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Abstract

Background: For splice site recognition, one has to solve two classification problems:
discriminating true from decoy splice sites for both acceptor and donor sites. Gene finding systems
typically rely on Markov Chains to solve these tasks.

Results: In this work we consider Support Vector Machines for splice site recognition. We employ
the so-called weighted degree kernel which turns out well suited for this task, as we will illustrate in
several experiments where we compare its prediction accuracy with that of recently proposed
systems. We apply our method to the genome-wide recognition of splice sites in Caenorhabditis
elegans, Drosophila melanogaster, Arabidopsis thaliana, Danio rerio, and Homo sapiens. Our
performance estimates indicate that splice sites can be recognized very accurately in these genomes
and that our method outperforms many other methods including Markov Chains, GeneSplicer and
SpliceMachine. We provide genome-wide predictions of splice sites and a stand-alone prediction
tool ready to be used for incorporation in a gene finder.

Awvailability: Data, splits, additional information on the model selection, the whole genome
predictions, as well as the stand-alone prediction tool are available for download at http://
www.fml.mpg.de/raetsch/projects/splice.

Introduction for cost efficient, high-throughput whole genome
With the generation of whole genome sequences, impor-  sequencing which is going to provide the community with
tant insight into gene functions and genetic variation has ~ massive amounts of sequences. It is self-evident that the
been gained over the last decades. As novel sequencing  handling of this wealth of data will require efficient and
technologies are rapidly evolving, the way will be paved  accurate computational methods for sequence analysis.
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Among the various tools in computational genetic
research, gene prediction remains one of the most promi-
nent tasks, as recent competitions have further empha-
sised (e.g. [1,2]). Accurate gene prediction is of prime
importance for the creation and improvement of annota-
tions of recently sequenced genomes [3,4]. In the light of
new data related to natural variation (e.g. [5-7]), the
importance of accurate computational gene finding gains
increasing importance since it helps to understand the
effects of polymorphisms on the gene products.

Ab initio gene prediction from sequence is a highly sophis-
ticated procedure as it mimics - in its result — the labour
of several complex cellular machineries at a time: identifi-
cation of the beginning and the end of a gene, as is accom-
plished by RNA polymerases; splicing of the nascent RNA,
in the cell performed by the spliceosome; and eventually
the detection of an open reading frame, as does the ribos-
ome. The success of a gene prediction method therefore
relies on the accuracy of each of these components. In this
paper we will focus on the improvement of signal sensors
for the detection of splice sites, as this sub-problem is a
core element of any gene finder. A comprehensive under-
standing of splice sites is not only a prerequisite for splice
form prediction but can also be of great value in localizing
genes [8-12].

In eukaryotic genes, splice sites mark the boundaries
between exons and introns. The latter are excised from
premature mRNAs in a post-processing step after tran-
scription. Both the donor sites at the exon-intron junc-
tions, and the acceptor sites at the intron-exon
boundaries, have quite strong consensus sequences which
can, however, vary significantly from one organism to
another. The vast majority of all splice sites are so called
canonical splice sites which are characterised by the pres-
ence of the dimers GT and AG for donor and acceptor
sites, respectively. The occurrence of the dimer is not suf-
ficient for the splice site. Indeed, it occurs very frequently
at non splice site positions. For example in human DNA,
which is ~6-10? nucleotides in size, GT can be found
about 400 million times (summed over both strands). For
some crude estimate of say 2-104 genes with 20 exons
each, only 0.1% of the consensus sites are true splice sites.
We therefore face two extremely unbalanced classification
tasks, namely the discrimination between true donor sites
and decoy positions with the consensus dimer GT or GC
(the only non-canonical splice site that we will consider)
and the discrimination between true acceptor sites and
decoy positions with the consensus dimer AG.

Relation to previous work

Although present-day splice site detectors (e.g. based on
Support Vector Machines, neural networks, hidden
Markov models) are reported to perform at a fairly good
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level [9,13-15], several of the reported performance num-
bers should be interpreted with caution, for a number of
reasons. First of all, these results are based on small and
potentially biased data sets. Now that many genomes
have been fully sequenced, these results will need to be re-
evaluated. Second, issues in generating negative examples
(decoys) were, if recognized, often not sufficiently docu-
mented. The choice of data sets, in particular the decoys,
can make a tremendous difference in the measured per-
formance. Third, often only the single site prediction of
acceptor and donor sites is considered, whereas the higher
goal is to use the splice site predictor within a gene finder.
It is uncertain how good the predictors perform in this set-
ting. Keeping these in mind, we provide unbiased genome-
wide splice site prediction which enables further evalua-
tion in gene finders.

In this paper, we will apply Support Vector Machines
(SVMs) to the recognition of splice sites. SVMs are known
to be excellent algorithms for solving classification tasks
[16-19], and have also been successfully applied to several
bioinformatics problems [3,20-23] including splice site
detection, cf. e.g. [24-32]. Our work builds upon our pre-
vious work: In [24,25] we demonstrated that SVMs using
kernels from probabilistic hidden Markov models (cf.
[20,23]) outperform hidden Markov models alone. As this
approach did not scale to many training examples, we per-
formed a comparison of different faster methods for splice
site recognition [28], where we considered Markov mod-
els and SVMs with different kernels: the so-called locality
improved kernel, originally proposed for recognition of
translation initiation sites [21]; the SVM-pairwise kernel,
using alignment scores [33]; the TOP kernel, making use of
a probabilistic model (cf. [20,23]); the standard polyno-
mial kernel [16]; and the so-called weighted degree kernel
[28,34]. A predictor based on the latter kernel has been
successfully used in combination with other information
for predicting the splice form of a gene, while outperform-
ing other HMM based approaches [3]. This indicates that
the improved accuracy of splice site recognition indeed
leads to a higher accuracy in ab initio transcript prediction.

