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Abstract

The formation of functional neural circuits that process sensory information requires coordinated development of the
central and peripheral nervous systems derived from neural plate and neural plate border cells, respectively. Neural plate,
neural crest and rostral placodal cells are all specified at the late gastrula stage. How the early development of the central
and peripheral nervous systems are coordinated remains, however, poorly understood. Previous results have provided
evidence that at the late gastrula stage, graded Wnt signals impose rostrocaudal character on neural plate cells, and Bone
Morphogenetic Protein (BMP) signals specify olfactory and lens placodal cells at rostral forebrain levels. By using in vitro
assays of neural crest and placodal cell differentiation, we now provide evidence that Wnt signals impose caudal character
on neural plate border cells at the late gastrula stage, and that under these conditions, BMP signals induce neural crest
instead of rostral placodal cells. We also provide evidence that both caudal neural and caudal neural plate border cells
become independent of further exposure to Wnt signals at the head fold stage. Thus, the status of Wnt signaling in
ectodermal cells at the late gastrula stage regulates the rostrocaudal patterning of both neural plate and neural plate
border, providing a coordinated spatial and temporal control of the early development of the central and peripheral
nervous systems.
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Introduction

Information from our surroundings is transmitted by specific

sensory neurons in the peripheral nervous system to the central

nervous system were it is processed. Early in development secreted

signals specify various cell types of both the central and peripheral

nervous systems, which later will establish complex neural circuits

that process sensory information. The mechanism by which the

early development of the two nervous systems is temporally and

spatially coordinated is poorly understood.

The peripheral nervous system arises from neural crest and

placodal cells derived from neural plate border cells. Neural crest

cells, which contribute to a vast array of cell types are generated

along the entire rostrocaudal neuraxis except at rostral forebrain

levels, where neural plate border cells generate placodal but no

neural crest cells [1–3]. In chick, the specification of both neural

crest and placodal cells is ongoing at the late gastrula stage [4,5],

and around this stage, Bmp2 and Bmp4 are expressed in the

ectoderm surrounding the entire neural plate [6], domains where

phosphorylated Smad-1 is also detected, indicative of active BMP

signaling [7]. At the late gastrula stage, BMP signals induce

olfactory and lens placodal character in neural plate border cells at

rostral forebrain levels [5]. Studies conducted later in develop-

ment, at neural fold stages, when border cells have started to

express neural crest markers [8,9] suggest that both BMP and Wnt

signals induce neural crest character in caudal neural cells [10–

12]. Since neural crest generation has already been initiated at

neural fold stages, these results may reflect mechanisms of

regeneration and maintenance of inducing capacity rather than

the mechanism by which neural crest cells are initially induced.

Thus, it remains unclear whether BMP and Wnt signals act in

parallel or have separated roles during the initial induction of

neural crest cells.

Members of the Wnt family as well as members of the Wnt

receptor family Frizzled are expressed in the caudal region of the

gastrula stage embryo, and Wnt inhibitors are expressed in more

rostral regions of the embryo [13]. In agreement with this spatial

pattern of expression it has been shown that Wnt signals act in a

graded manner to specify neural plate cells of progressively more

caudal character [14,15]. The rostrocaudal distribution of Wnts

and Wnt inhibitors at the late gastrula stage raises the possibility

that Wnt signals also impose a caudal character on neural plate

border cells which may influence the specification of placodal and

neural crest cells.

To address how Wnt and BMP signaling interact during the

initial specification of olfactory/lens placodal and neural crest

cells, we established explant assays of neural crest and placodal cell

differentiation using late gastrula stage chick embryos. We now

provide evidence that at the late gastrula stage, Wnt signals impose

caudal character on neural plate border cells and that under these

conditions, BMP signals induce neural crest cells instead of rostral

placodal cells. Thus, the status of Wnt signaling in ectodermal cells

at the late gastrula stage regulates the rostrocaudal patterning of

both neural and neural plate border cells, providing a coordinated

spatial and temporal control of the early development of the

central and peripheral nervous systems.

PLoS ONE | www.plosone.org 1 February 2008 | Volume 3 | Issue 2 | e1625



Results

BMP Activity is Required for the Specification of Neural
Crest Cells at the Late Gastrula Stage

In chick embryos, the specification of neural crest cells has been

initiated at the late gastrula stage, stage 4 [4]. By stage 10, Snail2

(previously known as Slug) is preferentially expressed in pre-

migratory and early migratory neural crest cells, and HNK-1 is

expressed in all migratory neural crest [16] (Fig. 1A). Sox1 is

specifically expressed in neural cells (Fig. 1A), and cells in the

midbrain-hindbrain region express in addition Pax2 and/or En1/2

[17,18]. Cytokeratins (Ker) are expressed in epidermal ectoderm

(Fig. 1A) and in cranial placodes [19]. By stage 17 (E2.5) cells in the

olfactory placode express Ker and Raldh3 and a subset of cells express

HuCD, while cells in the lens express Ker and d-crystallin [5].

