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Abstract
In imaging tasks where the observer is uncertain whether lesions are present, and where they could
be present, the image is searched for lesions. In the free-response paradigm, which closely reflects
this task, the observer provides data in the form of a variable number of mark-rating pairs per image.
In a companion paper a statistical model of visual search has been proposed that has parameters
characterizing the perceived lesion signal-to-noise ratio, the ability of the observer to avoid marking
non-lesion locations, and the ability of the observer to find lesions. The aim of this work is to relate
the search model parameters to receiver operating characteristic (ROC) curves that would result if
the observer reported the rating of the most suspicious finding on an image as the overall rating. Also
presented are the probability density functions (pdfs) of the underlying latent decision variables
corresponding to the highest rating for normal and abnormal images. The search-model-predicted
ROC curves are "proper" in the sense of never crossing the chance diagonal and the slope is
monotonically changing. They also have the interesting property of not allowing the observer to
move the operating point continuously from the origin to (1, 1). For certain choices of parameters
the operating points are predicted to be clustered near the initial steep region of the curve, as has
been observed by other investigators. The pdfs are non-Gaussians, markedly so for the abnormal
images and for certain choices of parameter values, and provide an explanation for the well-known
observation that experimental ROC data generally imply a wider pdf for abnormal images than for
normal images. Some features of search model predicted ROC curves and pdfs resemble those
predicted by the contaminated binormal model, but there are significant differences. The search
model appears to provide physical explanations for several aspects of experimental ROC curves.
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INTRODUCTION
The receiver operating characteristic (ROC) paradigm is widely used in the evaluation of
medical imaging systems (Metz, 1978, Metz, 1986, Metz, 1989). The method consists of asking
observers to rate images for suspicion of abnormality, for example, higher ratings denoting
higher degree of suspicion that the image is abnormal. The images are either normal or
abnormal, but this "truth" information is known only to the experimenter. The numerical ratings
data are usually modeled by two Gaussian distributions whose separation and ratio of variances
form the basic parameters of the analytical model (Dorfman and Alf Jr, 1969). Additional cutoff
parameters are needed to model the ratings data, but these do not affect the overall performance
or figure of merit of the observer. The ROC curve is defined as the plot of true positive fraction
versus the false positive fraction. The figure of merit is usually chosen to be the area under the
theoretical ROC curve.

Images in an ROC study are viewed under conditions of uncertainty regarding their true normal/
abnormal status and a single rating is recorded for each image. Additional information, such
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as the location of a suspected abnormality or that the image has multiple suspicious regions,
cannot be analyzed in the ROC framework. In imaging tasks where the observer is uncertain
whether lesions are present and where they could be present the observer must search the
images for lesions. In the free-response paradigm which closely reflects the search task the
observer provides data in the form of a variable number of mark-rating pairs per image (Bunch
et al., 1978). A mark is a physical location or region in the image that was deemed to be worth
reporting and the rating is the associated degree of suspicion. By adopting a proximity criterion
or acceptance radius (Chakraborty and Berbaum, 2004) it is possible to classify each mark as
a "true positive" (near a lesion) or a "false positive" (far from a lesion). To avoid confusion
with the common usage of these same terms in ROC analysis where no localization is required,
I prefer to use the terms "lesion localization" and "non-lesion localization", respectively. The
process of classifying the marks as lesion or non-lesion localizations is referred to as scoring
the marks.

In a companion paper a method of modeling the search/free-response task was described. The
search model has parameters characterizing the perceived lesion signal-to-noise ratio, the
ability of the observer to avoid marking non-lesion locations, and the ability of the observer to
find lesions. A figure of merit for quantifying performance of the observer under search
conditions was defined as the probability that the rating of the highest rated (or most suspicious)
region on an abnormal image is greater than the corresponding rating on a normal image. If
one can make the assumption, as is sometimes done (Swensson, 1996, Swensson et al.,
2001), that had the observer been asked for a single rating in a search task then the observer
would provide the rating of the highest rated region on the image, then it should be possible
to predict the ROC curve for this hypothetical observer. In other words it should be possible
to relate the search model parameters to ROC curves. The purpose of this paper is to investigate
this relationship. Since ROC curves imply underlying distributions of latent decision variables
for normal and abnormal images, it is of interest to determine the probability density functions
(pdfs) of these distributions and their dependence on search model parameters. Some of the
ROC and pdf curve predictions of the search model have similarities to another model of
observer performance, and examining their relationship is another aim of this study.