Other groups also reported successful SVM based splice
site detectors. In [27] it was proposed to use linear SVMs
on binary features computed from di-nucleotides, an
approach which also outperformed previous Markov
models. Even more accurate, the authors of SpliceMa-
chine [29] not only used positional information (one- to
trimers) around the splice site, but also explicitly mod-
elled compositional context using tri- to hexamers. To the
best of our knowledge, this approach is the current state-
of-the art, outperforming previous SVM based approaches
as well as GeneSplicer [12] and GeneSplicerESE [35]. In
[31] linear SVMs were used on positional features that
were extracted from empirical estimates of unconditional
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positional probabilities. Note that this approach is similar
to our TOP kernel method on zeroth-order Markov chains
[28]. Recently, [32] reported improved accuracies for
splice site prediction also by using SVMs. The method
employed in [32] is very similar to a kernel initially pro-
posed in [21] (Salzberg kernel). The idea of this kernel is to
use empirical estimates of conditional positional proba-
bilities of the nucleotides around splice sites (estimated
by Markov models of first order) which are then used as
input for classification by an SVM.

Many other methods have been proposed for splice site
recognition. For instance multilayer neural networks with
Markovian probabilities as inputs [15]. They train three
Markov models on three segments of the input sequence,
the upstream, signal and downstream segments. Although
they outperform [32] on small datasets, the authors them-
selves write that the training of the neural networks is
especially slow when the number of true and decoy exam-
ples are imbalanced and that they have to downsample
the number of negatives for training even on small and
short sequence sets. Therefore, their method does not
seem suitable for large-scale genome-wide computations.
Finally, [36] proposed a method based on Bayesian Net-
works which models statistical dependencies between
nucleotide positions.

In this work we will compare a few of our previously con-
sidered methods against these approaches and show that
the engineering of the kernel, the careful choice of features
and a sound model selection procedure are important for
obtaining accurate predictions of splice sites.

Our previous comparison in [28] was performed on a rel-
atively small data set derived from the C. elegans genome.
Also, the data sets considered in [32] are relatively small
(around 300,000 examples, whereas more than
50,000,000 examples are nowadays readily available). In
this study we therefore reevaluate the previous results on
much larger data sets derived from the genomes of five
model organisms, namely Caenorhabditis elegans
("worm"), Arabidopsis thaliana ("cress"), Drosophila mela-
nogaster ("fly"), Danio rerio ("fish"), and Homo sapiens
("human"). Building on our recent work on large scale
kernel learning [37-40], we now are able to train and eval-
uate Support Vector Machines on such large data sets as is
necessary for analyzing the whole human genome. In par-
ticular, we are able to show that increasing the number of
training examples indeed helps to obtain a significantly
improved performance, and thus will help to improve
existing annotation (see, e.g. [3]). We train and evaluate
SVMs on newly generated data sets using nested cross-val-
idation and provide genome-wide splice site predictions
for any occurring GT, GC and AG dimers, which will be
furnished with posterior probability estimates for being
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true splice sites. We will show that the methods in some
cases exhibit dramatic performance differences for the dif-
ferent data sets.

Organization of the paper

The paper is organized as follows: In the next section we
present the outcomes of (a) the comparison with the
methods proposed in [12,29,32,36], (b) an assessment
which window length should be used for classification
and, finally, (c) a comparison of the large scale methods
on the genome-wide data sets for the five considered
genomes. After discussing our results, we also address the
question about the interpretability of SVMs. Finally, in the
Methods section, we describe the generation of our data
sets, the details of cross-validation and model selection,
different kernels, and visualizations method that we used
in this study.

Results and discussions

In this section we discuss experimental results we
obtained with our methods for acceptor and donor splice
site predictions for the five considered organisms.

Throughout the paper we measure our prediction accu-
racy in terms of area under the Receiver Operator Charac-
teristic Curve (auROC) [41,42] and area under the
Precision Recall Curve (auPRC) (e.g., [43]). (We omit to
show the classification accuracy, as often more than 99%
of the examples are negatively labeled. Thus, the simplest
classifier, predicting -1 for all examples, already achieves
99% rendering the accuracy measure meaningless.) Note
that for unbalanced data sets the area under the auROC
can also be rather meaningless, since this measure is inde-
pendent of class ratios and large auROC values may not
necessarily indicate a good detection performance. The
auPRC is a better measure for performance, if the class dis-
tribution is very unbalanced. However, it does depend on
the class priors on the test set and hence is affected by sub-
sampling the decoys, as happened with the data sets used
in previous studies (NN269 in [32] contains about 4
times more decoy than true sites, DGSplicer in [32,36]
about 140 times more; in contrast, in the genome scenario
the ratio is one to 300 - 1000). In order to compare the
results among the different data sets with different class
sizes, we therefore also provide the auROC score which is
not affected by sub-sampling.

Pilot studies on small datasets

Performance on the NN269 and DGSplicer data sets

For the comparison of our SVM classifiers to the
approaches proposed in [32,36], we first measure the per-
formance of our methods on the four tasks used in [32]
(see Methods for details). The approach in [32] is outper-
formed by a neural network approach proposed in [15].
However, we do not compare our methods to the latter
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method, since it already reaches its computational limits
for the small datasets with only a few thousand short
sequences (cf. [15], page 138) and hence is not suitable
for large-scale genome-wide computations. On each task
we trained SVMs with the weighted degree kernel (WD)
[28], and the weighted degree kernel with shifts (WDS) [34].
On the NN269 Acceptor and Donor sets we additionally
trained an SVM using the locality improved kernel (LIK)
[21]; as it gives the weakest prediction performance and is
computationally most expensive we exclude this model
from the following investigations. As a benchmark
method we also train higher order Markov Chains (MCs)
(e.g. [44]) of "linear" structure and predict with the poste-
rior log-odds ratio (cf. Methods section). Note that Posi-
tion Specific Scoring Matrices (PSSM) are recovered as the
special case of zeroth-order MCs. A summary of our
results showing the auROC and auPRC scores is displayed
in Table 1.

We first note that the simple MCs perform already fairly
well in comparison to the SVM methods. Surprisingly, we
find that the MC-SVM proposed in [32] performs worse
than the MCs. (We have reevaluated the results in [32]
with the code provided by the authors and found that the
stated false positive rate of their method is wrong by a fac-
tor of 10. We have contacted the authors for clarification
and they published an erratum [45]. The results for MC-
SVMs given in Table 1 are based on the corrected perform-
ance measurement.) As anticipated, for the two acceptor
recognition tasks, EBN and MCs are outperformed by all
kernel models which are performing all at a similar level.
However, we were intrigued to observe that for the
DGSplicer Donor recognition task, the MC based predic-
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tions outperform the kernel methods. For NN269 Donor
recognition their performance is similar to the perform-
ance of the kernel methods.