Recent results have provided evidence that the specification of

neural crest cells has been initiated at stage 4 [4]. To elucidate the

mechanism by which border cells become specified as neural crest

cells, we established an explant assay of neural crest cell

differentiation by culturing ectodermal explants of the neural

plate border region of stage 4 chick embryos for 20–22 hr,

corresponding in time to approximately stage 10 (Fig. 1B). The

underlying mesoderm and endoderm were removed to avoid

indirect effects from these germ layers. Explants of the caudal

border (CB) region isolated at the prospective midbrain-hindbrain

level of stage 4 embryos generated Snail2+ and HNK-1+ neural crest

cells, but no or only a few Sox1+ neural and Ker+ epidermal cells

(Fig. 1C). No mesodermal cells, herein analyzed by the expression of

Chordin, Brachyury, Tbx6L and Raldh2, were detected (Fig. S1A and

S1E). After prolonged culture (30 hr), corresponding in time to

approximately stage 12 (E2), migratory cells characteristic of neural

crest cells were generated (Fig. S2A). Thus, cells in the caudal border

region are specified as neural crest cells at stage 4.

Both BMP and Wnt signals have been implicated in the

generation of neural crest cells at the neural fold stage when neural

plate border cells have started to express neural crest markers

[20,21]. We examined therefore first whether BMP signals are

required for the initial induction of neural crest cells at the late

gastrula stage, by culturing stage 4 CB explants in the presence of

a selective antagonist of BMP signals. Under these conditions, the

Figure 1. BMP and Wnt Signals are Required for the Specification of Neural Crest at the Gastrula Stage. (A) To the right, a schematic
stage 10 chick embryo. The line indicates the level of the transverse sections shown in the corresponding panel. Sox1 is expressed in neural cells.
Snail2 is expressed in premigratory and early migratory neural crest cells. HNK-1 is expressed in all migratory neural crest cells. Ker is expressed in
epidermal cells. (B) Ectodermal explants were isolated, separated form the mesoderm and endoderm, cultured in vitro to the developmental
equivalent of stage 10, before fixation, freezing and sectioning. Green box indicates explanted tissue used in (C–E). (C–E) Consecutive sections
showing expression of molecular markers in explants cultured for 20–22 hr. (C) Stage 4 CB explants (n = 30) generated Snail2+ and HNK-1+ cells, and a
few Sox1+ cells and Ker+ cells. (D) Stage 4 CB explants cultured in the presence of Noggin (n = 30) generated Sox1+ cells, but no Snail2+, HNK-1+ or
Ker+ cells. (E) Stage 4 CB explants cultured in the presence of mFrz8CRD (n = 20) generated Ker+ cells, but no Sox1+, Snail2+ or HNK-1+ cells. Data are
represented as mean6SEM. Scale bar, 100 mm (C–E).
doi:10.1371/journal.pone.0001625.g001
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BMP inhibitor Noggin [22], blocked the generation of Snail2+ and

HNK-1+ cells, and most cells acquired neural midbrain-hindbrain

character (Fig. 1D, S2B and S2C). No significant differences in cell

proliferation or apoptosis were detected in explants cultured alone

compared to explants exposed to Noggin (Fig. S3A). Thus, at stage

4, BMP signals are required for prospective caudal border cells to

acquire neural crest character, and in the absence of BMP activity

cells acquire a caudal neural character.

Neural Crest Cells Acquire Olfactory/Lens Placodal Fate in
the Absence of Wnt Activity

To examine whether Wnt signals are required for the initial

induction of neural crest cells at the late gastrula stage, we cultured

stage 4 CB explants in the presence of soluble mFrz8CRD, which

blocks Wnt, but not BMP signaling [23–25]. Exposure of

mFrz8CRD also blocked the generation of Snail2+ and HNK-1+

cells, while Ker+ cells but no Sox1+ neural cells were generated

(Fig. 1E). No significant differences in cell proliferation or

apoptosis were detected in explants cultured alone compared to

explants exposed to mFrz8CRD (Fig. S3B). To further define the

identity of the Ker+ non-neural cells, stage 4 CB explants were

cultured in the presence of mFrz8CRD for 43–45 hr, correspond-

ing in time to approximately E2.5. Under these conditions, Ker+,

Raldh3+ and a few HuCD+ cells characteristic of the olfactory

placode, and Ker+, d-crystallin+ cells characteristic of the lens

placode were generated in distinct non-overlapping regions of the

explants (Fig. 2A and 2B). Thus at stage 4, when Wnt signaling is

suppressed in prospective caudal neural plate border cells, the

generation of neural crest cells is blocked and cells acquire

olfactory and lens placodal character characteristic of cells derived

from the rostral border.

Wnt Signals Caudalize Neural Plate Border Cells
The finding that prospective neural crest cells acquire olfactory

and lens placodal character in the absence of Wnt activity,

indicates that Wnt signals impose caudal character on border cells.