THEORY
Introduction to the search model

The search model is a mathematical parameterization of an existing descriptive model of visual
search (Kundel and Nodine, 1983, Kundel and Nodine, 2004, Nodine and Kundel, 1987). A
unique aspect of the descriptive model is that all locations on an image do not receive equal
units of attention. Instead the observer reduces the potentially large number of locations on an
image to a smaller number of sites requiring more detailed examination and at each of which
a decision is made whether or not to report the site as a possible lesion candidate. I use the term
"locations were hit" as shorthand for "locations where decisions were made". Eye movement
measurements on radiologists form the basis of the descriptive search model (Duchowski,
2002). The mechanism by which the observer accomplishes the reduction to a smaller number
of sites is not well understood and is not relevant to the mathematical parameterization. The
sites corresponding to non-lesion locations termed noise sites and those corresponding to lesion
locations are termed signal sites. The numbers of noise and signal sites on an image are denoted
by n and u respectively.

Search model assumptions
1. The number of noise sites n on an image follows the Poisson distribution with intensity

parameter λ. The number of signal sites u on an abnormal image with s lesions follows
the Binomial distribution with trial size s and success probability ν. In other words
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ν is the probability that a lesion is hit, i.e., cognitively evaluated. These assumptions
have been used in a prior model of free-response data (Edwards et al., 2002). Every
abnormal image has the same number of lesions (this limitation can be removed in
an analogous manner to that indicated in Appendix 1, Eqn. 15, of the previous
manuscript). The number of noise sites n and the number of signal sites u on an image
are statistically independent.

2. Let N(μ,1) denote the Gaussian distribution with mean μ and unit variance. A decision
variable sample z is realized at each decision site. The z-sample from a noise site is
realized from a Gaussian distribution of unit variance and zero mean, i.e., z ~ N(0,1).
The z-sample from a signal site is realized from a Gaussian distribution of unit
variance and mean μ, i.e., z ~ N(μ,1). All z-samples on an image are statistically
independent. The reason for assuming equal widths for the noise and signal
distributions is given in the Discussion section.

3. The observer adopts R ordered cutoff parameters ζi (i = 1, 2,..., R) where R is the
number of rating bins employed in the free-response study. The cutoff vector ζ⃗ is
defined as ζ⃗ ≡ (ζ0, ζ1, ζ2,..., ζR, ζR+1) and by definition ζ0 = −∞ and ζR+1 = +∞. If ζi
< z < ζi+1 then the corresponding decision site is marked and rated in bin i, and if z <
ζ1 then the site is not marked.

4. The location of the mark is at the precise center of the decision site that exceeded a
cutoff. An infinitely precise scoring criterion, i.e., an infinitesimally small acceptance
radius is adopted. Consequently there is no confusing a mark made as a consequence
of a signal site z-sample exceeding the cutoff as one made as a consequence of a noise
site z-sample exceeding the cutoff, and vise-versa. Any mark made as a consequence
of a sample z ~ N(0,1) that satisfies ζi < z < ζi+1 will be scored as a non-lesion mark
and assigned the rating "i", and likewise any mark made as a consequence of a sample
z ~ N(μ,1) that satisfies ζi < z < ζi+1 will be scored as a lesion mark and assigned the
rating "i".

5. When required to give a single summary rating to an image that has at least one
decision site the observer gives the rating zh of the highest rated site on the image
(henceforth abbreviated to "highest rating"). On an abnormal image this could be the
rating of a noise or a signal site. On a normal image this is necessarily the rating of a
noise site.