There are at least two possible explanations for the strong
performance of the MCs. First, the DGSplicer data set has
been derived from the genome annotation, which in turn
might have been obtained using a MC based gene finder.
Hence, the test set may contain false predictions easier
reproduced by a MC. Second, the window size for the
DGSplicer Donor recognition task is very short and has
been tuned in [36] to maximize the performance of their
method (EBN) and might be suboptimal for SVMs. We
investigated these hypotheses with two experiments:

¢ In the first experiment, we shortened the length of the
sequences in DGSplicer Acceptor from 36 to 18 (with con-
sensus AG at 8,9). We retrained the MC and WD models
doing a full model selection on the shortened training
data. We observe that on the shortened data set the predic-
tion performance drops drastically for both MC and WD
(by 60% relative) and that, indeed, the MC outperforms
the WD method (to 12.9% and 9% auPRC, respectively).

¢ In a second experiment, we started with a subset of our
new data sets generated from the genomes of worm and
human which only uses EST or cDNA confirmed splice
sites (see methods section). In the training data we used
the same number of true and decoy donor sites as in the
DGSplicer data set. For the test data we used the original
class ratios (in order to allow a direct comparison to fol-
lowing experiments; cf. Table 2). Training and testing
sequences were shortened from 218 nt in steps of 10 nt

Table I: Performance evaluation (auROC and auPRC scores) of six different methods on the NN269 and DGSplicer Acceptor and
Donor test sets. MC denotes prediction with a Markov Chain, EBN the method proposed in [36], and MC-SVM the SVM based method

described in [32] (similar to [21]).

MC EBN MC-SVM LIK WD WDS

NN269

Acceptor

auROC 96.78 - 96.74t 98.19 98.16 98.65

auPRC 88.41 - 88.331 92.48 92.53 94.36

Donor

auROC 98.18 - 97.64t 98.04 98.50 98.13

auPRC 92.42 - 89.57t 92.65 92.86 92.47
DGSplicer

Acceptor

auROC 97.23 95.91* 95.35% - 97.50 97.28

auPRC 30.59 - - 32.08 28.58

Donor

auROC 98.34 96.88* 95.08* - 97.84 97.47

auPRC 41.72 - - 39.72 35.59

The remaining methods are based on SVMs using the locality improved kernel (LIK) [21], weighted degree kernel (WD) [28] and weighted degree
kernel with shifts (WDS) [34]. The values marked with an asterisk were estimated from the figures provided in [32]. The values marked with t are

from personal communication with the authors of [32].
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Table 2: Characteristics of the genome-wide data sets containing true and decoy acceptor and donor splice sites for our five model

organisms.
Worm Fly Cress Fish Human
Acceptor  Donor Acceptor  Donor Acceptor  Donor Acceptor  Donor Acceptor  Donor

Training total 1,105,886 1,744,733 1,289,427 2,484,854 1,340,260 2,033,863 3,541,087 6,017,854 6,635,123  9,262,24|
Fraction positives  3.6% 2.3% 1.4% 0.7% 3.6% 2.3% 2.4% 1.5% 1.5% I.1%
Evaluation total 371,897 588,088 425287 820,172 448,924 680,998 3,892,454 10,820,985 10,820,985 15,201,348
Fraction positives ~ 3.6% 2.3% 1.4% 0.7% 3.6% 2.3% 0.7% 0.4% 0.3% 0.2%
Testing total 364,967 578621 441,686 851,539 445,585 673,732 3,998,521 11,011,875 11,011,875 15,369,748
Fraction positives  3.6% 2.3% 1.4% 0.7% 3.5% 2.3% 0.7% 0.4% 0.3% 0.2%

The sequence length in all sets is 141 nt, for acceptor splice sequences the consensus dimer AG is at position 61, for donor GT/GC at position 81.
The negative examples in training sets of fish and human were sub-sampled by a factor of three and five, respectively.

down to 18 nt (same as in the DGSplicer donor data set).
We then trained and tested MCs and WD-SVMs for the sets
of sequences of different length. Figure 1 shows the result-
ing values for the auPRC on the test data for different
sequence lengths. For the short sequences, the prediction
accuracies of MCs and SVMs are close for both organisms.
For human donor sequences of length 18 MCs indeed
outperform SVMs. With increasing sequence length, how-
ever, the auPRC of SVMs rapidly improves while it
degrades for MCs. Recall that the short sequence length in
the DGSplicer data was tuned through model selection for
EBN, and thus the performance of the EBN method will
degrade for longer sequences [36], so that we can safely
infer that our methods would also outperform EBN for
longer training sequences.

The results do not support our first hypothesis that the test
data sets are enriched with MC predictions. However, the

Worm Donor Recognition
100 : .

80 R

auPRC (%)

701 1

60 b

—6—-PSSM
—— WD
50

0 50 100 150 200 250
Splice Sequence Length

Figure |

results confirm our second hypothesis that the poor per-
formance of the kernel methods on the NN269 and
DGSplicer donor tasks is due to the shortness of
sequences. We also conclude that discriminative informa-
tion between true and decoy donor sequences lies not
only in the close vicinity of the splice site but also further
away (see also the illustrations using k-mer scoring matri-
ces below). Therefore, the careful choice of features is cru-
cial for building accurate splice site detectors and if an
appropriate window size is chosen, the WD kernel based
SVM classifiers easily outperform previously proposed
methods.

