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Light Activates Output from Evening Neurons
and Inhibits Output from Morning Neurons
in the Drosophila Circadian Clock

Marie Picot1, Paola Cusumano1, André KIarsfeId1, Ryu Uedaz, Francois Rouyer1*
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Animal circadian clocks are based on multiple oscillators whose interactions allow the daily control of complex
behaviors. The Drosophila brain contains a circadian clock that controls rest-activity rhythms and relies upon different
groups of PERIOD (PER)-expressing neurons. Two distinct oscillators have been functionally characterized under light-
dark cycles. Lateral neurons (LNs) that express the pigment-dispersing factor (PDF) drive morning activity, whereas
PDF-negative LNs are required for the evening activity. In constant darkness, several lines of evidence indicate that the
LN morning oscillator (LN-MO) drives the activity rhythms, whereas the LN evening oscillator (LN-EO) does not. Since
mutants devoid of functional CRYPTOCHROME (CRY), as opposed to wild-type flies, are rhythmic in constant light, we
analyzed transgenic flies expressing PER or CRY in the LN-MO or LN-EO. We show that, under constant light conditions
and reduced CRY function, the LN evening oscillator drives robust activity rhythms, whereas the LN morning oscillator
does not. Remarkably, light acts by inhibiting the LN-MO behavioral output and activating the LN-EO behavioral
output. Finally, we show that PDF signaling is not required for robust activity rhythms in constant light as opposed to
its requirement in constant darkness, further supporting the minor contribution of the morning cells to the behavior in
the presence of light. We therefore propose that day-night cycles alternatively activate behavioral outputs of the
Drosophila evening and morning lateral neurons.
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Introduction

Circadian rhythms are controlled by endogenous clocks
that tick with an approximately 24-h period fitted to the
rotation of the earth. They are synchronized to day-light
cycles by environmental cues, the strongest of which is light.
Since activity must occur at the most favorable time of the
day, the rest-activity rhythm is one of the most tightly clock-
controlled behaviors. In natural conditions, many animal
species display bimodal rest-activity profiles with activity
peaks that anticipate dawn and dusk, and adjust to seasonal
changes in day length [1,2]. A similar activity pattern is
observed in laboratory light-dark (LD) conditions. A length-
ening of the light episode induces a morning-peak advance
and an evening-peak delay in mice, suggesting the existence
of morning and evening oscillators in the mammalian brain
that contribute to seasonal adaptation [3]. The cellular basis
of such a dual oscillator has not been characterized in
mammals, but has been recently described in Drosophila.

The Drosophila behavioral clock rests upon approximately
150 neurons that express the PERIOD (PER) protein, divided
into three lateral and three dorsal groups, as well as a recently
described lateral-posterior group [4-6]. The lateral neurons
(LNs) can be divided into cells that express the pigment-
dispersing factor (PDF) neuropeptide, and PDF-negative cells.
The PDF-expressing cells are four to five large ventral lateral
neurons (I-LN.s) and four small ventral lateral neurons (s-
LN,s), whereas the PDF-negative cells are a single s-LN, (the
fifth s-LN,) and six dorsal lateral neurons (LNgs). In LD cycles,
PER expression in the four PDF-expressing s-LNgs is
sufficient to drive activity that anticipates lights-ON, and
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hence these cells contain a morning oscillator (MO), whereas
the addition of four PDF-negative LNs (fifth s-LN, plus three
LNgs) is sufficient to drive lights-OFF anticipation; hence, the
latter cells contain an evening oscillator (EO) [7]. Another
group reported similar results [8]. They additionally indicated
that dorsal neurons (DNs) could contribute to both the MO
and EO. We will therefore specifically refer to the morning
oscillator residing in PDF-positive LNs as the LN-MO and to
the evening oscillator residing in the PDF-negative LNs as the
LN-EO. We have previously shown that, in constant darkness
(dark-dark; DD), clock function restricted to the LN-MO is
sufficient to generate robust 24-h activity rhythms, whereas
clock function in the LN-EO is not [7]. This suggested that, in
the absence of light, the LN-MO is the driving oscillator of the
circadian network. Indeed, it has been shown that at least part
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Author Summary

Living organisms have evolved circadian clocks that anticipate daily
changes in their environment. Their clockwork is fully endogenous,
but can be reset by external cues. (Light is the most efficient cue.)
The circadian neuronal network of the fruit fly (Drosophila) brain
perceives light through the visual system and a dedicated photo-
receptor molecule, cryptochrome. Flies exhibit a bimodal locomotor
activity pattern that peaks at dawn and dusk in light-dark
conditions. These morning and evening activity bouts are controlled
by two distinct neuronal clocks in the fly brain. By using flies with a
deficient cryptochrome pathway, we have uncovered an unex-
pected role for light in the circadian system. In addition to
synchronizing the two oscillators to solar time, light also controls
their behavioral output. The morning oscillator can periodically
rouse the fly when in constant darkness, but not in constant light,
whereas the evening oscillator can do the same in constant light,
but not in constant darkness. This suggests the existence of a light-
dependent switch between oscillators that appears to require the
visual system. Such a mechanism likely contributes to better
separate the active periods of the fly at dawn and dusk, and may
help the animal to adapt to seasonal changes in day length.

of the LN-EO behaves in DD as a driven oscillator, reset by
the LN-MO in each circadian cycle [9].