6. When required to give a single summary rating to an image that has no decision sites
the observer gives lowest possible rating. For example, if the allowed rating scale is
1, 2,.., 100, corresponding to R = 100, the observer assigns the "1" rating to such
images.

The left and right Gaussian distributions in Fig. 1 represent the pdfs corresponding to N(0,1)
and N(μ,1), respectively. The horizontal axis is the observer's internal confidence that a
decision site represents a lesion, i.e., the z-sample. According to the search model one realizes
n noise site z-samples from N(0,1) and u z-samples from N(μ,1). The integers n and u are
image dependent and represent the number of z-samples corresponding to noise sites and signal
sites, respectively. Those noise site z-samples that exceed the observer's lowest cutoff are
marked by the observer and are scored by the experimenter as non-lesion localizations, and
likewise the signal site z-samples that exceed the lowest cutoff are marked and scored as lesion
localizations. The rating assigned to these marks follows the rule specified in Assumption 3.
The number (f) of non-lesion localizations on an image cannot exceed n (because the noise
site z-samples that fall below the lowest cutoff do not result in marks; only when the lowest
cutoff equals negative infinity does f equal n). For the same reason t cannot exceed u, and
obviously u cannot exceed s, the number of lesions in the images.
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ROC curve predicted by the search model Definitions
The unit variance Gaussian probability density function corresponding to N(μ,1) and the
corresponding distribution function are defined by

φ(z ∣ μ) = 1
2π

e−(z−μ)2/2

Φ(z ∣ μ) = ∫
−∞

z
dy φ(y ∣ μ).

(1)

The Poisson and Binomial density functions are defined by

Poi (n ∣ λ) = λn

n ! e−λ

Bin (u ∣ s, ν) = (su)ν u(1 − ν)s−u.

(2)

In these expressions μ, λ and ν are the parameters of the search model and s is the number of
lesions per abnormal image.

The ROC curve
The ROC curve is the plot of true positive fraction vs. false positive fraction. Observer
generated (or experimental) operating points are obtained by a well-known procedure involving
cumulating the counts in the ratings bins. For example consider an R rating ROC study, where
the numerical rating ranges from 1 to R, and assume that higher ratings correspond to greater
confidence that the image is abnormal. The ordinate (true positive fraction) of the lowest point,
i.e., closest to the origin and corresponding to the highest confidence, is obtained by dividing
the count in the Rth abnormal bin by the number of abnormal images. The ordinate of the next
higher point is obtained by cumulating the counts in bins R-1 and R, and so on. A similar
procedure is used for the abscissa (false positive fraction) of the experimental operating points,
except that one divides by the number of normal images. In this way successive experimental
ROC operating points are generated. If none of the bins are cumulated one gets the (0,0) point
and if all the bins are cumulated one gets the (1,1) point. I use the symbol y for the true positive
fraction and x for the false positive fraction. To predict a continuous ROC curve one regards
x and y as functions of a continuous variable ζ. The latter is the cutoff used by the observer to
render positive (abnormal) decisions. Specifically, if the decision variable for the image
exceeds ζ then the observer classifies the image as abnormal. According to Assumption 5 the
decision variable for the image is the highest rating zh for the image. The true positive fraction
is the probability that zh on an abnormal image exceeds ζ and the false positive fraction is the
probability that zh on a normal image exceeds ζ :

x(ζ) = Prob (zh > ζ ∣ N )

y(ζ) = Prob (zh > ζ ∣ A),
(3)

where N and A denote normal and abnormal images, respectively. Varying the cutoff parameter
ζ from infinity to –infinity generates points on the theoretical ROC curve that range
continuously from (0,0) to (1,1).