Comparison with SpliceMachine for cress and human

In this section we compare SpliceMachine [29] with the
WD kernel based SVMs. SpliceMachine [46] is the current
state-of-the art splice site detector. It is based on a linear
SVM and outperforms the freely available GeneSplicer

Human Donor Recognition

10| —e—PSSM b
—— WD

6] 50 100 150 200 250
Splice Sequence Length

Comparison of classification performance of the weighted degree kernel based SVM classifier (WD) with the Markov chain
based classifier (MC) on a subset of our C. elegans Donor and Human Donor data sets for sequences of varying length. For each
length, we performed a full model selection on the training data in order to choose the best model. The performance on the
test sets, measured through area under the Precision Recall Curve (auPRC), is displayed in percent.
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[47,12] by a large margin [29]. We therefore perform an
extended comparison of our methods to SpliceMachine
on subsets of the genome-wide datasets (cf. the results and
methods sections). One fifth and one twenty-fifth of the
data set was used each for training and for independent
testing for cress and human, respectively. We downloaded
the SpliceMachine feature extractor [48] to generate train
and test data sets. Similar to the WD kernel, SpliceMa-
chine makes use of positional information around the
splice site. As it explicitly extracts these features it is how-
ever limited to a low order context (small d). In addition,
SpliceMachine explicitly models coding-frame specific
compositional context using tri- to hexamers. Note that
this compositional information is also available to a gene
finding system for which we are targeting our splicing
detector. Therefore, in order to avoid redundancy, compo-
sitional information should ideally not be used to detect
the splicing signal. Nevertheless, for comparative evalua-
tion of the potential of our method, we augment our WD
kernel based methods with 6 spectrum kernels [49] (order
3, 4, 5, each up- and downstream of splice site) and use
the same large window sizes as were found out to be opti-
mal in [29]. For cress acceptor [-85, +86], donor [-87,
+124], and for human acceptor [-105, +146], donor [-107,
+104]. For the WD kernel based SVMs, we fixed the model
parameters C = 1 and d = 22, and for WDS we additionaly
fixed the shift parameter o = 0.5. For the SpliceMachine
we performed an extensive model selection and found C
= 1073 to be consistently optimal. We trained with C e
{109, 101, 102, 103, 5-10%, 104, 105, 106, 107, 108}.
Using these parameter settings we trained SVMs a) on the
SpliceMachine features (SM), b) using the WD kernel
(WD) c) using the WD kernel augmented by the 6 spec-
trum kernels (WDSP) d) using the WDS kernel (WDS)
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and e) using the WDS and spectrum kernels (WDSSP).
Table 3 shows the area under the ROC and precision recall
curve obtained in this comparison. Note that SpliceMa-
chine always outperforms the WD kernel, but is in most
cases inferior to the WDS kernel. Furthermore, comple-
menting the WD kernels with spectrum kernels (methods
WDSP and WDSSP) always improves precision beyond
that of SpliceMachine. As this work is targeted at produc-
ing a splicing signal detector to be used in a gene finder,
we will omit compositional information in the following
genome-wide evaluations. To be fair, one can note that a
WDS kernel using a very large shift is able to capture com-
positional information, and the same holds to some
extend for the WD kernel when it has seen many training
examples. It is therefore impossible to draw strong conclu-
sions on whether window size and (ab)use of composi-
tional features will prove beneficial when the splice site
predictor is used as a module in a gene finder, which we
hope is enabled by our work providing genome wide pre-
dictions.

Performance for varying data size

Figure 2 shows the prediction performance in terms of the
auROC and auPRC of SVMs using the MC and the WD
kernel on the human acceptor and donor splice data that
we generated for this work (see the methods section) for
varying training set sizes. For training we use up to 80% of
all examples and the remaining examples for testing. MCs
and SVMs were trained on sets of size varying between
1000 and 8.5 million examples. Here we sub-sampled the
negative examples by a factor of five. We observe that the
performance steadily increases when using more data for
training. For SVMs, over a wide range, the auPRC increases
by about 5% (absolute) when the amount of data is mul-

Table 3: Performance evaluation (auROC and auPRC scores) of four different methods on a subset of the genome-wide cress and

human datasets.

SM WD WDSP WDS WDSSP

Cress

Acceptor

auROC 99.41| 98.97 99.36 99.43 99.43

auPRC 91.76 84.24 90.64 92.01 92.09

Donor

auROC 99.59 99.38 99.58 99.61 99.61

auPRC 93.34 88.62 93.42 93.68 93.87
Human

Acceptor

auROC 97.72 97.34 97.71 97.73 97.82

auPRC 50.39 42.77 50.48 51.78 54.12

Donor

auROC 98.44 98.36 98.36 98.51 98.37

auPRC 53.29 46.53 54.06 53.08 54.69

The methods compared are SpliceMachine (SM), the weighted degree kernel (WD), the weighted degree kernel complemented with six spectrum
kernels (WDSP), the weighted degree kernel with shifts (WDS), and the weighted degree kernel with shifts complemented by six spectrum kernels

(WDSSP).
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Figure 2

Comparison of the classification performance of the weighted degree kernel based SVM classifier (SYM) with the Markov chain
based classifier (MC) for different training set sizes. The area under the Precision Recall Curve (auPRC; left) and the area under
the Receiver Operator Curve (auROC; middle) are displayed in percent. On the right the CPU time in seconds needed to train

the models is shown.

tiplied by a factor of 2.7. In the last step, when increasing
from 3.3 million to 8.5 million examples, the gain is
slightly smaller (3.2 - 3.5%), indicating the start of a pla-
teau. Similarly MCs improve with growing training set
sizes. As MCs are computationally a lot less demanding,
we performed a full model selection over the model order
and pseudo counts for each training set size. For the WD-
SVM the parameters were fixed to the ones found optimal
in the results section. Nevertheless MCs did constantly
perform inferior to WD-SVMs. We may conclude that one
should train using all available data to obtain the best
results. If this is infeasible, then we suggest to only sub-
sample the negatives examples in the training set, until
training becomes computationally tractable. The class dis-
tribution in the test set, however, should never be changed
unless explicitly taken into account in evaluation.

Results on genome-wide data sets

Based on our preliminary studies, we now proceeded to
design and train the genome-wide predictors. We first gen-
erated new genome-wide data sets for our five model organ-
isms: worm, fly, cress, fish, and human. As our large-scale
learning methods allow us to use millions of training
examples, we included all available EST information from
the commonly used databases. Since the reliability of the
true and decoy splice sequences is crucial for a successful
training and tuning, these data sets were produced with
particular care; the details can be found in the Methods
section. We arrived at training data sets of considerable
size containing sequences of sufficient length (see Table
2). For fish and human the training datasets were sub-
sampled to include only 1/3 and 1/5 of the negative exam-

ples, leading to a maximal training set size of 9 million
sequences for human donor sites.

For a subsequent use in a gene finder system we aimed at
producing unbiased predictions for all candidate splice
sites, i.e. for all occurrences of the GT/GC and AG consen-
sus dimer. For a proper model selection and in order to
obtain unbiased predictions on the whole genome we
employed nested five-fold cross-validation. We addition-
ally estimated posterior probabilities in order to obtain
interpretable and comparable scores for the outputs of the
different SVM classifiers (see Methods for details). The
results summarized in Table 4 are averaged values with
standard deviation over the five different test partitions.

