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Abstract
Background: High-throughput methods can directly detect the set of interacting proteins in
model species but the results are often incomplete and exhibit high false positive and false negative
rates. A number of researchers have recently presented methods for integrating direct and indirect
data for predicting interactions. These methods utilize a common classifier for all pairs. However,
due to missing data and high redundancy among the features used, different protein pairs may
benefit from different features based on the set of attributes available. In addition, in many cases it
is hard to directly determine which of the data sources contributed to a prediction. This
information is important for biologists using these predications in the design of new experiments.

Results: To address these challenges we propose a Mixture-of-Feature-Experts method for
protein-protein interaction prediction. We split the features into roughly homogeneous sets of
feature experts. The individual experts use logistic regression and their scores are combined using
another logistic regression. When combining the scores the weighting of each expert depends on
the set of input attributes available for that pair. Thus, different experts will have different influence
on the prediction depending on the available features.

Conclusion: We applied our method to predict the set of interacting proteins in yeast and human
cells. Our method improved upon the best previous methods for this task. In addition, the
weighting of the experts provides means to evaluate the prediction based on the high scoring
features.
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Background
Pair-wise protein-protein interactions (PPIs) are the
building blocks of complexes and pathways which carry
out different biological processes. Correctly identifying
the set of interacting proteins in an organism is useful for
deciphering the molecular mechanisms underlying bio-
logical functions and for assigning functions to unknown
proteins based on their interacting partners. Even for
model organisms such as yeast, most PPIs have not been
discovered yet.

A number of high-throughput experimental approaches
have been applied to determine the set of interacting pro-
teins on a proteome-wide scale. These include the two-
hybrid (Y2H) screens [1-4], which detect both transient
and stable interactions and mass spectrometry methods,
that are used to identify components of protein com-
plexes [5,6]. However, both methods suffer from high
false positive and false negative rates [7]. For instance in
yeast, roughly 80,000 interactions have been predicted by
various high-throughput methods, but only a small
number (~2,400) are supported by more than one
method. In addition to experiments that directly test for
PPI, there are many indirect sources that may contain
information about PPIs. For example, it has been shown
that many interacting pairs are co-expressed [7] and
expression of proteins found in the same complex is in
some cases controlled by the same transcription factor(s)
[8]. Sequence data has also been used to infer such inter-
actions (for example by relying on domain-domain inter-
actions and structure information [9]). Each of these
datasets provides partial information about the interact-
ing pairs. These findings suggest that direct data on pro-
tein interactions can be combined with indirect
information to improve the success of protein interaction
prediction.

Researchers have recently suggested a number of methods
to predict protein interactions by combining both direct
evidence and indirect information. Most studies have
been carried out in yeast. Jansen et al. [10] combined mul-
tiple data sources using a Bayes classifier for PPI predic-
tions in yeast. Lin et al. [12] compared Jansen's method
with two other classifiers, Random Forest (RF) and Logis-
tic Regression (LR) and found RF to be the best among
them. Qi et al. [15] extended this comparison to include
three more classifiers and additional 'gold standard' data-
sets. Their results confirmed that RF performs best among
all classifiers for this task and have also indicated that Sup-
port Vector Machines (SVMs) are preforming very well on
this task.

Zhang et al. [17] constructed a decision tree to predict co-
complexed protein pairs by integrating genomic and pro-
teomic data. Ben-Hur et al. [13] used kernel machines for

this task. Yamanishi et al. [16] predicted pathway protein
interactions using a variant of kernel canonical correlation
analysis. Compared to yeast, human is more complex and
there are fewer attempts at predicting human PPIs so far.
Rhodes et al. [18] employed a sum of likelihood ratio
scores strategy to predict human PPI confidence. Brown
and Jurisica [19] derived a more reliable set of human
PPIs using evolutionary information. All of the above
methods were shown to improve the success of PPI pre-
diction when compared to direct data alone. The improve-
ments are not just from the perspective of predicting novel
interactions but also for the purpose of stratifying the
many candidate interactions by confidence. While useful,
the above methods do not address two important prob-
lems in this domain. First, these classification methods
estimate a set of parameters that are used for all input
pairs. However, the existing biological datasets contain
many missing values and highly correlated features. Thus,
different protein pairs may benefit from using different
feature sets. The second problem is that biologists who
want to use these methods to design experiments cannot
easily determine which of the features contributed to a
resulting prediction. Since different researchers may have
different opinions regarding the reliability of the various
features, it is useful if the method can indicate, for every
pair, which feature contributed the most to the classifica-
tion result.

In this paper we address the above challenges using a Mix-
ture-of-Feature-Experts (MFE) method. We divide the bio-
logical datasets into several groups. Each of the groups
represents a specific data type and is used by a feature
expert (classifier) to predict interactions. Results from all
experts are combined such that the weight of each expert
depends on the input sample and thus varies between
input pairs. This weight can also indicate the importance
of the features used by this expert for predicting a pair. We
applied our method to predict PPIs in yeast and human.
Using Precision vs. Recall curves and AUC scores we show
that the MFE method improved upon traditional classifi-
cation methods that were previously applied for predict-
ing PPIs. For a specific Yeast pathway, the pheromone
pathway, we show that it is possible to extract confidence
information from the weight distribution, in addition to
providing new predictions.