Limiting point on the ROC curve
Before getting into details I describe a distinctive feature of all search-model-predicted ROC
curves. It will be shown that the full range of the ROC data space, namely 0 ≤ x(ζ ) ≤ 1 and 0
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≤ y(ζ ) ≤ 1, is not continuously accessible to the observer. In fact 0 ≤ x(ζ ) ≤ xmax and 0 ≤ y
(ζ ) ≤ ymax where xmax and ymax are less than unity. By "not continuously accessible" I mean
that for any finite value of the cutoff ζ, no matter how small, some images will not be classified
as abnormal. As the observer varies the cutoff continuously from +∞ to −∞, the ROC point (x,
y) will move continuously from (0, 0) to (xmax, ymax), and thereafter there will be a
discontinuous jump to the point (1, 1) which is obtained when counts in all bins are cumulated.
This behavior is distinct from traditional ROC curves where the entire section of the curve
extending from (0, 0) to (1, 1) is continuously accessible to the observer via appropriate choice
of the cutoff. The reason for this behavior is that some images generate no hits (no decision
sites) and therefore do not yield a z-sample. By Assumption 6 such images are assigned to the
lowest rating bin, i.e., "1", and only when this bin is included in the cumulation procedure does
the point (1,1) result. The coordinates of the operating point resulting from cumulating the
counts at or above the next higher bin, i.e.,"2" and above, will yield an ROC point (x,y) with
x ≤ xmax and y ≤ ymax. [As an aside, in multi-rating ROC studies involving several bins, how
closely the observer approaches the limiting point (xmax, ymax) is not related to the number of
bins, but to the position of the lowest cutoff, i.e., ζ1. As ζ1 is lowered (i.e., the observer is
encouraged to be more aggressive) the uppermost operating point approaches (xmax, ymax).
How closely (xmax, ymax) approaches (1,1) depends on λ: as λ increases (xmax, ymax) approaches
(1,1), see Eqn. 4 below.]

The limiting point (xmax, ymax) can be calculated as follows. Consider first the normal cases
and the calculation of xmax. Basically one needs the probability that a normal image has at least
one hit. Such an image will generate a finite zh and with an appropriately low cutoff the image
will be rated "2" or above. The probability of zero noise sites is Poi(0 ∣ λ) = exp(−λ). Therefore
the probability of at least one hit on a normal image is 1 - exp(−λ) which is xmax. Likewise, an
abnormal image has no hits if it has zero noise sites, the probability of which is Poi(0 ∣ λ), and
it has zero signal sites, the probability of which is Bin(0 ∣ s, ν ). Therefore the probability of
zero hits on an abnormal image is the product of these two probabilities, namely Poi(0 ∣ λ) Bin
(0 ∣ s, ν ) and the probability that there is at least one hit is 1- Poi(0 ∣ λ) Bin(0 ∣ s, ν ), which
is ymax. Summarizing,

xmax ≡ xmax(λ) = 1 − Poi (0 ∣ λ) = 1 − exp ( − λ)

ymax ≡ ymax(λ, ν, s) = 1 − Poi (0 ∣ λ) Bin (0, s, ν) = 1 − exp ( − λ)(1 − ν)s.
(4)

Calculation of the ROC curve
According to Eqn. 3 to calculate the ROC curve one needs two probabilities, namely Prob(zh
>ζ ∣ N ) and Prob(zh >ζ ∣ A). Consider a normal image with n noise sites. According to
Assumption 2 each noise site yields a decision variable sample from N(0,1). The probability
that a z-sample is smaller than ζ is Φ(ζ ∣ 0). By the independence assumption the probability
that all z-samples are smaller than ζ is [Φ(ζ ∣ 0)]n. If all z-samples are smaller than ζ then the
highest zh of the samples is smaller than ζ. Therefore, the probability that zh will exceed ζ is

x(ζ ∣ n) = Prob (zh > ζ ∣ n, N ) = 1 − Φ(ζ ∣ 0) n. (5)

The notation in Eqn. 5 reflects the fact that this expression applies specifically to normal images
with n noise sites. The desired x-coordinate is obtained by averaging x(ζ ∣ n) over all values
of n,

x(ζ ∣ λ) = ∑
n=0

∞
Poi (n ∣ λ)x(ζ ∣ n) = 1 − e

(− λ
2 + 1

2 λ erf ( ζ
2
))
. (6)
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In equation (6) erf is the error function (Press et al., 1988) that ranges from −1 to +1 as its
argument ranges from −∞ to +∞. It can be easily confirmed that for ζ = −∞ Eqn. 6 yields the
same expression for xmax (λ) as Eqn. 4.