Confirming our evaluations in the pilot studies, kernel
methods outperform the MC methods in all eight classifi-
cation tasks. Figure 3 displays the precision recall curves
for all five organisms comparatively, Table 4 the corre-
sponding auPRC scores. For worm, fly and cress the
improvement in the performance accuracy for the SVM in
comparison to MC lies in a similar range of 4-10% (abso-
lute), both for donor and for acceptor tasks. However, for
fish and especially for human the performance gain is
considerable higher. For human, MCs only achieve 16%
and 25% auPRC scores, whereas WDS reaches 54% and
57% for acceptor and donor recognition, respectively. The
severe decrease in performance from worm to human for
all classification methods in the auPRC score can partially
be explained by the different fractions of positive exam-
ples observed in the test set. However, a weaker decline
can also be observed in the auROC scores (also Table 4)
which are independent of the class skew (e.g. for acceptor
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Table 4: Performance evaluation on the genome-wide data sets for worm, fly cress, fish, and human.

Worm Fly Cress Fish Human
Acc Don Acc Don Acc Don Acc Don Acc Don
MC
auROC(%) 99.62£0.03 99.55+0.02 98.78+0.10 99.12+0.05 99.12+£0.03 9944 +0.02 98.98+003 99.19+0.05 96.03+0.09 97.78+0.05
auPRC(%) 92.09+028 89.98+020 8027 +0.76 7847+063 8743+028 8823+034 63.59+0.72 6291057 1620+022 24.98+0.30
WD
auROC(%) 99.77£0.02 9982001 99.02+0.09 9949+005 9937002 99.66+0.02 99.36+0.04 99.60+004 97.76+0.06 98.59 +0.05
auPRC(%) 95.20+029 9534+0.10 8480+035 8642+0.60 91.06+0.15 9221+0.17 8533+038 8580046 52.07+033 54.62+0.54
WDS
auROC(%) 99.80 £0.02 99.82+0.01 99.12+£0.09 9951 £0.05 9943 +£002 99.68+0.02 99.38+0.04 99.61 +0.04 97.86+0.05 98.63 +0.05
auPRC(%) 95.89+026 9534+0.10 86.67+0.35 8747+054 92.16+0.17 9288+0.15 86.58+0.33 86.94+044 5442+038 56.54+0.57

Displayed are auROC and auPRC scores for acceptor and donor recognition tasks as archived by the MC method and two support vector machine
approaches, one with the weighted degree kernel (WD) and one with the weighted degree kernewith shifts (WDS).

sites from 99.6% on worm to 96.0% on human for MC,
and from 99.8% to 97.9% for WDS). The classification
task on the human genome seems to be a considerably
more difficult problem than the same one on the worm
genome. We may speculate that this can be partially
explained by a higher incidence of alternative splicing in
the human genome. These sites usually exhibit weaker
consensus sequences and are therefore more difficult to
detect. Additionally, they often lead to mislabeled exam-
ples in the training and testing sets. Finally, it might also
be due to the used protocol for aligning the sequences
which may generate more false splice sites in human than
in other organisms. This hypothesis is supported by the
fact that the performance significantly increases, if one
only considers cDNA confirmed genes (data not shown).

Analysis of the learning result

One of the problems with kernel methods compared to
probabilistic methods, such as Position Specific Scoring
Matrices [50] or Interpolated Markov Models [11], is that
the resulting decision function is hard to interpret and,
hence, difficult to use in order to extract relevant biologi-
cal knowledge from it (see also [51-53]). Here, we pro-
pose to use k-mer scoring matrices [3,54] to visualize the
contribution of all (k-mer, sequence position) pairs to the
final decision function of the SVM with WD-Kernel (cf.
Methods section). We obtain a graphical representation
from which it is possible to judge where in the sequence
which substring lengths are of importance.

We plotted the k-mer scoring matrices corresponding to
our trained models for the organisms comparatively in
Figure 4, which shows the relative importance of sub-
strings of a certain length for each position in the classi-
fied sequences. We can make a few interesting
observations: For worm, fly, and potentially also cress
there is a rather strong signal about 40-60 nt downstream
of the donor and 40-60 nt upstream of the acceptor splice

sites. These two signals are related to each other, since
introns in these organisms are often only 50 nt long. Addi-
tionally, we find the region 20-30 nt upstream of the
acceptor splice site of importance, which is very likely
related to the branch point. In human it is typically
located 20-50 nt upstream and exhibits the consensus
CU(A/G)A(C/U), which matches the lengths of important
k-mers in that region for human [55]. In worms, the
branch point consensus seems shorter (3-4 nt) — confirm-
ing previous reports that the branch point is much weaker
in worms. In fly and cress the branch point seems rather
long (5-6 nt) and important for recognition of the splice
site. Finally, note that the exon sequence carries a lot of
discriminative information. The k-mers of most impor-
tance are of length three, relating to the coding potential
of exons. Additionally, the periodicity observed for
instance in cress is due to the reading frame. On the sup-
plementary website we also provide a list of most discrim-
inative k-mers for the two splice site recognition tasks.

Conclusion

In this work we have evaluated several approaches for the
recognition of splice sites in worm, fly, cress, fish, and
human. In a first step we compared MCs, a Bayesian
method (EBN) and SVM based methods using several ker-
nels on existing data sets generated from the human
genome. We considered the kernel used in [32] based on
MGCs, the locality improved kernel [21] and two variants
of the weighted degree kernel [28,34]. We found that
these existing data sets have limitations in that the
sequences used for training and evaluation turn out to be
too short for optimal discrimination performance. For
SVMs we showed that they are able to exploit — albeit pre-
sumably weak - features as far as 80 nt away from the
splice sites. In a comparison to SpliceMachine we could
show that our approach perform favorably when comple-
mented with compositional information. Using the pro-
tocol proposed in [3], we therefore generated new data
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Figure 3

