includes an inactivation particle analo-
gous to that of voltage-gated potassium channels (Hoshi
et al, 1990). In some other effector systems, Gg, is
thought to function by increasing the affinity of its tar-
gets for the membrane (Clapham and Neer, 1997). In-
terestingly, it has been shown that interactions between
members of the Kir family and membrane phospholip-
ids are essential for their activity (Huang et al., 1998;
Kim and Bang, 1999). Taken together, these observa-
tions suggest that G protein activation of GIRKs could
arise, in part, from an increase in the affinity of an intra-
cellular blocking particle for the membrane, which in
turn decreases its availability to occlude the pore.
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