Circadian clocks are very sensitive to light and respond to
it in different ways. First, light is the main clock synchronizer,
and LD cycles entrain the Drosophila brain clock through two
separate light-input pathways. The blue-light-sensitive pro-
tein cryptochrome (CRY) is present in most clock neurons
[10,11]. Light-activated CRY binds to the TIMELESS (TIM)
protein and induces its degradation, which is likely to reset
the molecular oscillator [12-15]. cry" mutants do not respond
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to short light pulses and fail to quickly resynchronize to a
shift of the LD cycle [10,11,16-18]. The cryh mutation is
located in the flavin-binding domain and certainly abolishes
CRY photoreceptive function [17]. Although the CRY"
protein is barely detectable by anti-CRY antibodies [17], very
low amounts may still be present and play some non-
photoreceptive function in the mutants. The visual system,
which includes the compound eye and the extra-retinal
Hofbauer-Biichner eyelet, provides additional rhodopsin-
dependent light inputs to the brain clock [19-21]. They are
not sufficient for clock responses to short light pulses, but
allow entrainment by LD cycles (although less efficiently than
CRY). Only flies depleted for both functional CRY and the
visual system appear circadianly blind [11,18].

Besides entrainment, light affects other parameters of the
circadian system, including its internal synchrony as well as
the robustness of the rhythm and its period [22]. In constant
light (light-light; LL), wild-type flies become arrhythmic,
whereas ¢ry” mutants retain robust rhythmicity with a 24-26-h
period [11,14,15,18,23,24], presumably because the absence of
functional CRY prevents the light-induced disappearance of
TIM in the mutants. Indeed, mutations affecting the CRY-
dependent degradation of the TIM protein also produce
robust 24-26-h activity rhythms in LL [24,25]. Two studies
reported that cryb mutants display split rhythms in LL, with a
major long-period (~25 h) component and a minor short-
period (~22.5 h) one [26,27]. These slow and fast components
appear to correlate with molecular oscillations in some of the
PDF-negative LNs and in the PDF-positive s-LN,s, respec-
tively [27], suggesting that they may originate from these
subsets. Genetic background, light specifications, and behav-

Table 1. Locomotor Activity Rhythms

Light LNs with Data Active LN Genotype Total Rhythmic Period (h) Power Activity
Condition PER Cycling Source® Oscillators Flies (n) Flies (%)
LL None = None yw 78 10% 256 = 0.8 323 11 *2
LL s-LN,, fifth s-LN,, 1 MO + EO yW;;nyb ss 191 90% 247 =01 1043 15=*1
3 LNgYs
Fifth s-LN,, 1P EO yW;pdf-GaI4/UAS—cry;cryb ss 48 83% 257 = 0.1 856 202
some LNgs
s-LN,, fifth s-LN,, NSP MO + EO w;tim-Gal4/UAS-cryRNAi 82 76% 24.1 = 0.1 57+*3 32=*3
some LNgs
Fifth s-LN,, NSP EO w;tim-Gal4 UAS-cryRNAi/pdf-Gal80 45 71% 272 = 0.2 746 34=*2
some LNy
LL None NS None yw;tim-Gal4/UAS-cry;cry” ss 30 10% 232+ 19 295 3610
s-LN, 1 MO w;tim-Gal4 UAS-cry/pdf-Gal80 cry® ss 38 8% 23.0 = 0.8 53*+17 30+ 9
s-LN, 1 MO w;pdf-Gal4/UAS-cryRNAi 51 43% 236 £ 03 45 4 24+ 2
s-LN, 1 MO w;pdf-Gal4 UAS-cryRNAI/GMR-hid 30 83% 244 =01 1027 29*2
LL None NS None w;MaiI79—Gal4/UA5—cry;cryb ss 64 31% 227 =03 505 23*2
s-LN, 1 MO w;Mai179-Gal4 UAS-cry/pdf-Gal80;cry® ss 30 27% 236 04 42*4 18*4
LL Fifth s-LN,, 2 EO perw;Mai179-Gal4/pdf-Gal80;UAS-per16 cryb ss/cryb ss 135 84% 25.7 = 0.1 88 3 201
3 LNgYs
Fifth s-LN,, NS EO per’w;cry-Gald—19/pdf-Gal80;UAS-per16 cry” ss/cry® ss 31 74% 280+02 74+8 12%1
3 LNg“s
DD s-LN, 2 MO per’w;pdf-Gald/+-;UAS-per16/4- 32 91% 239 = 0.1 887 261
3 LNMs 2 EO per’w;Mai179-Gal4/pdf-Gal80;UAS-per16/+ 52 29% 204 = 1.0 559 28*3
Fifth s-LN,, 2 EO per®w;cry-Gal4-19/pdf-Gal80;UAS-per16/+ 42 33% 236 + 0.6 49+7 31 %3
3 LNgYs

The mean values of circadian period (h), associated powers (see Materials and Methods) and activities (number of events per 0.5 h) are given = s.e.m.

“The PER cycling data are derived from Figure 1 (1) and Figure 2 (2) or not shown (NS).