Previous results have provided evidence that at stage 4, cells of the

rostral border located at the level of the prospective forebrain are

specified as olfactory and lens placodal cells [5]. To test whether

Wnt activity is sufficient to induce caudal border character in

rostral border cells fated to generate lens and olfactory placodal

cells, we exposed stage 4 prospective rostral border (RB) explants

to Wnt3A (16) for 20–22 hr and 43–45 hr. Wnt3A, Wnt8C and

Wnt 11 show similar activities in several different assays (http://

www.stanford.edu/%7Ernusse/wntwindow.html). In the present

study, the effects of Wnt signaling were examined by using Wnt3A

conditioned medium, previously shown to have reliable biological

activity [15,23,25]. In the presence of Wnt3A, Snail2+ and HNK-

1+ neural crest cells were induced in stage 4 RB explants, while the

generation of Ker+ cells was reduced and the generation of d-

crystallin+, Raldh3+ and HuCD+ cells was blocked (Fig. 2C and

2D). No mesodermal cells were detected in explants exposed to

Figure 2. Wnt Activity Caudalizes Border Cells. (A–D) Consecutive sections showing expression of molecular markers in explants cultured for
20–22 hr or 43–45 hr. (A) Stage 4 CB explants (n = 30) generated Snail2+ and HNK-1+ cells, and a few Ker+ cells, but no d-crystallin+, HuCD+ or Raldh3+

placodal cells. (B) Stage 4 CB explants cultured in the presence of mFrz8CRD (n = 20) generated a distinct region of Raldh3+, HuCD+ and Ker+ cells and
a separate region of d-crystallin+ and Ker+ cells, but no Snail2+ or HNK-1+ cells were detected. (C) Stage 4 RB explants (n = 30) generated a distinct
region of Raldh3+, HuCD+ and Ker+ cells and a separate region of d-crystallin+ and Ker+ cells, but no Snail2+or HNK-1+cells were detected. (D) Stage 4
RB explants cultured in the presence of Wnt3A (16) (n = 20) generated Snail2+ and HNK-1+cells, and a few Ker+cells, but no d-crystallin+, HuCD+ or
Raldh3+ cells. Data are represented as mean6SEM. Scale bar, 100 mm (A–D).
doi:10.1371/journal.pone.0001625.g002
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Wnt3A (Fig. S1B) and no significant differences in cell prolifer-

ation or apoptosis were detected in explants exposed to Wnt3A

compared to explants cultured alone (Fig. S3C). In summary, these

results provide evidence that Wnt signals impose caudal character

on neural plate border cells.

BMP but not Wnt Signals Induce Neural Crest Character
in Caudal Neural Cells

We next tested whether Wnt and/or BMP signals are sufficient

to induce neural crest fate in prospective caudal neural plate cells.

To examine this issue we exposed stage 4 caudal (C) neural plate

explants, fated to become midbrain-hindbrain cells, to Wnt3A or

to BMP4. Exposure of stage 4 C explants to Wnt3A (16-46),

increased nuclear staining of b-catenin, indicating activation of the

canonical Wnt pathway (Fig. S4A and S4B; data not shown).

However, Wnt3A did not block the generation of Sox1+ neural

cells, and no Snail2+ or HNK-1+cells were induced (Fig. 3A and

3B). In contrast, exposure of stage 4 C explants to BMP4 (20 ng/

ml) inhibited the generation of Sox1+ midbrain-hindbrain neural

cells and induced a large number of Snail2+ and HNK-1+neural

crest cells (Fig. 3C). No mesodermal cells were detected in explants

exposed to BMP4 (Fig. S1C) and no significant differences in cell

proliferation or apoptosis were detected in explants exposed to

BMP4 compared to explants cultured alone (Fig. S3D). Thus,

BMP but not Wnt signals induce neural crest fate in prospective

caudal neural cells at the late gastrula stage. At head-fold stage,

stage 6, prospective neural crest cells express Pax7 [4]. To provide

further evidence that BMP, but not Wnt signals directly induce

neural crest progenitors, we exposed stage 4 C explants to BMP4

(20 ng/ml) or Wnt3A for only 6h, corresponding in time to

approximately stage 6. Under these conditions, BMP4 induced

Pax7+ cells in stage 4 C explants, characteristic of neural crest

progenitor cells (Fig. 3C) whereas explants cultured alone or in the

presence of Wnt3A did not generate Pax7+ cells (Fig. 3A and 3B).

Thus, at the late gastrula stage, BMP but not Wnt signals induce

neural crest fate in prospective caudal neural cells.

Neural Crest Progenitor Cells Become Independent of
Further Exposure to BMP and Wnt Signals at Head Fold
Stages

At stage 4, Wnt signals impose caudal character on prospective

neural plate cells [15] as well as on prospective border cells. By

stage 6, the generation of caudal neural cells has become

independent of exposure to Wnt signals [26]. We tested therefore

whether by stage 6 the generation of neural crest cells also has

become independent of Wnt activity, by exposing stage 6 CB

explants isolated at the midbrain-hindbrain level to mFrz8CRD

for 18–20 hr. Under these conditions, stage 6 CB explants still

generated Snail2+ and HNK-1+ neural crest cells (Fig. 4A and 4B).

In agreement with previous results performed at the trunk level

[27], at this stage inhibition of BMP activity by Noggin inhibited

the generation of HNK-1+migratory, but not of Snail2+pre-

migratory neural crest cells (Fig. 4C). Thus at stage 6, the

specification of neural crest progenitor cells has become

independent of exposure to both BMP and Wnt signals.