Precision Recall Curve for the three methods MC, WD, WDS estimated on the genome-wide data sets for worm, fly, cress,
fish, and human in a nested cross-validation scheme. In contrast to the ROC the random guess in this plot corresponds to a
horizontal line, that depends on the fraction of positive examples in the test set (e.g. 2% and 3% in the case of the worm accep-
tor and donor data sets, respectively).
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Figure 4

k-mer scoring matrices comparatively for worm, fly, cress, fish, and human. They depict the maximal position-wise contribution
of all k-mers up to order 8 to the decision of the trained kernel classifiers, transformed into percentile values (cf. the section
on interpreting the SVM classifier). Red values are highest contributions, blue lowest. Position | denotes the splice site and the
start of the consensus dimer.
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sets for the five organisms. These data sets contain suffi-
ciently long sequences and for human as many as 9 mil-
lion training examples. Based on our previous work on
large scale kernel learning [40], we were able to train SVM
classifiers also on these rather big data sets. Moreover, we
illustrated that the large amount of training data is indeed
beneficial for significantly improving the SVM prediction
performance, while MCs do not significantly improve
when using much more training examples. We therefore
encourage using as many examples for training as feasible
to obtain the best generalization results.

For worm, fly and cress we were able to improve the per-
formance by 4%-10% (absolute) compared to MCs. The
biggest difference between the methods is observed for
the most difficult task: acceptor and donor recognition on
human DNA. The MCs reach only 16% and 25% auPRC,
while SVMs achieve 54% and 57%, respectively. The dras-
tic differences between organisms in the prediction per-
formance scores can be understood as a consequence of
the smaller fraction of positive examples and a higher
incidence of alternative splicing in the human genome
compared to the other genomes. For further comparative
studies we provide and discuss k-mer scoring matrices elu-
cidating which features are important for discrimination.

In order to facilitate the use of our classifiers for other
studies, we provide whole genome predictions for the five
organisms. Additionally, we offer an open-source stand-
alone prediction tool allowing, for instance, the integra-
tion in other gene finder systems. The predictions, data
sets and the stand-alone prediction tool are available for
download on the supplementary website http://
www.fml.mpg.de/raetsch/projects/splice.

Methods

Data sets

NN269 and DGSplicer data sets

For the pilot study we use the NN269 and the DGSplicer
data sets originating from [9] and [32], respectively. The
data originates from [56] and the training and test splits
can be downloaded from [46]. The data sets only include
sequences with the canonical splice site dimers AG and

http://www.biomedcentral.com/1471-2105/8/S10/S7

GT. We use the same split for training and test sets as used
in [32]. A description of the properties of the data set is
given in Table 5.

Worm, fly, cress, fish, and human

We collected all known ESTs from dbEST [57] (as of Feb-
ruary 28, 2007; 346,064 sequences for worm, 514,613
sequences for fly, 1,276,130 sequences for cress,
1,168,572 sequences for fish, and 7,915,689 sequences
for human). We additionally used EST and cDNA
sequences available from wormbase [58] for worm, (file
confirmed_genes.WS170) [59] for fly, (files na_EST.dros
and na_dbEST.same.dmel) [60] for «cress, (files
cDNA_flanking 050524.txt and
cDNA_full_reading 050524.txt) [61] for fish, (file
Danio_rerio.ZFISH6.43.cdna.known.?? and [62] for fish
and human (file dr_mgc mrnafasta for fish and
hs_mgc_mrna.fasta for human). Using blat [63] we
aligned ESTs and cDNA sequences against the genomic
DNA (releases WS170, dm5, ath1, zv6, and hgl8, respec-
tively). If the sequence could not be unambiguously
matched, we only considered the best hit. The alignment
was used to confirm exons and introns. We refined the
alignment by correcting typical sequencing errors, for
instance by removing minor insertions and deletions. If
an intron did not exhibit the consensus GT/AG or GC/AG
at the 5' and 3' ends, we tried to achieve this by shifting
the boundaries up to two base pairs (bp). If this still did
not lead to the consensus, then we split the sequence into
two parts and considered each subsequence separately.
Then, we merged alignments if they did not disagree and
if they shared at least one complete exon or intron.

In a next step, we clustered the alignments: In the begin-
ning, each of the above EST and cDNA alignments were in
a separate cluster. We iteratively joined clusters, if any two
sequences from distinct clusters match to the same
genomic location (this includes many forms of alternative
splicing).

From the clustered alignments we obtained a compact
splicing graph representation [64], which can be easily
used to generate a list of positions of true acceptor and

Table 5: Characteristics of the NN269 and DGSplicer data sets containing true and decoy acceptor and donor splice sites derived from

the human genome.

NN269 DGSplicer

Acceptor Donor Acceptor Donor
Sequence length 90 15 36 18
Consensus positions AG at 69 GT at 8 AG at 26 GTat 10
Train total 5788 5256 322156 228268
Fraction positives 19.3% 21.2% 0.6% 0.8%
Test total 1087 990 80539 57067
Fraction positives 19.4% 21.0% 0.6% 0.8%
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donor splice sites. Within the boundaries of the align-
ments (we cut out 10 nt at both ends of the alignments to
exclude potentially undetected splice sites), we identified
all positions exhibiting the AG, GT or GC dimer and
which were not in the list of confirmed splice sites. The
lists of true and decoy splice site positions were used to
extract the disjoint training, validation and test sets con-
sisting of sequences in a window around these positions.
Additionally, we divided the whole genome into regions,
which are disjoint contiguous sequences containing at
least two complete genes; if an adjacent gene is less than
250 base pairs away, we merge the adjacent genes into the
region. Genes in the same region are also assigned to the
same cross-validation split. The splitting was imple-
mented by defining a linkage graph over the regions and
by using single linkage clustering. The splits were defined
by randomly assigning clusters of regions to the split.

Model selection and evaluation

To be able to apply SVMs, we have to find the optimal soft
margin parameter C [18] and the kernel parameters. These
are: For the LI-kernel, the degree d and window size [; for
the WD kernel, the degree d; and for the WDS kernel, the
degree d and the shift parameter o (see the section on
SVMs and kernels for details). For MCs we have to deter-
mine the order d of the Markov chain and the pseudo-
counts for the models of positive and the negative
examples (see the posterior log-odds section). In order to
tune these parameters we perform the cross-validation
procedures described below.