Now consider an abnormal image with n noise sites and u signal sites. According to Assumption
2 each noise site yields a decision variable sample from N(0,1) and each signal site yields a
sample from N(μ,1). Therefore the probability that zh is larger than ζ is

y(ζ ∣ μ, n, u) = 1 − Φ(ζ ∣ 0) n Φ(ζ ∣ μ) u. (7)

As before one averages over n and u to obtain the desired ROC-ordinate,

y(ζ ∣ μ, λ, ν, s) = ∑
n=0

∞
Poi (n ∣ λ) ∑

u=0

s
Bin (u ∣ s, ν)y(ζ ∣ μ, n, u). (8)

This can be evaluated using the symbolic mathematical language Maple (Maple 8.00, Waterloo
Maple Inc.) yielding

y(ζ ∣ μ, λ, ν, s) = 1 − (1 − ν
2 + ν

2 erf ( ζ − μ
2 ))se (− λ

2 + 1
2 λ erf ( ζ

2
))
. (9)

It can be easily confirmed that for ζ = −∞ Eqn. 9 yields the same expression for ymax (λ, ν, s)
as Eqn. 4 (in this limit the μ dependence drops out).

The probability density functions
The probability density functions (pdfs) are given by

pdfN (ζ ∣ λ) = ∂
∂ζ 1 − x(ζ ∣ λ)

pdfA (ζ ∣ μ, λ, ν, s) = ∂
∂ζ 1 − y(ζ ∣ μ, λ, ν, s) .

(10)

Because of the images that are not hit, and for the same reason that the ROC curve does not
extend continuously to (1,1), the area under these pdf's will not equal unity. In fact, it is easily
seen that

∫
−∞

∞

dζ pdfN (ζ ∣ λ) = 1 − x(ζ ∣ λ) ∣−∞
∞ = xmax(λ)

∫
−∞

∞

dζ pdfA (ζ ∣ μ, λ, ν, s) = 1 − y(ζ ∣ μ, λ, ν, s) ∣−∞
∞ = ymax(λ, ν, s).

(11)

To account for the missing areas one needs two delta functions at −∞, one corresponding to
the normal images with integrated area 1− xmax (λ), and the other corresponding to the abnormal
cases with integrated area 1− ymax (μ, λ, ν, s). The chance level discrimination between these
two delta function distributions leads to a straight line portion of the ROC curve that extends
from (xmax, ymax) to (1, 1). Fig. 2 shows pdfs of the decision variable zh of the highest rated
site for μ = 3, λ = 0.3, ν = 0.7 and s = 1 for the normal and abnormal cases. The dotted lines
correspond to the normal cases and the solid lines to the abnormal cases. The delta functions
at –infinity are, for convenience, shown as narrow Gaussians centered at -17.5. The two pdfs
centered near zero and 3 generate the continuously accessible portion of the ROC curve shown
as the solid line in the Fig. 3. The pdfs centered at -infinity generate the inaccessible portion
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of the ROC curve shown as the dotted line in Fig. 3. The areas under the two pdfs centered
near zero and 3 are 0.259 and 0.778, corresponding to the normal and abnormal images,
respectively. The corresponding areas under the delta functions are the complements of these
values. In either case the total area under a complete pdf is unity.