BMP Activity Maintains the Capacity to Induce Neural
Crest Character at Stage 10

In contrast to our results, a recent study argues that Wnt signals,

but not BMP signals, induce neural crest cells in explants isolated

from the intermediate region of the stage 10 caudal neural plate

(C) by monitoring the induction of HNK-1 after 48 hr of culture,

corresponding in time to stage ,20 [11]. HNK-1 is also, however

Figure 3. BMP but not Wnt Signals Induce Neural Crest Character in Caudal Neural Cells. (A–C) Consecutive sections showing expression
of molecular markers in explants cultured for 6 hr or 20–22 hr. (A,B) Stage 4 C explants cultured alone (n = 25) or together with Wnt3A (4x) (n = 30)
generated Sox1+cells, but no Snail2+, HNK-1+ or Pax7+ cells. (C) Stage 4 C explants cultured together with BMP4 (20 ng/ml) (n = 30) generated Pax7+,
Snail2+and HNK-1+cells, but no Sox1+cells. Data are represented as mean6SEM. Scale bar, 100 mm (A–C).
doi:10.1371/journal.pone.0001625.g003
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expressed in dorsal spinal cord cells by stage 20 (Fig. S5B), and

consistently stage 10 C explants cultured alone for 48 hr,

generated Sox1+ and HNK-1+ cells (Fig. S5C). To re-examine

whether BMP and/or Wnt signals induce neural crest character in

neural cells at stage 10, we cultured stage 10 C explants for 24 hr,

corresponding in time to approximately stage 17, when HNK-1 is

expressed in neural crest but not in cells in the dorsal neural tube

(Fig. S5A). In addition, we monitored the expression of Sox1

which is expressed in neural cells but not in neural crest cells.

When stage 10 C explants were exposed to BMP4 (20 ng/ml) or

Wnt3A (26–46) in different culture medium with or without N2

supplement, BMP but not Wnt signals inhibited the generation of

neural Sox1+ cells and induced Snail2+ and HNK-1+ neural crest

cells (Fig. S6). Thus, these results provide evidence that at stage 10,

BMP activity still has the capacity of inducing neural crest

character in caudal neural cells.

Wnt Signaling Upregulates Bmp4 Expression, which
Induces Neural Crest in Prospective Forebrain Cells

Consistent with the idea that BMP signals induce neural crest

character only in cells that have been caudalized by Wnt,

forebrain explants exposed to BMP signals generate cells of

olfactory and lens placodal character but no cells of neural crest

character ([5] and data not shown). These results indicate that

sequential or simultaneous exposure of stage 4 prospective

forebrain cells to Wnt and BMP signals would generate neural

crest cells. To test this possibility we first cultured stage 4 rostral

(R) explants, fated to generate cells of forebrain character, alone or

in the presence of Wnt3A (26–46). Stage 4 R explants cultured

alone generated Sox1+ and Pax6+ neural cells of forebrain

character, but no Snail2+, HNK-1+ or Ker+ cells (Fig. 5A),

whereas Wnt3A blocked the generation of neural cells, and

surprisingly induced Snail2+ and HNK-1+ neural crest cells

(Fig. 5B). No mesodermal cells were detected in explants exposed

to Wnt3A (Fig. S3D). At early blastula stages, Wnt signals inhibit

neural and induce epidermal fate by promoting BMP signaling

[28,29], raising the possibility that Wnt signals induce neural crest

character in prospective forebrain cells by up-regulating BMP

activity. To test this possibility, we cultured stage 4 R explants

alone or in the presence of Wnt3A (2x) for 10 hr, and monitored

Bmp2 and Bmp4 mRNA levels by quantitative real-time PCR.

Bmp2 and Bmp4 mRNAs were induced 1.7-fold and 3.0-fold,

respectively, in stage 4 R explants exposed to Wnt3A (2x)

compared to stage 4 R explants cultured alone (Fig. 6). A ,20

fold induction of Sp5 mRNA, a Wnt target gene [30], confirmed

the activation of the Wnt pathway in this assay (Fig. 6). Thus,

induction of neural crest cells in prospective forebrain cells by Wnt

signals correlates with an increase in Bmp2 and Bmp4 expression.

To examine whether BMP activity is required for the induction

of neural crest cells by Wnt3A, we cultured stage 4 R explants in

the presence of Wnt3A (26) and Noggin. Under these conditions

Noggin blocked the generation of Snail2+ and HNK-1+ neural

crest cells and Sox1+ neural cells were generated (Fig. 5C). In

addition, expression of Pax6 was blocked and Pax2 and En1/2

expression was induced, characteristic of midbrain-hindbrain cells

(Fig. 5C). Thus, Wnt activity caudalizes prospective forebrain cells

and promotes BMP signaling, which in turn induces neural crest

cells. Taken together, these results suggest that BMP activity

induces border region cells, which in the Wnt induced caudal

region of the embryo are of neural crest character.

Discussion

In this study we have addressed how the induction and early

development of the central and peripheral nervous systems are

Figure 4. The Specification of Neural Crest is Independent of BMP and Wnt Activity at the Head Fold Stage. (A–C) Consecutive sections
showing expression of molecular markers in explants cultured for 18–20 hr. (A,B) Stage 6 CB explants cultured alone (n = 20) or in the presence of
mFrz8CRD (n = 15) generated Snail2+and HNK-1+cells, and a few Sox1+cells and Ker+cells. (C) Stage 6 CB explants cultured in the presence of Noggin
(n = 20) generated Snail2+cells, and a few Sox1+cells and Ker+cells, but no HNK-1+ cells. Data are represented as mean6SEM. Scale bar, 100 mm (A–C).
doi:10.1371/journal.pone.0001625.g004
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coordinated. Previous results have provided evidence that graded

Wnt signals impose rostrocaudal character on neural plate cells at

the late gastrula stage [14,15]. We now provide evidence that at

the late gastrula stage, Wnt signals impose caudal character on

neural plate border cells and that under these conditions, BMP

signals induce neural crest cells instead of rostral placodal cells.