PThe identity of the cycling LNgs was not determined with regards to Mai179-Gal4 expression.

doi:10.1371/journal.pbio.0050315.t001
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Figure 1. Characterization of Different Subgroups of LNg4s

(A) PER immunoreactivity in LNgs of cry” mutants during the third day in LL. Top row: PER labeling; bottom row: GFP labeling; and middle row: merged.
w;Mai179-Gal4/UAS-gfp;cry” ss flies were entrained for 4 d in LD conditions (20 °C) before transfer to LL. PER staining was performed on 15 to 20 brain
hemispheres for each time point. At 48 and 72 h in LL, one of the Mai179-Gal4-positive cells (LNg™") is strongly labeled, whereas the other two (LNg"s)
are either not visible (as shown here at 72 h) or only weakly labeled (as shown here at 48 h). At intermediate time points, PER labeling is much more
homogeneous in the three Mai179-Gal4-positive LNg4s, being either moderate (56 h) or almost completely absent (64 h). For the quantization of PER
expression shown in Figure 2A, the three Mai179-Gal4-positive LNy4s were thus treated as a single group at time points when no clear difference in
labeling was observed between them (56, 60, and 64 h). The three Mai179-Gal4-negative LNgs (LN4®s) display similar PER labeling at all time points.
(B and C) CRY immunoreactivity in wild-type LNgs. Top row: CRY labeling; bottom row: GFP labeling; and middle row: merged. CRY staining was
performed on (B) w;Mai179-Gal4/UAS-gfp brains (after flies had been left in the dark for 4 d) or (C) w;cry-Gal4-39/UAS-gfp brains (after flies had been left

in the dark for >8 d). CRY labeling is always observed in only three LNg4s, which are the Mai179-Gal4-positive ones.

Scale bars indicate 20 um.
doi:10.1371/journal.pbio.0050315.9g001

ioral setup are likely to influence splitting occurrence, but the
main reason why split rhythms have only been observed in
these two studies is likely related to their longer activity
recordings, since split components usually appear after
several days in LL [26,27].

The present work is aimed at understanding how the
previously defined LN-MO and LN-EO control rhythmic
behavior in the presence or the absence of light. We have
generated flies that were mosaic with respect either to CRY
signaling or to the presence of a functional clock. In particular,
we altered functional CRY levels separately in either PDF-
positive or PDF-negative neurons. We similarly restored PER
expression in pero;; cryb double mutants only in precisely
targeted neurons. The results indicate that light has opposite
effects on the LN-MO and LN-EO, activating the rhythmic
behavioral output induced by the evening cells and inhibiting
the rhythmic behavioral output induced by the morning cells.
Surprisingly, we found that light acts downstream from the
molecular clock, since the behavior, but not the molecular
oscillations, is light-dependent. We also show that ¢ry’ pdf’
double mutants are rhythmic in LL, further supporting the
light-induced preeminence of PDF-negative cells.

Results
PER Oscillations in the LN-MO and LN-EO in Constant Light

We first analyzed PER oscillations in ¢ry’ mutants in LL,
under conditions in which split behavioral rhythms do not
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occur (see Materials and Methods). As previously described
(see above), the mutants displayed a slightly lengthened
period (Tables 1 and S1). In cry" brains dissected on the third
day in LL, the PDF-positive s-LNys and some PDF-negative
LNs showed PER cycling, whereas the 1-LNys and three subsets
of DNs did not (unpublished data). This is very similar to the
molecular oscillations described by Rieger et al. [27] for ery’
mutants in LL, before splitting would eventually occur. Since
PER cycling in LL appeared to be restricted to the PDF-
positive and PDF-negative LNs, we decided to focus our study
on these groups of clock neurons. In addition, we decided to
center the study upon the effect of light on the rhythmicity of
the two LN oscillators, and we voluntarily put aside the role
of cryptochrome and the visual system in their entrainment
pathways.

To first clarify the heterogeneity of the LNgs group (see
also [27]), we examined the Mail79-Gal4-driven green
fluorescent protein (GFP) expression profile, which includes
the previously characterized LN-EO [7] (see Figure S1). In LL,
PER cycling was detected in all four LN-EO neurons (Figures
1A and 2A). The fifth s-LN, and the previously described [27]
cycling LNy (called here LN displayed the strongest
oscillations, but the two other Mail 79-Gal4-positive LNgs
(LN4Ms) also showed robust, although slightly delayed,
oscillations (trough at circadian time [CT]68 instead of
CT64). Conversely, constant PER levels were observed in the
three Mail 79-Gal4-negative LNgs (LN4"s; Figures 1A and 2A).
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Figure 2. PER Oscillations in the LN-MO and LN-EO Neurons in Constant Light

Fly entrainment and PER quantification were performed as described in Figure 1. Error bars represent the s.e.m. for each LN subset. Behavioral
rhythmicity in LL (see Table 1) is reported on the right of each genotype (R: rhythmic, and AR: arrhythmic). Unmentioned neuronal groups do not show
PER cycling.

(A) Brains were dissected during the third day in LL. Top panel PER levels i in the four PDF-expressing s-LN,s and the fifth s-LN,. Bottom panel: PER levels
in the three types of LNg4s (one Mail79-Gal4-positive LNg"™ + two LNg™s and Mai179-Gal4-negative LNgCs, as shown in Figure 1A). LNg™" is the
previously described extra LNy [27].