As an aside, the need for delta functions at negative infinity can be seen from the following
argument. Let us postulate two finite width pdfs with the same shapes but different areas,
centered at a common value zh far to the left in decision space, but not at negative infinity. In
the example shown in Fig. 2, zh = −17.5. These pdfs would also yield a straight line portion to
the ROC curve. However, they would be inconsistent with the search model assumptions.
According to Assumption 6 some images yield no decision variable samples and cannot be
rated in bin 2 or higher (if they were rated 2 or higher that would imply that they did yield
decision variable samples and moreover one of the samples exceeded ζ1). Therefore, if the
distributions are as postulated above then choice of a cutoff in the neighborhood of zh would
result in some of these images being rated 2 or higher, contradicting Assumption 6. The delta
function pdfs at negative infinity are seen to be a consequence of the search model assumptions.

The area under the ROC curve
The total area under the ROC curve will consist of two parts, one under the continuous section
and one under the straight line portion. Denoting these by AUC1 and AUC2 one has

AUC1 = ∫
−∞

∞

dζpdfN (ζ ∣ λ)y(ζ ∣ μ, λ, ν, s)

AUC2 = ymax(1 − xmax) + 0.5(1 − xmax)(1 − ymax).

(12)

The area AUC1 under the continuous portion of the ROC curve was evaluated numerically
using Maple. A geometrical interpretation of the areas is shown in Fig. 3. The area under the
continuous section of the curve labeled A corresponds to AUC1 in Eqn. 12. The area of the
rectangle labeled B is ymax(1−xmax). The area of the triangle labeled C is 0.5 (1−xmax) (1
−ymax). The net area under the dotted section of the ROC curve is B+C, and comparison to
Eqn. 12 shows that this area corresponds to AUC2. The total area under the ROC curve is the
sum of AUC1 and AUC2, namely

AUC = AUC1 + AUC2. (13)

The quantity AUC can be regarded as a figure of merit of observer performance in a free-
response study. It will depend on the parameters μ, λ and ν of the search model, and s, the
number of lesions per abnormal image.

Relation to a previously proposed figure of merit
A figure of merit θ proposed in the companion paper was based on the two alternative forced
choice (2AFC) paradigm. It is now shown that the two figures or merit, AUC and θ are in fact
identical. In the 2AFC paradigm the observer compares images in a normal-abnormal pair and
attempts to select the abnormal image. The figure of merit θ is defined as the fraction of correct
choices in this task. Four cases need to be distinguished: (a) both images have at least one hit,
(b) neither image has a hit, (c) only the abnormal image has a hit and (d) only the normal image
has a hit. For case (b) assume that the observer picks between the images at random so that the
probability of a correct choice is 0.5. For cases (c) and (d) assume that the observer picks
whichever image has a hit, so that the probability of a correct choice is one or zero depending
on whether the image with a hit is abnormal or normal.
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The figure of merit contribution for case (a) involves comparisons between highest rated
samples from the two probability density functions pdfN (ζ ∣ λ) and pdfA (ζ ∣ μ, λ ν, s)
corresponding to normal and abnormal cases, respectively. These comparisons are implicit in
the first integral in Eqn. 12 which is the average over all possible highest rating samples from
the normal image pdf, of the probability y that the highest rating from an abnormal image
exceeds the highest rating from a normal image. Therefore the case (a) contribution θa is in
fact identical to the area under the continuous section of the ROC curve, i.e., θa= AUC1. The
contribution for case (b) is 0.5 times the probability that neither image of the pair has a hit. The
probability that a normal image does not have a hit is Poi(0 ∣ λ). The probability that an
abnormal image does not have a hit is Poi(0 ∣ λ )Bin(0, s, &nu; ). The probability that neither
image of the pair has a hit is the product of these probabilities, namely [Poi(0 ∣ λ )]2 Bin(0,
s, &nu; ) and therefore the case (b) contribution to the figure of merit is

θb = 0.5 Poi (0 ∣ λ) 2 Bin (0, s, ν). (14)