Thus, the status of Wnt signaling in ectodermal cells at the late

gastrula stage regulates the rostrocaudal patterning of both neural

and neural plate border cells, providing a coordinated spatial and

temporal control of the early development of the central and

peripheral nervous systems.

Neural crest cells are generated along the entire rostrocaudal

neuraxis except at rostral forebrain levels, where border cells

generate olfactory/lens placodal cells [1–3]. Already at the late

gastrula stage, cells in the rostral neural plate border are specified

as olfactory/lens placodal cells and cells in the caudal border are

specified as neural crest cells [4,5]. At gastrula stages, Bmp2 and

Bmp4 are expressed in the ectoderm surrounding the entire neural

plate [6], domains where phosphorylated Smad-1 is also detected,

indicative of activated BMP signaling [7]. In agreement with this

pattern of expression, recent results have provided evidence that at

the late gastrula stage, BMP signals induce border cells of olfactory

and lens placodal character at prospective rostral forebrain levels [5]

which do not generate neural crest cells. We now provide evidence

that at the late gastrula stage, BMP activity is required and sufficient

to induce border cells of neural crest character at caudal levels of the

neuraxis. Collectively, our study and previous results [5] provide

evidence that BMP signals induce border derivatives of both rostral

and caudal character at the appropriate rostrocaudal levels of the

neuraxis at stage 4, the late gastrula stage. At stage 5, both pre-

migratory neural crest [31] and olfactory/lens placodal cells (Fig.

S7A and S7B) still require ongoing exposure to BMP signals,

whereas only a few hours later by stage 6, the generation of pre-

migratory neural crest and olfactory placodes has become

independent of further BMP activity (Fig. S7C and S7D; see also

[27]). In summary, these results provide evidence that BMP signals

regulate early spatial and temporal development of the peripheral

nervous system (Fig. 7).

Our data provide evidence that also at stage 10, after the initial

induction of neural crest cells, BMP but not Wnt signals can induce

neural crest fate in caudal intermediate neural cells, which is

consistent with previous results [10], and in agreement with the

finding that caudal neural cells have been exposed and responded to

Wnt activity already at stage 4 [15,32]. A more recent study has

argued, however, that Wnt, but not BMP signals induce neural crest

character in stage 10 intermediate neural cells [11], although a

follow-up study indicated that BMP signals induce neural crest cells

more robustly than Wnt signals [12]. A possible explanation for these

discrepancies is that Garcia-Castro et al and Taneyhill et al [11,12]

used markers which are expressed both in neural crest cells and also

at some stage in neural progenitor cells in the caudal dorsal neural

tube [10,12,33], but did not monitor loss of neural character, and

thus not the shift between neural and neural crest fate. In contrast,

using Sox1 as a definitive neural marker, we monitored the fate shift

Figure 5. Wnt-regulated BMP Activity Induces Neural Crest Character in Prospective Forebrain Cells. (A–C) Consecutive sections
showing expression of molecular markers in explants cultured for 20–22 hr. (A) Stage 4 R explants cultured alone (n = 30) generated Sox1+ and
Pax6+cells, but no Pax2+, En1/2+, Snail2+ or HNK-1+ cells. (B) Stage 4 R explants cultured together with Wnt3A (2x) (n = 30) generated Snail2+and HNK-
1+cells, but no Sox1+, Pax6+, Pax2+ or En1/2+ cells. (C) Stage 4 R explants cultured together with Wnt3A (26) and Noggin (n = 20) generated Sox1+,
Pax2+ and En1/2+cells, but no Pax6+, Snail2+ or HNK-1+ cells. Data are represented as mean6SEM. Scale bar, 100 mm (A–C).
doi:10.1371/journal.pone.0001625.g005

Figure 6. Wnt Signaling Up-regulates Bmp2 and Bmp4 Expression
in Prospective Forebrain Cells. Relative Bmp2, Bmp4 and Sp5 mRNA
levels measured by quantitative real-time PCR in stage 4 R explants
cultured in the presence of Wnt3A (2x) compared to explants cultured
alone. Bars represent mean6SEM of 5 independent experiments.
doi:10.1371/journal.pone.0001625.g006

Nervous System Development

PLoS ONE | www.plosone.org 6 February 2008 | Volume 3 | Issue 2 | e1625



between neural and neural crest cells. Thus, using markers detecting

neural crest progenitors, pre-migratory and migratory neural crest

cells, as well as marker of neural and epidermal cells, our results

provide clear evidence that both at the late gastrula stage, when

neural crest cells are initially induced, and by stage 10 after induction

of neural crest cells, BMP but not Wnt signals induce neural crest

character in caudal neural cells.