(B-F) brains were dissected after 36 h (dark bars) and 48 h (Iight bars) in LL, corresponding to the expected trough and peak in PER oscillations,
respectively. The left part of each panel shows PER oscillations i in the LN-MO (PDF-positive s-LN,s), and the right part shows PER oscillations in the two
most strongly oscillating neurons of the LN-EO (fifth s-LN,, + LN4™"). The presence or absence of CRY is indicated for each neuronal group. PER staining
is significantly different between the two time points in each genotype (p < 0.0005).

(G) Brains were dissected during the fifth day in LL. The panel shows PER oscillations in the LN-MO (PDF-positive s-LN,s). No PER oscillations were
detected in LN-EO neurons (see [D]).

doi:10.1371/journal.pbio.0050315.9002

Interestingly, CRY immunoreactivity was detected in the contained functional CRY, and PER oscillations were ob-
three Mail79-Gal4-positive LNgs (one LN + two LNMs), served exclusively in some of the cells expressing either
but not in the Mail 79-Gal4-negative LN4% in DD (Figure 1B strongly reduced CRY levels (through ¢ry RNA interference
and 1C). These data strongly support the existence of two LN4 [RNAi]) or the mutated CRY" protein (Figures 2B-2F and S2).
subgroups: three Mail79-Gal4-expressing CRY-positive cells The four PDF-positive s-LNs and the two selected PDF-
constituting the LN-EO with the fifth s-LN,, and three negative LNs displayed oscillations whenever they were made
Mail79-Gal4- and CRY-negative cells, whose function is CRY deficient (Figures 2B and S2). We conclude that, when
unknown. functional CRY is reduced or absent, PER oscillations in LL
We then checked whether the presence of functional CRY persist in the previously characterized LN-MO and LN-EO.
affects PER expression in an oscillator-autonomous manner
in LL, using the two most strongly cycling Mail79-Gal4- Light Inhibits the Behavioral Output of the LN Morning
expressing PDF-negative LNs as reporters for the LN-EO. The Oscillator

main additional Gal4 lines we used here were pdf-Gal4 [28] to We then analyzed the behavior of flies with PER oscillations
drive expression in the PDF-positive cells only, and tim-Gal4 in either the PDF-expressing or the PDF-negative neurons in
[29] to drive expression in all clock cells. The pdf-Gal80 LL. Genotypes with CRY only (and consequently no PER) in
transgene was used to inhibit GAL4 activity in the PDF- PDF-expressing cells were almost as rhythmic as ery’ mutants
positive cells, and thus “subtract” their contribution from (Figure 3 and Table 1; see also Table S1), with a consistently
any wider GAL4-expressing cell ensemble [8]. As in wild-type long period. Contrary to DD, the PDF-negative cells can
flies, PER levels remained low or undetectable in all cells that therefore drive behavioral rhythms autonomously in LL, in
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Figure 3. Activity Profiles in Constant Light

Average double-plotted actograms during 6 d (top to bottom) of LL after LD entrainment. White and grey bars above each panel indicate entrainment
light and dark periods, respectively. Active LN oscillators are reported for each genotype. Hash density (HD) varies according to the genotype for better
clarity of the actogram (see Materials and Methods). True activity levels are reported in Table 1.

N, number of flies for each genotype.
doi:10.1371/journal.pbio.0050315.g003

the absence of any PER oscillations in the PDF-positive LNys.
Conversely, flies with CRY only (and consequently no PER) in
PDF-negative cells are mostly arrhythmic (Table 1), despite
robust PER oscillations in their PDF-positive s-LNs (Figure
2C and 2D). This demonstrates that the four LN-MO neurons
cannot drive robust behavioral rhythms autonomously in LL,
as opposed to their ability to do so in DD. PER oscillations
persist in such flies at least up to the fifth day in LL (Figure
2G), whereas their behavior becomes arrhythmic within the
very first days (Figure 3). We thus conclude that in cry" flies,
constant light appears to inhibit the behavioral output of the
LN-MO, but not the molecular oscillator itself.

To understand whether light inputs coming from the visual
system participate to the LL behavioral rhythms of cryb flies,
we induced its genetic ablation by expressing the apoptotic
gene head involution defective (hid) under the control of
photoreceptor-specific regulatory sequences. The GMR-hid
strain [30] was previously shown to completely lack all visual
glass gene-dependent structures, but to retain the glass-
dependent set of DNIs that express PER in the adult brain
[11]. GMR-hid-induced ablation of the visual system restored
the behavioral function of the PDF-expressing neurons in LL,
now driving rhythms with a 24.4-h period (Figure 3 and Table
1), although there was no detectable change in PER
oscillations (compare Figure 2D and 2F). This indicates that
the inhibition of the LN-MO behavioral output by light
depends on the visual system.