In case (c) only the abnormal image has a hit. The probability that a normal image does not
have a hit is Poi(0 ∣ λ). The probability that an abnormal image does have a hit was calculated
previously and is (1− Poi(0 ∣ λ )Bin(0, s, ν )). Therefore, the probability that only the abnormal
image has a hit is Poi(0 ∣ λ ) (1− Poi(0 ∣ λ)Bin(0, s, ν ))and since each of these contributions
leads to a correct choice, the case (c) contribution to the figure of merit is

θc = Poi (0 ∣ λ)(1 − Poi (0 ∣ λ) Bin (0, s, ν)). (15)

The case (d) probability is not needed, as it leads to no correct choices. The sum of the case
(b) and case (c) contributions is

θb + θc = 0.5 Poi (0 ∣ λ) 2 Bin (0, s, ν) + Poi (0 ∣ λ)(1 − Poi (0 ∣ λ) Bin (0, s, ν)). (16)

Using Eqn. 4 the above simplifies to

θb + θc = 0.5 1 − xmax 1 − ymax + 1 − xmax ymax, (17)

which is identical to the area under the straight line section of the ROC curve, namely,
AUC2. This completes the proof of the proposition that the two figures of merits are identical.

"Proper" ROC curve
I now show that the accessible portion of the ROC curve is "proper". From Eqns. 6 and 9 it is
seen that one can express the ROC coordinates (x,y) as (for convenience I suppress the
dependence on model parameters)

x(ζ) = 1 − G(ζ)
y(ζ) = 1 − F (ζ)G(ζ).

(18)

where

G(ζ) = e
(− λ

2 + 1
2 λ erf ( ζ

2
))
, (19)

and

F (ζ) = (1 − ν
2 + ν

2 erf ( ζ − μ
2 ))s. (20)
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These equations have exactly the same structure as Swensson's (Swensson, 1996) equations 1
and 2 and the logic he used to demonstrate that ROC curves predicted by his model were
"proper" also applies to the present situation. In particular, since the error function ranges
between −1 and 1 and ν ≤ 1 it follows that F(ζ ) ≤ 1. Therefore y(ζ ) ≥ x(ζ ) and the ROC curve
is constrained to the upper half of the ROC space, namely that lying above the "chance"
diagonal. Additionally the more general constraint shown by Swensson applies, namely the
slope of the ROC curve at any operating point (x, y) cannot be less than the slope of the straight
line connecting (x, y) and (1, 1). This implies that the slope is monotonically changing and
also rules out curves with "hooks".

Simulation testing of the predicted ROC curves
To test the internal consistency between the search model and the predicted ROC curves, free-
response data was simulated according to the search model. Free-response data consists of
counts per image in the different bins for non-lesion and lesion localizations. Consider a R-
rating free-response study for which the bins are labeled 1, 2,.., R and the cutoffs are ζi (i=1,2,...,
R) as described in Assumption 3. For specified values of the parameters λ, μ, and ν, and the
number s of lesions per abnormal image the simulation proceeded as follows. For each normal
image one generates a random number n (≥ 0) from the Poisson distribution with parameter
λ. Next one obtains n noise site z-samples from the Gaussian distribution N(0,1) which yields
zj (j = 1,..., n). Each of the z-samples is binned according to the rule in Assumption 3.
Specifically, if ζi < zj < ζi+1 then the count in bin i is incremented by unity (all bin counts for
each image are initially set equal to zeroes). Note that if zj < ζ1 then no bin count is incremented.
If n = 0 one does not sample N(0,1) and for that image all bin-counts are zeroes. As an example
assume n = 6 for an image and that the final count vector for a 4-rating free-response study is
(2, 0, 2, 0). This means that of the six noise site z-samples two fell in the first bin, two fell in
the third bin and two z-samples were smaller than ζ1.