Members of the Wnt family are expressed in the ectoderm and

in the mesoderm in the caudal region of the gastrula stage embryo,

and Wnt inhibitors are expressed in more rostral regions of the

embryo [13]. Consistent with these patterns of expression, Wnt

signals induce caudal character in prospective neural cells at the

late gastrula stage [15]. At this stage, BMP signaling is ongoing in

both rostral and caudal border cells [6,7], and our results provide

evidence that exposure of rostral border cells to Wnt signals

induces the generation of neural crest cells at the expense of

olfactory and lens placodal cells. These results are supported by

recent findings in Xenopus which indicate that the exclusion of

neural crest cells from the rostral border is dependent on

Dickkopf1, an inhibitor of Wnt signals [34]. In addition, our

results provide evidence that attenuation of Wnt signaling in

caudal border cells blocks the generation of neural crest cells and

promotes the generation of olfactory and lens placodal cells

normally generated from rostral border cells. Thus, the role of

Wnt signals in the specification of neural crest cells is to impose

caudal character on cells in the neural plate border region. In

summary, our results provide evidence that at the late gastrula

stage the status of Wnt signaling in the border region determines

whether BMP activity induces border cells of neural crest or

olfactory/lens placodal character (Fig. 7).

The present and previous results [15,26] also provide evidence

that both neural and neural plate border cells acquire caudal

character in response to Wnt signals at the late gastrula stage, and

that both classes of cells become independent of exposure to

further Wnt signals by the head fold stage, stage 6 in chick. These

results suggest a temporally coordinated requirement for Wnt

signals in the specification of caudal neural plate and caudal

border cells. A study in Xenopus has reported that the requirement

for Wnt signaling in the induction of neural crest cells can be

uncoupled from the caudalization of neural plate cells [35]. In this

study, inhibition of the Wnt pathway was performed in whole

embryos from the two cell stage, which resulted in a reduction of

neural crest marker expression, but not of caudal neural markers

[35]. Previous studies have provided evidence that the generation

of caudal neural cells requires Wnt signaling [14,15,36], implying

that Wnt signaling in the caudal neural plate was only partially

inhibited under the conditions used by Wu et al [35]. Thus, under

these conditions Wnt signaling may be more reduced in

prospective neural crest cells than in caudal neural cells in these

embryos or the generation of neural and neural crest cells requires

different levels of Wnt activity. In summary, our results provide

evidence that Wnt signals regulate the rostrocaudal patterning of

both neural and neural plate border cells, and that Wnt in

combination with BMP signals provide a coordinated spatial and

temporal control of the early development of the central and

peripheral nervous systems (Fig. 7).

Materials and Methods

Isolation and Culture of Tissue Explants
Fertilized white leghorn chicken eggs were obtained from Agrisera

AB, Umeå, Sweden. Chick embryos were staged according to the

protocols of Hamburger and Hamilton [37]. Ectodermal explants

were isolated using a tungsten needle. Explants of the prospective

neural crest were isolated from stage 4 and 6 chick embryos, and

explants of the prospective olfactory/lens placodal, midbrain-

hindbrain and forebrain regions were isolated from stage 4 embryos.

All explants were cultured in vitro in collagen (Vitrogen) in serum-

free conditions. Unless stated, culture media consisted of OPTI-

MEM (Gibco) containing N2 supplement (Invitrogen) and fibronec-

tin (Sigma). Wnt3A was used at an estimated concentration of 150 to

600 ng/ml (16–46), mFrz8CRD media were used at 50 ml/ml

culture medium and Noggin at an estimated concentration of 25 ng/

ml. Explants cultured in the presence of control conditioned media

generated the same combination of cells as explants cultured alone

(Fig. S8). Human BMP4 (R&D Systems) was used at 20–35 ng/ml.

The use of chick embryos in this study was approved by the ethical

committee at Umeå University.

In Situ Hybridization and Immunohistochemistry
For in situ RNA hybridization and immunohistochemistry,

embryos and explants were fixed as described [23] and serially

sectioned at 8–10 mm. In situ RNA hybridization using a chick

digoxigenin-labeled Raldh3 [38] probe was performed essentially as

described [39]. For immunohistochemistry the anti-Sox1, the

Figure 7. Early Development of the Central and Peripheral Nervous Systems is Coordinated by Wnt and BMP Signals. (A) Schematic
representation of a stage 4 embryo showing the distribution of Wnt and BMP activities in the neural plate and neural plate border. (B) Schematic
diagram showing proposed roles of Wnt and BMP signals between stage 4 and 6 in chick. Wnt signals impose caudal character in both neural plate
and neural plate border cells. At rostral neural (RN) levels in absence of Wnt signals, BMP signals induce olfactory/lens placodal (OLP) cells, and at
caudal neural (CN) levels in the context of Wnt signaling, BMP signals induce neural crest (NC) cells.
doi:10.1371/journal.pone.0001625.g007
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Wide Spectrum Screening anti-Cytokeratin (DakoCytomation),

anti-Pax2 (Biosite) rabbit antibodies, the anti-d-crystallin sheep

antibody [40], the monoclonal anti-Slug [10], anti-HuCD

(Molecular Probes), anti-HNK-1 [33], anti-Pax6 [41], anti-Pax7

[42] and anti-En1/2 4G11 [41] antibodies were used. Nuclei were

stained using DAPI (Sigma).