Light Is Required for the Behavioral Output of the LN
Evening Oscillator

What is the neuronal basis of the long-period, LN-MO-
independent rhythmicity of cryb flies in LL? Restoring CRY in
only the LN-EO (three LNgs plus the PDF-negative fifth s-
LN,) (Figures 2E and S2) rendered the flies as arrhythmic as
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the wild type (Figure 3 and Table 1). Thus the LN-EO is
necessary for that long-period rhythmicity. Indeed, pera 5 cryb
double mutants with Mail 79-Gal4-driven PER expression
restricted to the LN-EO displayed robust activity rhythms,
with a long 25.7-h period (Figure 3 and Table 1). In these LN-
EO-only flies, PER levels robustly cycled in all four neurons,
displaying a trough after 65 h rather than 60 h in LL,
consistent with a period close to 25.5 h rather than 24 h
(Figures 4A and S3). A similar behavior was obtained with the
cry-Gal4-19 driver (Table 1), which gives a PER expression
pattern very close to Mail 79-Gal4 (Figure S1). The LN-EO is
thus not only necessary, but also sufficient to drive rhythmic
behavior in LL, whereas it is not sufficient in DD ([7] and
Table 1). However, genotypes with PER cycling in the LN-MO
neurons in addition to the LN-EO neurons displayed a
slightly shorter period than flies with PER in the LN-EO
neurons only (Table 1), suggesting that the LN-MO somehow
influences the period of the LN-EO and therefore partic-
ipates in the LN-EO-driven rhythmic behavior. Interestingly,
long-period PER oscillations in the LN-EO neurons were
observed in DD (trough after 64 h in Figure 4B or between 64
and 72 h in Figure 4C, to be compared with 60 h in Figure4D;
see also Figure S3), similarly to LL, although such LN-EO-
only flies were behaviorally arrhythmic, contrary to LN-MO-
only flies (Table 1). We conclude that in the absence of light,
the LN-EO is running at the molecular level, but that its
behavioral output is inhibited since it cannot drive activity
rhythms.

PDF Signaling Is Not Required for Robust Rhythms in
Constant Light

Since PDF is required for robust behavioral rhythmicity in
DD [28], we asked whether rhythmicity in LL would also
depend on PDF signaling. We therefore constructed ey’ pdf()
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Figure 4. PER Oscillations in LN-MO- or LN-EO-Only Flies in Constant
Conditions

Fly entrainment and PER quantification were performed as described in
Figure 1. Brains were dissected during the third day in LL (A) or in DD (B-
D), with time 0 corresponding to the end of the last LD cycle. Dissecting
times have been chosen every 4 h for all genotypes except the one with
a longer behavioral period in (A), for which time points have been
chosen accordingly. Note the delay between the LN-EO neurons in (B
and C), and the LN-MO neurons in (D). Behavioral rhythmicity is reported
for each genotype (see Table.1).

AR, arrhythmic flies; R, rhythmic flies.
doi:10.1371/journal.pbio.0050315.g004

double mutants and tested them in LL. Such flies indeed
displayed strong rhythmicity (Figure 5 and Table 2), similar in
robustness to that of cryb mutants (see high power values in
Tables 1 and 2), but with a short 22.8-h period. We then
analyzed PER oscillations in the double mutants in LL. PER
cycling in the EO neurons was in good agreement with the
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Figure 5. Activity Profiles of pdf’ and cry’ pdf® Flies

Average double-plotted actograms during 6 d (top to bottom) of LL or
DD after LD entrainment. White and grey (LL) or grey and black (DD) bars
above each panel indicate entrainment light and dark periods,
respectively. Drawing density varies according to the genotype for
better clarity of the actogram, see Table 2 for true activity levels.

HD, hash density of the actogram; N, number of flies for each genotype.
doi:10.1371/journal.pbio.0050315.g005

short-period behavior, whereas PER cycling in the MO
neurons was not (Figure S4). These data strongly suggest that
the EO neurons drive LL activity rhythms in the cryb pdfq flies,
whereas the robustly cycling MO neurons do not contribute
significantly to the PDF-independent LL behavior.

We conclude that the LN-EO does not require PDF to
generate behavioral rhythms in LL, although PDF strongly
influences its period. Conversely, the double mutants were
mostly arrhythmic in DD (Table 2), with a fraction of the flies
displaying a weak short-period rhythmicity as reported for
pdf’ mutants in DD [11,28,31]. The rhythmicity of pdf’ mutants
was not improved in LL, showing that the strong rhythmic
behavior of the double mutants in LL results from the cryh
mutation.

Discussion

The PDF-expressing LNs and the PDF-negative LNs were
previously characterized as morning and evening cells,
respectively, in LD conditions [7,8]. Furthermore, the morn-
ing LNs were able to drive robust 24-h rhythms in DD,
whereas evening LNs were not [7]. We show in this study that
in LL, the evening LNs drive robust rhythms when crypto-
chrome signaling is absent or reduced, whereas the morning
cells are not able to do so. Surprisingly, the molecular
oscillations of both groups can be uncoupled from behavioral
rhythmicity, depending on light conditions. In DD, the two
LN groups show autonomous molecular cycling, but there is
no behavioral output when the LN-EO is cycling alone. In LL
(and reduced CRY signaling), both groups still show auton-
omous cycling, but there is no behavioral output when the
LN-MO is cycling alone. We therefore conclude that light has
opposite effects on the behavioral output of the two LN
oscillators, activating it from the evening LNs and inhibiting
it from the morning LNs.
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Table 2. Locomotor Activity Rhythms of pdf° and cry® pdf® Flies