NN269 and DGSplicer

The training and model selection of our methods for each
of the four tasks was done separately by partial 10-fold
cross-validation on the training data. For this, the training
sets for each task are divided into 10 equally sized data
splits, each containing the same number of splice
sequences and the same proportion of true versus decoy
sequences. For each parameter combination, we use only
3 out of the 10 folds, that is we train 3 times by using 9
out of the 10 training data splits and evaluate on the
remaining training data split. Since the data is highly
unbalanced, we choose the model with the highest aver-
age auPRC score on the three evaluation sets. This best
model is then trained on the complete training data set.
The final evaluation is done on the corresponding inde-
pendent test sets (same as in [32]). The supplementary
website includes tables with all parameter combinations
used in model selection for each task and the chosen
parameters.

Worm, fly, cress, fish, and human

The training and model selection of our methods for the
five organisms on the acceptor and donor recognition
tasks was done separately by 5-fold cross-validation. The

http://www.biomedcentral.com/1471-2105/8/S10/S7

optimal parameter was chosen by selecting the parameter
combination that maximized the auPRC score. This
model selection method was nested within 5-fold cross-
validation for final evaluation of the performance. The
reported auROC and auPRC are averaged scores over the
five cross-validation splits. The supplementary website
includes tables with all considered parameter combina-
tions and the chosen parameters for each task. All splits
were based on the basis of the clusters derived from EST
and ¢DNA alignments, such that different splits come
from random draws of the genome.

Performance measures

The sensitivity is defined as the fraction of correctly classi-
fied positive examples among the total number of positive
examples, i.e. it equals the true positive rate TPR = TP/(TP
+ FEN). Analogously, the fraction FPR = FP/(TN + FP) of
negative examples wrongly classified as positive is called
the false positive rate. Plotting TPR against FPR results in
the Receiver Operator Characteristic Curve (ROC)
[41,42]. Plotting the positive predictive value PPV = TP/
(FP + TP), i.e. the fraction of correct positive predictions
among all positively predicted examples, against the TPR,
one obtains the Precision Recall Curve (PRC) (see e.g.,
[43]). The area under the ROC and PRC are denoted by
auROC and auPRC respectively.

Estimation of posterior probabilities

In order to provide an interpretable and comparable con-
fidence score of the SVM predictions, we estimated the
conditional likelihood P(y = 1|f(x)) of the true label y
being positive for a given SVM output value f(x). To do
this, we applied a piecewise linear function which was
determined on the validation set (the same used for the
classifier model selection). We used the N = 50 quantiles
taken on the SVM output values as supporting points ¢, i

= 1,...,N. For convenience, denote ¢, = -c. For each point
¢ the corresponding 7;-value, which represents the

empirical probability of being a true positive, was com-
n’

puted as 7; = ——, where n; (i = 1,...,N) is the number of
i

examples with output values ¢, ; < f(x) <¢,and n,TP is the

number of true splice sites in the same output range. Addi-

tionally, we determined the empirical cumulative proba-
. “c _ N TP N

bility as follows 7; = (zj:inj )/(Zj:inj ) In order

to obtain a smooth and strictly monotonically increasing

probability estimate, we solve the following quadratic

optimization problem:
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N
min Y (s;(7) +1;(x°))
ﬂ,ﬂCeRf i1
s.t. m; <nf, foralli=1,.,N
m<myq—¢€ foralli=1,.,N-1

nf <miy —¢ foralli=1,.,N-1,

where & = 104 is a small constant ensuring that the func-

tions are strictly monotonically increasing and
i 2
si(m) = —— (7 —m;) and
j=1"
N
j=i'"i 2
tj(m") = — (i —7j)" ensuring that big differences
N
j=1"1

between the final and empirical estimates in ranges with
many outputs are penalized stronger. Using the newly
computed values 7;,..., 7y, we can compute for any output

value f(x) the corresponding posterior probability esti-
mate P(y = 1|f(x)) by linear interpolation

m for f(x) < ¢
Py =1]f(x)) = 7(¢ ¢41) for ¢ < f(x) <1,
N for f(x) = ¢y

i1 (f(%) = @) +7i (91 — f(%))
G —@

cumulative posterior probability P<(y = 1|f(x)) is com-

puted analogously. The above estimation procedure was

performed separately for every classifier.

where The

(¢ @)=

Identifying splice sites

Machine learning binary classification methods aim at
estimating a classification function f: X — {+1} using
labeled training data from X x {+1} such that g will cor-
rectly classify unseen examples. In our case, the input
space X will contain simple representations of sequences
of length N, {A, C, G, T}V, while +1 corresponds to true
splice and decoy sites, respectively. We will use the poste-
rior log-odds of a simple probabilistic model and SVMs
using different kernels as classifiers as discussed below.

Posterior log-odds
The posterior log-odds of a probabilistic model with
parameters @ are defined by

http://www.biomedcentral.com/1471-2105/8/S10/S7

8(x) = log(P(y =+1]x,0))-log(P(y =-1]x,0))
= log(P(x|0%))—log(P(x|07))+b,

where b is a bias term. We use f(x) = sign(g(x)) for classifi-
cation and Markov chains of order d

P(x | 6%) P(xq,... x5 | 6%)

N
+ +
= P(xq,...x5 |07) H P(ox; | %_1,e0r%i_q,07)
i=d+1

as for instance described in [44]. Each factor in this prod-
uct has to be estimated in model training, i.e. one counts
how often each symbol appears at each position in the
training data conditioned on every possible x;1,....x; 4.
Then for given model parameters 6 we have

N
+ + +
P(x|07)=0y(x1,....x7) H 0; (%, Xi_g),
i=d+1
where 95 is an estimate for P(x,,....x,;) and &(x;....x; ;) an
estimate for P(x;|x; ,....x; ;). As the alphabet has four let-

ters, each model has (N - d + 1) - 44+1 parameters and the
maximum likelihood estimate is given by:

90(51,...,Sd)=
1 il _ ok _ ok
(s =21 Ao ASg=xg)+T
m+7m| 15
ei(si,...,Si_d)=

m k k
Zk:]I(Si =X ANCANS_g = xi_d)+7l'

m k k
zkzll(si =X A ASi_g = Xi_g)+AT

where I( - ) is the indicator function, k enumerates over the
number of observed sequences m, and 7 is the commonly
used pseudocount (a model parameter, cf. [44]) which is
also tuned within the model selection procedure (cf. the
model selection and evaluation section).