Quantitative Real-Time PCR Analysis
Total RNA was derived from cultured forebrain explants

(n = 16). Primer sequences were the following: Bmp2: 59–CGC-

AGCTTCCACCACGA-39, 59-CCCACTTGTTTCTGGCAG-

TTCT-39; Bmp4: 59-GGGCCAACACCGTGAGG-39, 59–CAG-

GTGCTCTTCATGGTGGAA-39; Sp5: 59-TGTAAAGCGAC-

CCGCGA-39, 59-AACGTATTTATTTTCACGCTGCAA-39;

Gapdh: 59-CTGTTGTTGACCTGACCTGCC-39, 59-TCATA-

CTTGGCTGGTTTCTCCAG-39; Histone H4: 59-TCACCTA-

CACCGAGCACGC-39, 59-CCGTGACCGTCTTCCTCTTG-

39; S17: 59-CTACGTGCCCGAGGTCTCTG-39, 59-GGGTCC-

ACTTCAATGATCTCCT-39.

Statistical Analysis
Consecutive sections from the same explants were stained in

multiple ways. The percentage of antigen-expressing cells was

quantified by counting the number of stained cells in 2–4 sections

per explants (n = 6–9). The total number of cells per section was

determined by counting the number of nuclei using DAPI staining.

For quantification of Sox1, Snail2, HNK-1, Ker, Pax2 and En1/2

expression, the graphs represent mean number of cells positively

stained as percentage of total cell number. For quantification of

HuCD, d-crystallin and Raldh3 expression, the graphs represent

mean number of cells positively stained as percentage of total

number of Ker+ cells, quantified in adjacent sections. Error bars

represent mean6SEM. P-values in figure 6 were obtained using

one-sample T-test (*p,0.05; **p,0.01).

More detailed information about materials and methods can be

found in Text S1 available online.

Supporting Information

Text S1 Supplementary materials and methods

Found at: doi:10.1371/journal.pone.0001625.s001 (0.05 MB

DOC)

Figure S1 Explants Generate Neural Crest Cells in Absence of

Mesodermal Cells. (A–D) Consecutive sections showing expression

of molecular markers in explants cultured for 20–22 hr. (A) Stage

4 CB explants cultured alone (n = 9) generated HNK-1+ cells, a

few Ker+ cells, but no Sox1+ cells, or Chordin+, Brachyury+,

Tbx6L+ or Raldh2+ mesodermal cells. (B) Stage 4 RB explants

cultured in the presence of Wnt3A (1x) (n = 8) generated HNK-1+

cells, a few Ker+ cells, but no Sox1+ cells, or Chordin+,

Brachyury+, Tbx6L+ or Raldh2+ mesodermal cells. (C) Stage 4

C explants cultured in the presence of BMP4 (20 ng/ml) (n = 9)

generated HNK-1+ cells, a few Ker+ cells, but no Sox1+ cells, or

Chordin+, Brachyury+, Tbx6L+ or Raldh2+ mesodermal cells. (D)

Stage 4 R explants cultured in the presence of Wnt3A (26) (n = 8)

generated HNK-1+ cells, a few Ker+ cells, but no Sox1+ cells, or

Chordin+, Brachyury+, Tbx6L+ or Raldh2+ mesodermal cells.

Scale bar, 100 mm (A–D). (E) Transversal sections of a stage 10

chick embryo at the spinal cord level. Sox1 is expressed in neural

cells. HNK-1 is expressed in migratory neural crest cells. Ker is

expressed in epidermal cells. Chordin and Brachyury are

expressed in the notochord. Raldh2 and Tbx6L are expressed in

the paraxial mesoderm.

Found at: doi:10.1371/journal.pone.0001625.s002 (3.60 MB TIF)

Figure S2 In the Absence of BMP Activity Prospective Neural

Crest Cells Acquire a Midbrain-hindbrain Character. (A) Photo-

graphs of wholemount stage 4 CB explants in collagen cultured alone

for 22 hr or 30 hr (n = 20). After 30 hr migratory cells are clearly

visible. Scale bar, 100 mm. (B,C) Consecutive sections showing

expression of Pax2 and En1/2 in explants cultured for 22 hr. (B)

Stage 4 CB explants cultured alone (n = 20) generated no Pax2+ or

En1/2+ cells. (C) Stage 4 CB explants cultured in the presence of

Noggin (n = 20) generated Pax2+ and En1/2+ cells, characteristic of

the midbrain-hindbrain. Scale bar, 100 mm (B,C).

Found at: doi:10.1371/journal.pone.0001625.s003 (0.75 MB TIF)

Figure S3 The Levels of Cell Proliferation and Apoptosis are not

Affected by BMP or Wnt Activity in vitro. (A–D) No significant

differences in cell proliferation or apoptosis were detected in explants

cultured alone compared to explants exposed to mFrz8CRD,

Noggin, BMP4 or Wnt3A for 10 hr. (A) Stage 4 CB explants (n = 9)

cultured alone or together with Noggin generated ,11% cells

expressing cleaved Caspase 3 and ,3% cells expressing Mpm2. (B)

Stage 4 CB explants (n = 15) cultured alone or together with

mFrz8CRD generated ,13% cells expressing cleaved Caspase 3

and ,2% cells expressing Mpm2. (C) Stage 4 RB explants (n = 8)

cultured alone or together with Wnt3A (16) generated ,7% cells

expressing cleaved Caspase 3 and ,3% cells expressing Mpm2. (D)

Stage 4 C explants (n = 9) cultured alone or together with BMP4

(20 ng/ml) generated ,13% cells expressing cleaved Caspase 3 and

,2% cells expressing Mpm2. Data are represented as mean6SEM.

Scale bar, 100 mm (A–D).