Methods
There are many biological data sets that may be directly or
indirectly related to PPIs. We tried to collect as many as
possible for yeast and human.

Feature set
For the various data sources, each of them has its own rep-
resentative form. For example, protein sequence is in the
form of a character string, which means the order of
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amino acids as they occur in a polypeptide chain. Gene
expression data is usually a vector of expression values
across multiple time points for a specific gene. Synthetic
lethal data describes that a pair of genes having mutations
together would affect the cells inviable or viable. So how
could we combine these different forms of data together?

We present the converting process briefly in Figure 1. For
each data set that represents a certain gene/protein's prop-
erty, we figured out one natural way to calculate the simi-
larity between two genes/proteins with respect to the
specific evidence. For instance, for two proteins' sequence
information, we use BlastP [27] sequence alignment E-
value as one feature for this protein-protein pair from the
protein sequence evidence. For other data sources, similar
procedures were pursued to make the features for a pro-
tein pair. For data sets directly describing a protein/gene
pair, we used them directly as features, like synthetic lethal
evidence. Concatenating all these features together then
gave us the feature vector describing a protein-protein
pair.

Feature set for yeast
For yeast we collected a total of 162 feature attributes from
17 different data sources (Table 1). Three data sources are
derived from the direct high-throughput yeast PPI data
sets [1,2,5,6], with two from mass spectrometry and one
from high-throughput yeast-two-hybrid screens. These
evidence describe pair of proteins directly and thus are
used as feature items in the feature vector. Six data sources
represent each gene's functional annotations from
[21,22]. The 'similarity' features derived from them repre-
sent how similar two proteins occur in the certain annota-
tion space or from a specific function perspective. Four
other different sources derived features that describe the
similarity between two genes from sequence and structure
perspectives. The remaining attributes are all based on
indirect high-throughput experimental data. For example,
this includes gene expression [8] correlations. All related
data sources and how they were converted into features
representing pair of proteins have been described in
details previously in [15].

Converting Data Sources to A Feature Vector Representing Each Protein-Protein PairFigure 1
Converting Data Sources to A Feature Vector Representing Each Protein-Protein Pair. The process of combining 
biological sources and then converting them to feature vectors describing protein-protein pairs. For a gene/protein specific fea-
ture, we found a natural way to transform it to represent the protein-protein pair. For example, for gene expression data, we 
use the correlation coefficient as the feature for a protein-protein pair.
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Feature set for human
For human we collected a total of 27 feature attributes
from 8 different data sources (Table 2). Collecting data for
human proteins is much harder than for yeast because
several data sets that are available for yeast are not yet
available for human and there exist much more human
proteins than yeast.

Similarly as in yeast, three kinds of 'similarity' features
were derived from Gene Ontology (GO [21]) functional
information, according to the two proteins' positions in
the three ontology structures. In human, tissue distribu-
tion is an important property to describe a gene/protein.

We used a binary feature to indicate if two proteins are
expressed in the same human tissue or not. Gene expres-
sion features were derived from sixteen expression sets in
NCBI Gene Expression Omnibus database [26]. Protein
sequence alignment score was used as the another feature
source. Homologous PPI was derived from the yeast pro-
tein-protein interaction datasets. Domain-domain inter-
actions were derived based on the hypergeometric
distribution and calculated for each candidate protein
pair in the same way as in yeast feature set.

Table 1: Feature Set in Yeast.

Expert Feature Source Size Coverage (%)

P HMS-PCI MS 1 8.3
P TAP MS 1 8.8
P Yeast-2-Hybrid 1 3.9
F GO Function 21 80.7
F GO Process 33 76.1
F GO Component 23 81.5
F Essentiality 1 100
F MIPS protein class 25 4.6
F MIPS mutant phenotype 11 9.4
S Gene fusion/cooccurence 1 100
S Sequence similarity 1 100
S Homology derived PPI 4 100
S Domain interaction 1 100
E Gene Expression 20 88.9
E Protein Expression 1 42.8
E Trans Factor Binding 16 98.0
E Synthetic Lethal 1 7.6

Feature set derived for pairwise protein-protein interaction prediction in yeast. We used a total of 162 features from 17 different data sources. The 
first column lists the feature expert to which the feature source was assigned. We have designed a total of four experts: P, F, S and E (for definition 
see the 'Feature' section). The second column lists the name of the feature source. The third column lists the number of attributes from each 
source. The fourth column presents the average percentage of pairs for which information is available using this feature source. All related data 
sources and how they were converted into features have been described in details previous in: http://www.cs.cmu.edu/~qyj/papers_sulp/
proteins05_pages/features.html.

Table 2: Feature Set in Human.