SVM and kernels for splice site detection
As the second method we use SVMs. The generated classi-
fication function can be written as

f(x) = sign[ i viei K(x;,x) +b ],

i=1
where y; € {-1, +1} (i = 1,...,m) is the label of example x;.

The ¢;'s are Lagrange multipliers and b is the usual bias
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which are the results of SVM training [16]. The kernel K
is the key ingredient for learning with SVMs.

In the following paragraphs we describe the kernels which
are used in this study. They are all functions defined on
sequences. In the following x = xx,..xy denotes a
sequence of length N.

The locality improved (LI) kernel has been proven useful
in the context of translation initiation site (TIS) recogni-
tion [21]. Similar to the polynomial kernel of degree d for
discrete input data, this kernel considers correlations of
matches up to order d. In contrast to polynomial kernels
however, the LI kernel only considers local subsequence
correlations within a small window of length 21 + 1
around a sequence position:

d

1 +]
win, (x,x)=| —— > I(x,.: =x,.:) |,

where p =1 + 1,..,N - I. These window scores are then
summed up over the length of the sequence using a
weighting w, which linearly decreases to both ends of the

p—1 p<N/2
N-p-I+1 p>N/2

have the following kernel:

sequence, ie. w, ={ Then we

N-I
Kxx)= ) wywin, (x,x”).

p=I+1
The weighting allows one to emphasize regions of the
sequence which are believed to be of higher importance;
in our case this is the center, which is the location of the
splice site. (Note that the definition of the LI kernel in [21]
is slightly different from ours. Previously the weighting
was inside the window and was not very effective. Moreo-
ver, the version presented here of the kernel can be com-
puted 21 + 1 times faster than the original one.)

The weighted degree (WD) kernel [28] uses a similar
approach by counting matching subsequences u ;,(x) and
us(x') between two sequences x and x', with ug(x) =
XiXp,q.-%1, 51 forall 1 and 1 < 6<d. Here, 6 denotes the order
(length of the subsequence) to be compared. The WD ker-
nel is defined as

d N-6+1
K(xx)= D ws Y, Wug(x) = ug,(x)),
5=1 I=1
where we choose the weighting to be ws=d - 6 + 1. This
kernel emphasizes position dependent information and
the weighting decreases the influence for higher order
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matches, which would anyway have a higher contribution
due to all their matching subsequences. It can be com-
puted very efficiently without even extracting and enu-
merating all subsequences of the sequences [40]. Note
that this kernel is similar to the spectrum kernel as pro-
posed by [49], with the main difference that the weighted
degree kernel uses position specific information.

The weighted degree kernel with shifts (WDS) [34] is
defined as

d N-=5+1 S()
(K(xilxj) = 2 Ws z 65”5,l,s,x,-,xj '
6=1 I=1 s=0
s+HIEN

Hs s = Wks 145 (%7) = 15,1 (7)) + W, (%) = 5,145 (%)),

where w; is as before, 6, = 1/(2(s + 1)) is the weight
assigned to shifts (in either direction) of extent s, and S(I)
determines the shift range at position I. Here, we choose
S(1) = o]l - .|, where 1. is the position of the splice site. An
efficient implementation for this kernel allowing large
scale computations is described in [40].

For both the WD and WDS kernel we use the following
normalization

K(x,x")

K = JK(x, 2)K (", x")

Training and evaluation of the SVMs and the MCs were
performed using our shogun machine learning toolbox
(cf. http://www.shogun-toolbox.org) [38] in which effi-
cient implementations of the aforementioned kernels can
be found.

Interpreting the SYM classifier

Kernel methods are aimed directly at the classification
task which is to discriminate between the true and decoy
classes by learning a decision function separating the
classes in an associated feature space. In contrast, genera-
tive methods like position weight matrices or Markov mod-
els are statistical models which represent the data under
specific assumptions on the statistical structure and hence
it is relatively straightforward to interpret their results.
Although kernel methods outperform in many cases gen-
erative models, especially when the true statistical struc-
ture is more intricate than the assumed one, one of the
main criticisms of kernel methods is the difficulty to
directly interpret their decision function in a way that
allows to gain biologically relevant insight. However, by
taking advantage of our specific kernels and of their sparse
representation, we are able to efficiently use the decision
function of our SVMs in order to understand which k-mers
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at which positions are contributing the most in discrimi-
nating between true and decoy splice sites.

To see how this is possible, recall that, for SVMs, the
resulting classifier can be written as a dot product between
an a-weighted linear combination of support vectors
mapped into the feature space (which is often only
implicitly defined via the kernel function) [18]:

f(x) = Y iy ®(x;) - D(x) = Y oy K (%7, %).

i=1 i=1
—
w

In the case of sparse feature spaces, as with string kernels,
one can represent w in a sparse form and then efficiently
compute dot products between w and ®(x) in order to
speed up SVM training or testing [40]. This sparse repre-
sentation comes with the additional benefit of providing
us with means to interpret the SVM classifier. For k-mer
based string kernels like the spectrum kernel, each dimen-
sion w, in w represents a weight assigned to that k-mer u.
From the learned weighting one can thus easily identify
the k-mers with highest absolute weight or above a given
threshold = {u | |w,| > 7}. Note that the total number of
k-mers appearing in the support vectors is bounded by
dN,L where L is the maximum length of the sequences

L =max;, ply . This approach also works for the WD

kernel (with and without shifts). Here a weight is assigned
to each k-mer with 1 < k < d at each position in the
sequence. This allows us to generate the k-mer importance
matrices, displayed in Figure 4, associated with our splice
classifiers [54]. They display the weight which the SVM
assigns to each k-mer at each position in the input
sequence, i.e. given a SVM classifier trained with a WD
kernel of degree d we extract the k-mers weightings for 1 <

k < d starting at position p = 1,...,N, where we used d as
selected in model selection and d = 1,...,8. This leads to a

weighting for d -mers u for each position in the sequence:
W,

u,p’

which may be summarized by Sz?l, p = max, (W, ,).

We compute this quantity for d=1,.8 leading to the
two 8 x 141 matrices, which are transformed into percen-
tile values and then displayed color-coded in Figure 4.
Note that the above computation can be done efficiently
using string index data structures implemented in SHO-
GUN and described in detail in [40].
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