Light Conditions Genotype Total Flies (n) Rhythmic Flies (%) Period (h) Power Activity

LL wcry? pdf® 21 86% 228 + 0.2 135 + 8 31 + 3
w;pdf’ 22 55% 237 + 04 48 £ 5 20 + 2

DD wcry? pdf° 41 42% 23.0 + 0.4 56 + 7 20 + 4
w;pdf® 44 50% 225 + 0.1 50 £ 5 14 * 2

The mean values of circadian period (h), associated powers (see Materials and Methods) and activities (number of events per 0.5 h) are given = s.e.m.

doi:10.1371/journal.pbio.0050315.t002

The opposite effects of light on the behavioral outputs do
not appear to be related to entrainment, since PER
oscillations in both the PDF-positive and PDF-negative LNs
are synchronized to the LD cycles even in the absence of CRY
signaling. The inhibiting effect of light on the LN-MO
behavioral output is abolished when the visual system is
genetically ablated. This suggests that the projections of the
visual system photoreceptors convey, not only input infor-
mation to the PDF cells (light entrainment), but also signals to
control their behavioral output (light inhibition). It is
tempting to speculate that light exerts both effects through
a direct connection of the PDF cells with the visual system.
The Hofbauer-Biichner eyelet photoreceptors that project
directly to the LN-MO neurons and participate in the
entrainment [19,20] provide a possible pathway.

It was recently reported that the overexpression of PER
[32] or of the SHAGGY (SGG) kinase [33] in the PDF-negative
clock neurons induced rhythmic behavior in LL. The
rhythmicity was associated with the cycling of PER subcellular
localization in some of the DNs, whereas the PDF-expressing
cells were molecularly arrhythmic. These studies therefore
concluded that some DN subsets are able to drive behavioral
rhythms in LL. Different groups of PDF-negative cells may
thus be able to drive behavioral rhythms in constant light,
depending on whether and how the molecular clock is

LN LN
Morning Evening
Oscillator Oscillator

<l &

Light B
Night Day
rhythmic rhythmic
behavior behavior

T e
| HTHH
Figure 6. Model for a Light-Induced Switch between LN-MO and LN-EO

in LD Conditions

In LD cycles, the LN-MO and LN-EO have been shown to produce the
morning and evening activity peak, respectively. We propose that light
contributes to this bimodal partitioning of activity by negatively
controlling the output of the LN-MO while positively controlling the
output of the LN-EO, without affecting the molecular oscillators
themselves. White bars: light, and grey bars: dark.
doi:10.1371/journal.pbio.0050315.g006
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manipulated. Such manipulation could also directly affect
molecular oscillations, making them less easy to detect. Since
CRY does not appear to have a core clock function in the
brain, our data are largely based on situations in which the
clock mechanism is little if at all altered. The data support a
major contribution of the LN-EO to the robust rhythms of
cryb mutants in LL.

The strong rhythmicity of the cryb [de' double mutants in
LL contrasts with their weak rhythmic behavior in DD.
Altogether, our results strongly suggest that this robust
rhythm is generated by the LN-EO, which would therefore
behave as a PDF-independent autonomous oscillator. How-
ever, the period of the oscillator is clearly influenced by PDF
signaling, and thus by the LN-MO, going from 24-25 h in cryb
to 22-23 h in ey’ [)dfo flies. An attractive possibility is that the
strong short-period rhythm observed in the ery’ pdf’ double
mutant in LL has the same neuronal origin as the weak short-
period rhythm described for pdf’ mutants in DD [28]. The
cellular basis of this PDF-independent oscillator in DD
remains unclear [11,31,34], although the presence of similar
rhythms in flies genetically ablated for the PDF-expressing
neurons [28,35] suggests that it originates from other clock
cells.

Different results were obtained for the recently described
DN-based LL oscillators. When transferred to a pdf' back-
ground, all SGG-overexpressing flies were found to be
arrhythmic [33], whereas about 60% of the PER-overexpress-
ing flies displayed long-period rhythms [32]. This suggests
that different types of DNs with different sensitivity to PDF
may have been analyzed in these two studies. Although some
DNs may contribute to the PDF-independent rhythms, our
data suggest a strong contribution of PDF-negative LNs to the
rhythmic behavior that persists in pdf) mutants. The weakness
of the short-period rhythm of pdf’ flies in DD may reflect the
inhibition of the LN-EO output in the absence of light.

Our results indicate that whereas the LN-MO autono-
mously drives rhythmic behavior in constant darkness, the
LN-EO plays this role in constant light, if CRY signaling is
abolished or reduced. We thus suggest that in natural LD
conditions, Drosophila behavior could be driven by the LN-MO
during the night, and by the LN-EO during the day, when
cryptochrome is quickly degraded by light. This supports a
model of a light-induced switch between the circadian
oscillators of the LNs (Figure 6) that would allow a better
separation of the dawn and dusk activity peaks in day-night
conditions. It has been shown that PDF-expressing LNs drive
the clock neuronal network in short days, whereas PDF-
negative DN subsets take the lead in long days [33]. Our
results suggest that the PDF-negative cells of the LN-EO could
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also be a major player during the long days. Surprisingly, we
find that light does not seem to act on the molecular
oscillations, but inhibits the LN-MO behavioral output and
promotes the LN-EO behavioral output, which may provide
an efficient fine tuning of the contributions of the two
oscillators. It therefore appears that the visual system
controls both the input (entrainment) and the behavioral
output of the LN oscillators in the Drosophila brain clock. In
species such the honeybee or the flour beetle, which appear
to lack a light-sensitive CRY protein [36,37], this role of the
visual system may be particularly important.