Expert Feature Source Size Coverage(%)

F GO Function 1 39.1
F GO Component 1 36.3
F GO Process 1 37.6
F Tissue 1 57.1
E Gene Expression 16 34.0
S Sequence similarity 1 100
S Yeast Homology PPI 5 100
S Domain interaction 1 37.7

Feature set derived for pairwise protein-protein interaction prediction in human. We collected a total of 27 features from 8 different data sources. 
The first column lists the feature expert to which the feature source was attributed to. Unlike yeast, for human we had a total of three experts: F, 
E and S (for definition see the 'Feature' section). The second column lists the name of the feature source. The third column lists the number of 
attributes from each source. The fourth column presents the average percentage of pairs for which information is available using this feature 
source.
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Feature properties
There are several feature properties we need to consider
when designing computational approaches for the PPI
prediction task. (1). Most biological datasets are noisy and
contain many missing values. For example, in the Y2H
derived features listed in Table 1, interactions involving
membrane proteins are unreliable or missing. In both
Table 1 and Table 2, the fourth column lists the average
coverage of each feature source. As can be seen, different
features have varying degrees of missing values. The aver-
age coverage of the 17 groups in Table 1 ranges from 3.9%
for Y2H to over 88.9% for gene expression and 100% for
sequence based features. (Coverage here means the per-
centage of pairs for which this feature is available). (2).
The derived features are heterogeneous. Some features are
categorical (for example, synthetic lethal [20]) while oth-
ers are continuous (for example, mRNA co-expression
[8]). In addition, some of them are highly correlated fea-
tures (for example expression data from two different
stress response experiments). (3). Finally, there is the
issue of weighting these different data sources. Different
protein pairs may benefit from using different feature sets
in the prediction process. For every pair it would be useful
for computational techniques to provide information
about how features contribute to the classification predic-
tions. For biologists who want to use these methods to
build new hypotheses, integrating this information and
their expert knowledge could assist lab experimental
design.

Feature experts
Overall, these biological data sources can be divided into
four feature categories, which are referred to as feature
experts in this paper:

1. Expert P: direct high-throughput experimental PPI data.
This category contains those data sets that directly
detected interaction relationships between proteins. They
were derived through high-throughput biological experi-
ments such as Y2H screens and mass spectrometry.

2. Expert E: indirect high-throughput data. This category
includes those experimental data sources that were gener-
ated through high-throughput techniques and represent
certain aspects of genes/proteins other than PPI relation-
ship, such as gene expression and protein-DNA binding.

3. Expert S: sequence based data sources. This category
includes those features that represent how similar two
proteins are based on sequence or structure information.
For example, this expert includes domain information
and gene fusion data.

4. Expert F: functional properties of proteins. This cate-
gory contains information about how similar two pro-

teins are in terms of functional annotations such as
biological process, protein localization, protein class, and
essentiality.

Note that in human there are only two very small Y2H
data sets [4,3] available. We therefore currently do not
have a 'P' feature expert for human data. As more data sets
become available, this feature expert can be generated for
human as well.

After splitting, the features within experts are derived from
similar data sources and are roughly homogeneous when
compared with each other. Usually biologists could give
opinions and make comparisons on general categories of
biological evidence. Thus, it would also be useful for com-
putational methods to provide automatic information
about how several feature categories (experts) contribute
to every predicted interaction pair. The derived computa-
tional importance together with biologists' expert knowl-
edge could assist the further prediction analysis and the
design of lab PPI experiments. In this work, we divided
features into four experts. Apparently, the number of
experts to be split into could be different. The splitting
depends on the need of the application and the analysis
ability of the biologists who would validate the predic-
tions.

Mixture-of-Feature-Experts (MFE)
Using our experts setting, features are grouped into four
(for yeast) or three (for human PPIs) categories. While the
features are heterogeneous overall, within feature experts,
attributes are roughly homogeneous and are derived from
similar data sources. Our main intuition in using the
expert-based structure is to investigate the relationship
between these homogeneous feature groups in terms of
predicting PPIs and to compare the importance of experts
contributing to each prediction. This provides a princi-
pled way for selecting informative feature types during the
prediction process.

We design a method called Mixture-of-Feature-Experts
(MFE) to achieve the above computational properties. As
Figure 2 shows, our framework can be viewed as a single
layer tree, with feature experts at the leaves. Each expert
uses one of the dataset groups to predict PPIs. A root gate
is used to integrate predictions from multiple feature
experts. The weights assigned to each of the experts by the
root gate depends on the input set for a given pair. Intui-
tively, this framework is analogous to the following proc-
ess: each feature expert gives their opinion about how
likely the investigated pair interacts and then the gate cre-
ates a final decision by the weighted sum of the experts'
predictions. Moreover, these weights are local and specific
to the current example pair.
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In the following sections, X describes the input feature
vector variable and Y represents the target output variable.
Input variable X represents d-dimensional feature vectors
built from features in Table 1 or Table 2. Target variable Y
∈ {-1, 1} means whether a protein pair interacts (1) or not
(-1).