Found at: doi:10.1371/journal.pone.0001625.s004 (1.40 MB TIF)

Figure S4 In the Presence of Wnt3A b-catenin Nuclear Staining is

Increased in Prospective Midbrain-hindbrain Cells. (A,B) Consec-

utive sections showing expression of b-catenin in explants cultured

for 6 hr. (A) Stage 4 C explants cultured alone (n = 9) generated no

or only a few cells with positive nuclear b-catenin staining. (B) Stage

4 C explants cultured together with Wnt3A (46) (n = 9) generated an

increased number of cells with positive nuclear b-catenin staining

(white arrowheads). Scale bar, 100 mm (A,B).

Found at: doi:10.1371/journal.pone.0001625.s005 (0.63 MB TIF)

Figure S5 At Stage 20 HNK-1 is Expressed in Spinal Cord Neural

Cells. (A) Transversal section of a stage 17 chick embryo at the spinal

cord level. HNK-1 is expressed in neural crest cells but not in Sox1+

neural cells. (B) Transversal section of a stage 20 chick embryo at the

spinal cord level. HNK-1 is expressed in Sox1+ neural cells. (C) Stage

10 C explants cultured alone (n = 30) for 48 hr generated Sox1+ and

HNK-1+ cells in the same region. Scale bar, 100 mm.

Found at: doi:10.1371/journal.pone.0001625.s006 (0.70 MB TIF)

Figure S6 BMP4 but not Wnt3A Induces Neural Crest in Spinal

Cord Cells under Different Culture Conditions. (A–I) Consecutive

sections showing expression of molecular markers in explants

cultured for 24 hr. (A,B) Stage 10 C explants cultured alone

(n = 20) or together with Wnt3A (46) (n = 20) in OPTI-MEM with

N2 supplement generated Sox1+ cells, but no Snail2+ or HNK-1+

cells. (C) Stage 10 C explants cultured together with BMP4

(20 ng/ml) (n = 20) in OPTI-MEM with N2 supplement generated

Snail2+ and HNK-1+ cells, but no Sox1+ cells. (D,E) Stage 10 C

explants cultured alone (n = 9) or together with Wnt3A (46) (n = 9)

in OPTI-MEM lacking N2 supplement generated Sox1+ cells, but

no Snail2+ or HNK-1+ cells. (F) Stage 10 C explants cultured

together with BMP4 (20 ng/ml) (n = 9) in OPTI-MEM lacking N2

supplement generated Snail2+ and HNK-1+ cells, but no Sox1+

cells. (G,H) Stage 10 C explants cultured alone (n = 20) or together

with Wnt3A (46) (n = 20) in F12 with N2 supplement generated

Sox1+ cells, but no Snail2+ or HNK-1+ cells. (I) Stage 10 C

Nervous System Development
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explants cultured together with BMP4 (20 ng/ml) (n = 20) in F12

with N2 supplement generated Snail2+ and HNK-1+ cells, but no

or a few Sox1+ cells. Scale bar, 100 mm (A–I).

Found at: doi:10.1371/journal.pone.0001625.s007 (1.41 MB TIF)

Figure S7 Rostral Border Cells Become Independent of BMP

Signals at the Head Fold Stage. (A–D) Consecutive sections

showing expression of molecular markers in explants cultured for

43–45 hr. (A) Stage 5 RB explants cultured alone (n = 10)

generated a distinct region of Raldh3+, HuCD+ and Ker+ cells;

characteristic of olfactory placodal cells and a separate region of

cells expressed d-crystallin and Ker; characteristic of lens cells, but

no L5+ neural cells were detected. (B) Stage 5 RB explants cultured

in the presence of Noggin (n = 10) generated L5+ and HuCD+

neural cells, but no Raldh3+, d-crystallin+ or Ker+ cells were

detected. (C) Stage 6 RB explants (n = 12) generated a distinct

region of Raldh3+, HuCD+ and Ker+ cells and a separate region of

cells expressed d-crystallin and Ker, but no L5+ neural cells were

detected. (D) Stage 6 RB explants cultured in the presence of

Noggin (n = 12) generated Raldh3+, HuCD+ and Ker+ cells;

characteristic of olfactory placodal cells, but no d-crystallin+ or L5+

cells. Scale bar, 100 mm (A–D).

Found at: doi:10.1371/journal.pone.0001625.s008 (1.78 MB TIF)

Figure S8 Control Conditioned Medium do not Affect the

Character of Cells Generated in Explants. (A–G) Consecutive

sections showing expression of molecular markers in explants

cultured for 20–22 hr. (A–C) Stage 4 CB explants cultured alone

(n = 30) or in the presence of control CHO (n = 9) or HEK-293-

LacZ conditioned media (n = 9) generated Snail2+ cells, HNK-1+

cells, and a few Sox1+ cells and Ker+ cells. (D,E) Stage 4 RB

explants cultured alone (n = 20) or in the presence of control L-cell

conditioned media (n = 20) generated Ker+ cells, but no Sox1+,

Snail2+ or HNK-1+ cells. (F,G) Stage 4 R explants cultured alone

(n = 20) or in the presence of control L-cell conditioned media

(n = 20) generated Sox1+ cells, but no Snail2+, HNK-1+ or Ker+

cells. Scale bar, 100 mm (A–G).

Found at: doi:10.1371/journal.pone.0001625.s009 (2.73 MB TIF)
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