Materials and Methods

Fly strains. The cryRNAi construct produces a double-stranded
RNA (dsRNA) that corresponds to the 300-799 region of the cry-RA
mRNA (see http://flybase.bio.indiana.edu/reports/FBgn0025680.html).
The primers used for PCR were:

5" primer: AAGGCCTACATGGCCGGACCGATGTGGGTTACAAT
CGGATGC

3’ primer: AATCTAGAGGTACCGAAGCCCATGTTGTCTCCATA.

The 500-bp DNA fragment was inserted into the pUAST-R57
vector as described here: http://www.shigen.nig.ac.jp/flymigfly/about/
aboutRnai.jsp.

Two UAS-cryRNA:i insertions were generated, and the line with the
strongest expression (R3) was used in this study. When combined with
UAS-cry and the pdf-Gal4 driver, this UAS-cryRNAi insertion reduced
CRY levels by at least 80% (unpublished data), as judged by
immunocytofluorescence with anti-CRY. The UAS-cry [10] and UAS-
perl6 [35] insertions have been described previously. tim-Gal4 is
expressed in all clock neurons in addition to several non-clock
neuronal groups [29], and pdf-Gal4 is specifically expressed in the
PDF-positive LN,s [28]. The cry-Gal4-19 insertion was generated by
jumping out the P element of the original ¢ry-Gal4 insertion [10]. It
has a more restricted expression pattern than the previously
described ¢ry-Gal4-39 insertion [11]. The expression patterns of cry-
Gal4-19 and Mail 79-Gal4 (see also [7]) are described in Figure S1. We
used the pdf-Gal80 line 96A, which contains two insertions and
completely abolishes pdf-Gal4-driven expression in the PDF-positive
LN,s [8].

Behavioral analysis. Experiments were carried out with 1-7-d-old
flies at 20 °C in Drosophila activity monitors (TriKinetics) as previously
described [38]. Light was provided by standard, white-fluorescent
low-energy bulbs. Light intensity at fly level was in the range of 300-
1,000 pWicm?, depending on the position of the monitor in the
incubator. For LL. and DD analysis, flies were first entrained in 12
h:12 h LD cycles during at least 4 d, and activity data were analyzed
for 6 d, starting from the second day in DD or in LL. Under these LL
conditions, Myb mutants displayed robust activity rhythms, and no
split thythms could be observed. Data analysis was done with the
FaasX 0.9.8 software, which is derived from the Brandeis Rhythm
Package. FaasX runs on Apple Macintosh OSX and is freely available
upon request. Rhythmic flies were defined by e periodogram analysis
with the following criteria (filter ON): power > 20, width > 2 h, with
selection of 24 h * 6 h upon period value. Power and width are the
height and width of the periodogram peak, respectively, and give the
significance of the calculated period. Actograms represent absolute
activity levels for each 0.5-h interval, averaged over groups of flies of a
given genotype. The hash density of the actogram (number of activity
events per hash) varies from 15 to 35, according to the activity level of
the genotype. This allows the comparison of activity profiles between
genotypes that display very different activity levels. Mean daily activity
(number of events per 0.5 h * standard error of the mean [s.e.m.]) is
calculated over the whole period of DD or LL, and is reported in
Tables 1, 2, and S1 for all genotypes. All behavioral experiments were
reproduced two or three times with very similar results.

Immunolabelings. All experiments were done on whole-mounted
adult brains. GFP reporter expression, anti-PER, anti-CRY, and anti-
PDF labeling was done as previously described [11,20]. Fluorescence
signals were analyzed with a Zeiss Axioplan2 epifluorescence micro-
scope equipped with a SPOT2 (Diagnostic Instruments) digital
camera. Fluorescence intensity was quantified from digital images
with the Image] software. We applied the formula: /=100 X (S — B)/B,
that gives the fluorescence percentage above background (where S is
the fluorescence intensity, and B is the average intensity of the region
adjacent to the positive cell). Confocal imaging was performed on a
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Leica SP2 microscope. Stacks of approximately 20 images were
obtained, which spanned the breadth of the brain between the LNs
(posterior) and the DN1s (anterior). Maximum intensity projections
were generated from such stacks.

Supporting Information

Figure S1. Characterization of the Mail79-Gal4 and cry-Gall9
Expression Patterns

Brains were dissected in LD conditions at ZT0. (A-D) Mail 79-Gal4
driven GFP expression is detected in the four PDF-positive s-LN,s,
the fifth s-LN,, a small number of I-LN,s (weak), three LNgs, and two
DN1s (weak) plus other non-clock neuronal groups [2].

(A) Epifluorescence images. GFP and anti-PDF staining identify
Mail 79-Gal4-expressing PDF-positive and PDF-negative LN,s.