Given our feature experts setting, the conditional proba-
bility of the target variable Y given the input variable X
could be written as:

where M is a set of hidden data and indicates which expert
was responsible for generating each example data pair.
Having I experts, M is a I-dimensional indicator vector
variable. That is, all entries in M are 0 except for one of the
entries which is set to 1. The sum is over all configuration
of variable M. In other words, target class label Y is
dependent on the input data X and the choice of expert M.
The choice of M is also dependent on the input X. P(M|X)
is modeled using the root gate, while P(Y|M, X) is mod-
eled by each feature expert in our framework. The graphi-
cal model view of MFE method is illustrated in Figure 3.
This Bayesian network structure expresses that the target
variable Y is dependent on the input vector variable X and
the multinomial random variable M. It is essentially a
modification of the probabilistic Mixture-of-Experts (ME)
model [32].

Using a training set including N examples, the n-th exam-
ple pair is described using (x(n), y(n)). For n = 1 to N, each
data example (x(n), y(n)) has a corresponding vector m(n).
The dimension of vector m(n) is equal to the number of
feature experts: I (I = 4 for yeast and I = 3 for human).

With i = 1 to I, n = 1 to N, each entry of this vector  is

as following:

Thus, based on Equation (1) the conditional probability
P(y(n)|x(n)) is formulated specifically as:

where wi are the model parameters used for feature expert
i and v contains the model parameters used for the gate.

In general each expert can take any form such that the
expected value of their probability density is consistent
with the form of the problem. In this work, we use binary
logistic regression for each of the feature experts. For the i-
th expert (i = 1...I) we write:
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Graphical Model View of Mixture-of-Experts (ME) MethodFigure 3
Graphical Model View of Mixture-of-Experts (ME) 
Method. A graphical model view of the Mixture-of-Experts 
(ME) method. The target variable Y is dependent on the input 
vector X and the multinomial random variable M. P(M|X) is 
modeled by the gate while P(Y|X, M) is modeled by the 
experts.

Mixture of Four Feature Experts in YeastFigure 2
Mixture of Four Feature Experts in Yeast. Graphical 
representation of the Mixture-of-Feature-Experts method 
(MFE) for yeast. Table 1 lists the features used by each of the 
four experts. For definition of P, F, S, E experts, see details in 
the 'Feature' section.
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Similarly, the root gate can take any functional form that
is consistent with a probability distribution. For instance
[32] used multinomial logit models for the gates. Here, we
extend the binary logistic regression to model the multi-
nomial probability distribution of variable M through
voting. This is analogous to using the one-versus-all strat-
egy to transform a I-class classification into I binary logis-
tic regression problem [34]. First binary logistic regression
model is run once for each output branch of the root gate.
Next, modified probability weights are calculated for each
branch by combining all the branch models. Each branch
of the root gate controls the weighting of a certain feature
expert in our work. For the i-th branch (i = 1...I for our
gate) vi represent the logistic regression parameters for this
branch and variable Ci represents the binomial probabil-
ity distribution from this branch. Thus,

then by normalizing over all branches, we get the multi-
nomial probability distribution of variable M as below:

This means that P(  = 1|x(n), v) depends on the input

attributes (x(n)) and it represents the gate weight for expert
i when predicting the n-th pair. In all of the above logistic
regression steps, we apply ridge estimators to infer stable
regularized parameters.

In summary within our feature experts framework the
interaction prediction from MFE is a weighted sum of the
opinions from each feature expert. The weights assigned
to each expert are controlled by the input feature values as
well as by the feature experts.

Expectation-Maximization (EM)
Based on the probabilistic model in Equation (1), learn-
ing in MFE architecture is treated as a maximum likeli-
hood problem. The model parameters include the gate
parameters v and the expert parameters ωi.

We compute the log likelihood by taking the logarithm of
the products of P(y(n)|x(n)) as follows,

In the following we use Θ as the set of all the parameters
including both experts and gate parameters. Jordan and
Jacobs [31] have proposed an expectation-maximization
(EM) algorithm for adjusting parameters in ME architec-
ture. The EM algorithm is an iterative approach for maxi-
mum likelihood estimation (MLE). Each iteration of an
EM algorithm consists of two steps, the E-step and the M-
step. For the t-th epoch, model parameters are represented
as Θt.

In the E-step we compute the posterior probability 

using Equation (8).  represents the posterior weight

for expert i in predicting pair n once both the input and

the target output are known.  is derived using Bayes

rule:

By decomposition of the expected complete data-likeli-
hood, the M-step reduces to separate maximization prob-
lems [31,32], one for each expert and gate. In our MFE
framework it solves the following maximization prob-
lems: for each expert,
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Each of these maximization problems are themselves
maximum likelihood problems [31,32]. Equation (11) is
simply the general form of a weighted maximum likeli-

hood problem in the probability density P(y(n)|x(n), 

= 1, ωi). Given our expert choice, the log likelihood in

Equation (11) is a weighted log likelihood (weighted by

) for the logistic regression model. An efficient algo-

rithm known as iteratively reweighted least-squares (IRLS)
is available to solve this maximum likelihood task [31].

Equation (12) involves maximizing the cross-entropy

between the posterior probability  and the prior prob-

ability P(  = 1|x(n), v). This cross-entropy is the log

likelihood associated with a multinomial logistic gate

model in which the  could be treated as output obser-

vations. Thus the maximization in Equation (12) is a max-
imum likelihood problem for a generalized linear model
and can also be solved using IRLS technique.

Overall the EM algorithm could be summarized as the fol-
lowing iterative process:

1. For each data pair (x(n), y(n)), compute the posterior

probability  using the current values of the parame-

ters.

2. For each expert i, solve a maximization problem in

Equation (11) with observation  and obser-

vation weights .

3. For the root gate, solve the maximization problem in

Equation (12) with observation  and obser-

vation weights .

4. Iterate by using the updated parameter values until a
termination criterium is satisfied.

Handling the missing feature value problem
As pointed out, biological datasets contain many missing
values and this problem is an important obstacle in
achieving significant improvements in prediction per-
formance.

The simplest approach to handle the missing feature items
is to fill those missing entries by certain values. For exam-
ple, for a real-valued feature the filled value could be the
mean of the feature column or for a categorical feature we
could use the most common value. In the following sec-
tions we use the term 'MFE-FM' to represent the MFE
method while using mean estimates for missing values
(MFE-FM: mixture of feature experts with missing values
filled).

We apply a more principled strategy to handle missing
feature values. Specifically, for each feature that has low
feature coverage, this strategy add an extra feature column
to represent the feature availability. For d = 1...D (D = 162
for yeast and D = 27 for human), Xd represents the d-th
feature column and g(Xd) describes the ratio of missing
cases for feature Xd. If g(Xd) is larger than a predefined
ratio, we add a new, binary, feature column X(D+1) to rep-
resent the availability of feature Xd. That is, if for an exam-
ple pair the feature Xd is missing, this new feature X(D+1)
would be set to 0. Otherwise it would be set to 1. The
method now uses this new feature and can learn different
parameters for observed and estimated features. Totally if
there are p original feature columns that have new feature
columns added, the final feature vector then grows to be
D + p dimensional. While this strategy increases the size of
our feature set, it is still very small (~200 for yeast and ~50
for human) compared to the total number of protein pairs
(~18 M for yeast and ~4000 M for human).

In our MFE framework, since the weighting depends on
the input features, by this adding features strategy our
classifiers can use the present/absent information to mod-
ify the weights of different feature experts. Similarly this
strategy could also improve the classifiers used by each
feature expert. In the following sections the term 'MFE'
means the MFE method when using this added extra fea-
tures strategy.

Results
We first discuss the reference sets and evaluation strategies
used in performance comparisons. Next we present results
for comparing the MFE method to several popular classi-
fiers for predicting protein interaction pairs in yeast and
human.

Reference set (gold standard set)
Any classification algorithm requires a training set. In our
work for the positive set, there are a small number of inter-
acting protein pairs that have been reliably determined by
small-scale laboratory experiments. This set serves as our
positive standard for this learning problem. For yeast,
~2900 interacting protein pairs were extracted from the
database of interacting proteins (DIP) [23]. For human,
~15,000 protein-protein interaction pairs were extracted
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from the Human protein reference database (HPRD) [24].
Both sets were filtered to exclude self-interactions.

Unlike positive interactions, it is rare to find a confirmed
report on non-interacting pairs. Considering the small
fraction of interacting pairs in the total set of potential
protein pairs we use a random set of protein pairs, exclud-
ing those interacting pairs that are known, as the negative
set. In yeast, it is estimated that roughly only 1 in about
600 possible pairs actually interacts [14]. In human, this
ratio is even smaller, roughly 1 in several thousands of
possible pairs is estimated to interact. Thus, over 99.8% of
our random data is indeed non-interacting, which is prob-
ably better than the accuracy of most training data.

Combining the positive and negative PPI sets, a reference
set (also referred to as gold standard set) is then con-
structed for use as training/testing sets when applying
learning methods.

Evaluation strategy
Based on the reference set, we use the following two meas-
ures to evaluate the performance of our predictions, Preci-
sion vs. Recall curves and AUC scores (area and partial
areas under the Receiver Operator Characteristic curve).

In Precision vs. Recall curves, Precision refers to the frac-
tion of interacting pairs predicted by the classifier that are
truly interacting (true positives). Recall measures how
many of the known pairs of interacting proteins have been
identified by the learning model. The Precision vs. Recall
curve is then plotted for different cutoffs on the predicted
score.