(B-D) Confocal projections. Mail 79-Gal4-driven GFP and PER
expression in per() flies. PER is strongly expressed in the five s-LN,s
and three LNgs. Highly variable PER expression could be detected in
a pair of DN1s ( [C and D], 0.6-0.7 labeled DNs per hemisphere on
average). An even weaker PER expression was observed in the DN
neurons in LL (0.1-0.2 labeled cells per hemisphere; unpublished
data).

(E) Confocal projections. ¢ry-Gal4—19-driven GFP and PER expression
in pero flies. GFP is detected in the five s-LN,s, three to six LNgs, and
two DNI1s. PER is expressed in the five s-LNys, some 1-LN,s (weak),
three LNgs (Mail 79-Gal4—positive; unpublished data), and two DNIs.
A noncycling expression was observed in the DN1 neurons in LL
(unpublished data). From their anterior and very dorsal position, the
two DN1s seen with both drivers correspond well with the DNla
described in [5]. Stars indicate nonspecific labeling.

Scale bars indicate 40 pm in (B and E), and 20 pm in (C and D).

Found at doi:10.1371/journal.pbio.0050315.sg001 (2.0 MB PDF).

Figure S2. Oscillator-Autonomous Inhibition of PER Accumulation
by CRY in LL

PER and PDF immunoreactivity is shown after 48 h in LL.
Representative half-brains of flies with CRY in all clock neuron
groups (wild-type control [A]), in none (cry’ control [B]), in the LN-
MO (PDF-positive LNys only [C]), in all PDF-negative groups (D and
E), or in the LN-EO only (F) are shown. The genotypes in (C-F)
correspond to those of Figure 1B-1E. The largest LNy in (B and C)
appears to correspond to the LN4™" characterized with the help of
the Mail79-Gal4 driver, whereas the other three are likely to be the
LN“s, which are labeled at all time points (see Figure 1). DNs can be
seen in the three genotypes in which these cells are devoid of CRY (B,
C, and F). However, in line with previous results [27], we observed no
PER cycling in these cells (unpublished data). Scale bar indicates 40
pm.

Found at doi:10.1371/journal.pbio.0050315.sg002 (1.2 MB PDF).

Figure S3. PER and PDF Immunoreactivity in the LNs of PER Rescued
Flies in LL or DD

Brains were dissected after 52 to 56 h of LL (A) or DD (B-D). The
genotypes in (A-D) correspond to those of Figure 4A-4D.

(A) Mail 79-Gal4/pdf-Gal80 drives PER expression in three LNgs (one
LNM + two LNGMs; see Figure S1) and in the fifth PDF-negative s-
LN, in LL.

(B) In DD, Mail 79—Gal4/z)df—Ga180 drives PER expression in three LNgs
(one LNdM* + two LNdN s), but not in the fifth PDF-negative s-LN,. In
DD, Mail79-Gal4 expression is in fact undetectable in all five s-LNys
(P. Cusumano and F. Rouyer, unpublished data; see [7]).

(C) CQ—Gal4—19¢dﬁGal80 drives PER expression in three LNgs (one
LNM + two LNGMs), in the fifth PDF-negative s-LN, and two DNI1s
(unpublished data) in DD.

(D) pdf-Gal4 drives PER expression in the four PDF-positive s-LN,s
and the I-LNys (out of focus in the picture) in DD (see [7]).. Black
boxes separate regions taken from different focal planes. Scale bar :
20 pm.

AR, arrhythmic flies; R, rhythmic flies (see Table 1).

Found at doi:10.1371/journal.pbio.0050315.sg003 (1.0 MB PDF).
Figure S4. PER Oscillations in cryb pdjo Flies in LL

Fly entrainment and PER quantification were performed as described
in Figure 1. Brains were dissected during the third day in LL. PER
cycling in the PDF-negative fifth s-LN, was out of phase with PER
cycling in the PDF-expressing s-LN,s, in agreement with a peak
around Zeitgeber time (ZT)12 in LD conditions (P. Cusumano and F.
Rouyer, unpublished data). This fits with the phase-shifted activity
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bout of the cry" pdf() flies in LL, compared to cry" flies (see Figures 3
and 5). PER oscillations in the fifth s-LN, were therefore expected to
peak around circadian time (CT)57-58 in the third day of LL if the
EO oscillator runs with a 22.8-h period (see Table 2). The observed
peak of PER was indeed at CT58, whereas the PDF-expressing LN,s
showed robust 24-h PER oscillations. In agreement with the ¢ry’ data
(see Figure 2A), PER oscillations were similarly phased in the fifth s-
LN, and the LNg™s + LN4™", although oscillations were broader and
of lower amplitude in the LNgs so that it was difficult to distinguish
between the LNg™s and LN4™". As in cryb flies, no oscillations were
observed in the LNdos‘

Found at doi:10.1371/journal.pbio.0050315.sg004 (121 KB PDF).

Table S1. Locomotor Activity Rhythms of Control Flies

The mean values of circadian period (h), associated powers (see
Materials and Methods), and activities (number of events per 0.5 h)
are given * s.e.m.

Found at doi:10.1371/journal.pbio.0050315.5t001 (62 KB PDF).
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