Receiver Operator Characteristic (ROC) curves plot the
true positive rate against the false positive rate for different
cut-off values of the predicted score. It measures the trade-
off between sensitivity and specificity. The area under the
ROC curve (AUC) is commonly used as a summary meas-
ure of diagnostic accuracy. It can take values from 0.0 to
1.0. In some cases, rather than looking at the area under
the entire ROC curve, it is more informative to only con-
sider the area under a portion of the curve. In our predic-
tion task, we are predominantly concerned with the
detection performance of our models under conditions
where the false positive rate is low. For example, R50 is a
partial AUC score that measures the area under the ROC
curve until reaching 50 negative predictions. Similarly
R100 is the partial AUC score when reaching 100 negative
predictions.

Performance Comparison
To measure the ability of the MFE method to predict PPIs,
we compared it with four other popular classifiers that
have been suggested in the past for this task: Logistic

Regression (LR), Naïve Bayes (NB), Support Vector
Machines (SVM) and Random Forest (RF). Our MFE
method is implemented using Matlab. Standard toolkits
are used for the other methods. Specifically, The SVMlight
toolkit was used for SVM [30]. Logistic Regression and
Naive Bayes were obtained from the WEKA machine
learning tool box [29]. Random Forest was from the Ber-
keley RF package [28]. The input feature vectors to these
methods are exactly the vectors from Table 1 or Table 2
with missing values filled.

All comparisons were based on the following training and
testing procedures. In yeast, we randomly sampled a train-
ing set containing ~30,000 protein pairs to learn the deci-
sion model. Then we sampled a test set (another ~30,000
pairs) from the remaining protein pairs, and used the
trained model to evaluate the performance of the classifi-
ers. The above steps were repeated 10 times for each clas-
sifier and average values are reported. Similar procedures
were pursued in human where the training and the testing
sets included ~80,000 examples. For each evaluated clas-
sifier, parameter optimization was carried out in all cases
in identical train-test fashion.

Based on the estimated ratio of interacting versus non-
interacting pairs in yeast and human, we have roughly ~50
to ~100 positive PPIs in each test run. For the training set,
we up-sampled the positive examples in a pre-processing
step, which resulted in roughly ~800 positive examples for
each training run in human and roughly ~300 positive
pairs for each yeast training. This sampling strategy
reduces the problem of too few positive examples in the
training set without affecting the performance signifi-
cantly [33]. Figure 4 plots the average precision versus
recall curves of these five different methods for the yeast
PPIs prediction and Figure 5 is for human. In both figures,
the curves derived from MFE approach dominate the
other four methods in most of the low recall ranges.

Table 3 lists the average AUC score and partial AUC scores
for the yeast PPI evaluation. The standard derivations for
each score estimation are also listed in the table. MFE
scores are highlighted and it clearly achieves better AUC/
R50/R100 scores compared to the other methods. For
instance, MFE improves the R50 score by ~7% when com-
pared to the other classifiers tested. Table 4 lists the scores
for the human data set. Similarly as for yeast, the MFE
method achieves better results. For example, MFE achieves
~10% improvement in R50 score compared to the other
classifiers used. Thus the MFE method achieves the best
results for all criteria tested.

The last two rows of Table 3, list the AUC and partial AUC
scores of MFE-FM and MFE methods in yeast. MFE clearly
achieves better performance compared to MFE-FM (~3%
Page 9 of 16
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increase in R50 score). This means that by explicitly indi-
cating the availability of feature attributes our method
improves the classification outcome. Similar conclusions
could be drawn for human as shown in Table 4.

The methodology we propose, of feature experts, is very
general. As discussed in the 'Methods' section, the number
of feature experts the heterogeneous data sets are split into
could be different. The splitting essentially depends on
the need of the application and the preference of the biol-
ogists who would analyze and/or validate the predictions.
At the limit case, we can assign each feature to an individ-
ual expert. To test this we carried out one new experiment

for the human prediction task treating every feature as its
own expert. As the results (supporting Figure 1[36]) indi-
cate, this does not improve the performance of the algo-
rithm, perhaps because it leads to overfitting of the
parameters.

Discussion
Biologically, it is of particular interest to identify the
extent to which heterogeneous data sources carry informa-
tion about protein interactions. An analysis of the contri-
bution of different features can also help uncover
relationships between different data sources that are not
directly apparent.

Performance Comparison in YeastFigure 4
Performance Comparison in Yeast. Average Precision vs. Recall curves when comparing MFE method with four other 
classifiers (LR/NB/RF/SVM) for PPI prediction in yeast. LR: Logistic regression; NB: Naive Bayes; RF: Random Forest; SVM: Sup-
port Vector Machine; MFE: Mixture-of-Feature-Experts. The MFE curve dominates the curves for the other four methods in 
most of the recall ranges.
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Performance Comparison in HumanFigure 5
Performance Comparison in Human. Average Precision vs. Recall curves when comparing MFE with four other classifiers 
(LR/NB/RF/SVM) for PPI prediction in human. LR: Logistic regression; NB: Naive Bayes; RF: Random Forest; SVM: Support Vec-
tor Machine; MFE: Mixture-of-Feature-Experts. Again, the MFE curve dominates the other four curves for most of the low 
recall values.
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Table 3: Average AUC and Partial AUC scores in Yeast.

Method AUC mean AUC std R50 mean R50 std R100 mean R100 std

LR 0.8823 0.033 0.2866 0.070 0.3546 0.073
NB 0.9349 0.015 0.2486 0.047 0.3135 0.062
RF 0.9321 0.014 0.2688 0.048 0.3434 0.049
SVM 0.9159 0.024 0.2585 0.063 0.3262 0.067
MFE 0.9463 0.013 0.3080 0.078 0.3799 0.077
MFE-FM 0.9220 0.021 0.2918 0.061 0.3738 0.058

Average AUC and partial AUC scores for six classification methods for PPI prediction in yeast. LR: Logistic regression; NB: Naive Bayes; RF: 
Random Forest; SVM: Support Vector Machine; MFE: Mixture-of-Feature-Experts; MFE-FM: Mixture-of-Feature-Experts with missing features filled. 
Average AUC and partial AUC scores are reported and the standard derivations for each score estimation are also listed in the table. MFE scores 
are highlighted and it clearly achieves better AUC/R50/R100 scores compared to the other five.



BMC Bioinformatics 2007, 8(Suppl 10):S6 http://www.biomedcentral.com/1471-2105/8/S10/S6
Analysis of feature importance is important on the global
scale as well as for the prediction and analysis of specific
protein pairs. We therefore ask the following questions:
(1) How do the different features affect PPI prediction per-
formance overall? and (2) How do the different features
contribute differently for each example pair? We have
explored these two questions using the yeast results.

Global feature importance
To control data collection costs, it is important to select
only informative data types globally. Once informative
data types are identified, one does not need to use unnec-
essary data sets when solving similar network inference
problems for other sets of proteins or for other organisms.
This can significantly speed up prediction of PPIs in new
species, as well as when updating predictions on model
species such as yeast and human with new data sources.

To identify overall feature importance among our feature
experts, we remove feature experts one by one, and run the
MFE methods on the remaining three experts. We then
examine how the performance changes. Table 5 lists the
score changes of R50 and AUC after removing the experts
one by one. The less the score changes the less important
is the feature expert. We found that removing the
sequence expert 'S' had the least impact on both scores.

The indirect high-throughput data expert 'E' ranked sec-
ond from the bottom in the prediction of yeast PPI's.

It is surprising that removing expert 'E' (which contains
mostly microarray expression data) does not hurt per-
formance much. This is seemingly in contradiction to pre-
vious estimations in which tree based feature ranking
methods ranked gene expression features very highly [15].
Note that, when the feature sets are not grouped, the wide
availability of gene expression data and its high coverage
may result in an increased use of this feature, even though
it may lead to overfitting. As our results suggest, splitting
the data into more homogeneous groups (feature experts
here) may help increase the prediction accuracy by
decreasing its reliance on these high throughput data
sources.

Feature importance for specific protein pairs
For each predicted pair it would be useful for computa-
tional techniques to provide information about which
features contributed to the predictions for that pair. Our
MFE method naturally reveals how each feature category
contributes to the interaction predictions. The posterior
probability from Equation (8) could be treated as the level
of contribution from each expert to the final prediction.
Then for a specific candidate protein pair, these values

Table 4: Average AUC and Partial AUC scores in Human.

Method AUC mean AUC std R50 mean R50 std R100 mean R100 std

LR 0.9419 0.020 0.1148 0.031 0.1684 0.031
NB 0.9389 0.003 0.0964 0.031 0.1356 0.035
RF 0.9427 0.009 0.0740 0.025 0.1263 0.030
SVM 0.7645 0.091 0.0455 0.028 0.0589 0.040
MFE 0.9608 0.007 0.1341 0.023 0.1759 0.027
MFE-FM 0.9384 0.018 0.1297 0.023 0.1713 0.025

Average AUC and partial AUC scores for six classification methods for PPI prediction in human. LR: Logistic regression; NB: Naive Bayes; RF: 
Random Forest; SVM: Support Vector Machine; MFE: Mixture-of-Feature-Experts; MFE-FM: Mixture-of-Feature-Experts with missing values filled. 
Average AUC and partial AUC scores are reported and the standard derivations for each score estimation are also listed in the table. MFE scores 
are highlighted and it again achieves better AUC/R50/R100 scores compared to the other five classifiers.

Table 5: Global Feature Expert Importance (by MFE) in Yeast.

MFE R50 R50 DROP MFE AUC AUC DROP

P 0.2310 0.0770 0.9244 0.0219
F 0.2609 0.0471 0.8821 0.0642
S 0.3191 -0.0111 0.9459 0.0004
E 0.3022 0.0058 0.9323 0.0140

Full 0.3080 0.9463

Global feature expert importance can be measured by the decrease in AUC and R50 scores when removing the expert in the MFE method. The 
first column lists the four feature experts. The second and fourth column list the R50 and AUC scores when applying MFE while only using the 
remaining three experts. The third and fifth column list the changes between these R50 and AUC scores and the full experts version. For definition 
of P, F, S, E experts, see details in the 'Feature' section and Table 1.
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could give a detailed description about how each expert
contributes to the integrated prediction.

To demonstrate the utility of this unique capability of the
MFE method to reveal feature importance in specific pre-
dictions, we investigated a specific yeast pathway; the
yeast pheromone response. For this pathway we compare
the contribution of different experts in the known and
predicted interacting pairs. Figure 6 presents the known
interactions in this pathway as determined by the KEGG
database [25]. In this pathway the yeast mating factors
MAT alpha/a bind to their cognate membrane receptors
Ste2/3, members of the G protein coupled receptor fam-
ily. Subsequent binding and activation of the G protein
induces a MAP kinase signaling pathway via G protein
activation [35].

We selected 25 proteins that are known to participate in
this pathway and applied the MFE algorithm to classify
the 300 (25*24/2) potentially interacting pairs. The train-
ing set included 500 positive pairs and 50000 negative
(random) pairs. None of these pairs contained any of the
known 25 proteins in this pathway. The positive versus
negative ratio in this set is roughly the same as the ratio we
used for the performance comparisons. We determined a
prediction threshold using the training set. 51 of the 300
pairs had scores above the threshold and were thus pre-
dicted to be interacting. Among them, 33 interactions
(64.7%) had been experimentally validated. The remain-
ing 18 pairs are new predictions.

Figure 7(a) shows the frequency at which each of the four
experts showed maximal contributions among validated
pairs. In line with biological intuition, the direct high-
throughput evidence (expert P) and functional databases
(expert F) are the predominant experts in the correct pre-
dictions. Figure 7(b) shows that the majority of the 18
new predictions are based on recommendations by expert
F. Based on the reliability of expert F in making correct
predictions, this result indicates that the majority of the
new predictions may turn out to be correct, once experi-
mentally tested.

Conclusion
One of the most important goals of computational PPI
predictions is to suggest biological hypotheses regarding
unexplored new interactions that are testable with subse-
quent experimentation. Among high scoring predictions,
the most interesting ones can be chosen by an individual
investigators using intuition and specialized knowledge.

This paper addresses two important problems for the PPI
prediction task. First, previous classification methods esti-
mate a set of parameters that are used for all input pairs.
However, the biological datasets used contain many miss-
ing values and highly correlated features. Thus, different
samples may benefit from using different feature sets. The
second problem is that biologists who want to use these
methods to select experiments cannot easily determine
which of the features contributed to the resulting predic-
tion. Since different researchers may have different opin-
ions regarding the reliability of the various feature
sources, it is useful if the method can indicate, for every
pair, which feature contributes the most to the classifica-
tion result.

In this paper we propose a Mixture-of-Feature-Experts
(MFE) approach to address the above two challenges
when predicting protein-protein interactions. Diverse
high-throughput biological datasets are split into homo-
geneous feature experts. Each expert uses a subset of the
data to predict protein interactions and expert predictions
are combined such that the weight of each expert depends
on the input data for the predicted protein pair. This
method is useful for overcoming problems in achieving
high prediction performance arising due to missing values
which are a major issue when analyzing biological data-
sets. In addition, the weights can be used by biologists to
determine confidence in the prediction for each pair. We
have shown that this algorithm improves upon previous
methods suggested in yeast and human for this task.
Extensions of this approach to other species are straight
forward when more information becomes available.

We believe that as the prediction task becomes harder (for
example, when analyzing human HIV related interac-

Yeast Pheromone Response PathwayFigure 6
Yeast Pheromone Response Pathway. The yeast pheromone response pathway. This figure is from the KEGG [25] data-
base.
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tions) the need for methods that can accommodate high
levels of missing values and are directly interpretable by
biologists increases. The next step will be to apply our
method to interaction prediction tasks related to impor-
tant types of human proteins where missing values and
the small number of positive examples are major obsta-
cles in obtaining of an accurate protein interaction map.

List of abbreviations used
• Y2H: Yeast-Two-Hybrids;

• PPIs: Protein-Protein Interactions;

• MFE: Mixture of Feature Experts;

• MFE-FM: Mixture-of-Feature-Experts with Missing Val-
ues Filled;

Pair Feature Importance AnalysisFigure 7
Pair Feature Importance Analysis. Distribution of highest scoring experts for the yeast pheromone response pathway val-
idation. For definition of P, F, S, E experts, see details in Table 1 and the 'Feature' section. (a) shows the frequency at which 
each of the four experts had the maximal score for the 33 known interacting pairs. (b) shows the frequency at which each of 
the four experts had the maximal score for the 18 new predictions.
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• ME: Mixture of Experts;

• EM: Expectation Maximization;

• LR: Logistic regression;

• NB: Naive Bayes;

• RF: Random Forest;

• SVM: Support Vector Machine;
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