For abnormal images one has both noise and signal samples. The former are handled as for
normal images, resulting in a non-lesion localization counts vector with R elements. For the
signal samples one generates a random number u (0 ≤ u ≤ s) from a Binomial distribution with
trial size s and success probability ν. Next one obtains u samples from the Gaussian distribution
N(μ,1) which yields zj (j = 1,..., u). Each z-sample is binned as described above except this
time the counts are recorded in the lesion localization counts vector for that image, which also
has R elements. If zj is smaller than ζ1 then the lesion localization counts vector is not
incremented. If u = 0 one does not sample N(μ,1) and for that image the lesion localization
counts vector is zero.

Conversion of the free-response ratings to a single summary rating as required by Assumption
5 proceeds as follows. For an R-rating free-response study one defines two R+1 dimensional
count vectors F⃗ and T ⃗ with components Fk and Tk (k = 0, 1, 2,..., R) corresponding to the normal
and abnormal images, respectively, and initializes all counts to zeroes. For each normal image
one determines the index j (j = 1, 2,..., R) of the highest bin with a non-zero entry in the (non-
lesion localization) counts vector and increments Fj by unity. If the counts vector for an image
has only zero elements one increments F0. For example, if the counts vector for an image is
(2, 0, 2, 0) then j = 2 and one increments F2. For abnormal images one determines the index j
of the highest bin with a non-zero entry when both non-lesion and lesion vectors are considered
and increments Tj. For example, assuming s = 2 and the non-lesion and lesion counts vectors
are (0,1,0,0) and (0,0,1,0), respectively, then j = 3 and one increments T3. As another example
if the corresponding vectors are (1,1,0,1) and (0,2,0,0) then j = 4 and one increments T4. It is
possible that the highest index for non-lesion and lesion vectors are identical, in which case
one uses the common index j and increments Tj. If all elements in both vectors are zeroes one
increments T0. The total of the counts in the vector F⃗ must equal the total number of normal
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images NN, and likewise the total of the counts in the vector T ⃗ must equal the total number of
abnormal images NA. Using the cumulation procedure described previously the vectors F⃗ and
T ⃗ determine the operating points on the ROC curve.

To generate the simulated ROC data points 20 cutoffs uniformly spaced between −2 and 8
were chosen (R = 20). To minimize sampling variability a large number (NN = NA = 2000) of
images were simulated. This ensures that any deviation between the ROC operating points and
the predicted ROC curves cannot be explained by sampling variability and would provide
evidence that the sampling model was inconsistent with the ROC curve prediction. The random
number generators in the Interactive Data Language (IDL, Research Systems Inc.) were used
in this work.

RESULTS
Table 1 summarizes μ, λ, ν, s, xmax, ymax, AUC1, AUC2 and AUC for the different ROC curves
shown in this work. AUC1 is the area under the accessible part of the curve (solid curve),
AUC2 is the area under the inaccessible part of the curve (dotted straight line) and AUC is the
total area under the curve (AUC = AUC1 + AUC2). The figure of merit ( AUC ≡ θ ) values
exhibit the same dependence on search model parameters as those noted in the companion
paper.

Shown in the upper panels in Figs. 4 through 8 are ROC curves for the choices of parameter
values listed in Table 1. In each case the solid curve is the continuously accessible portion of
the ROC curve and the dotted portion is the inaccessible portion. The open circles are the
operating points resulting from the simulation. It is seen that the open circles closely match the
predicted curves. This demonstrates that the simulation model and the ROC curve prediction
are internally consistent. The lower panels in these figures show the probability density
functions (pdfs) for the highest rating for normal (dotted curve) and abnormal images (solid
curve) respectively. The delta functions at negative infinity are not shown.

Fig. 4 corresponds to μ = 5, λ = 1, ν = 0.5 and s = 1. Note the discontinuous jump from the
uppermost open circle on the continuous section of the curve to (1, 1). The former point
approaches (xmax, ymax) asymptotically as the lowest cutoff approaches -infinity. The point in
question actually corresponds to ζ1 = −2, which cutoff is low enough to be smaller than almost
any sample from the normal image pdf (see lower panel), so this point is close to the limiting
point. Since not all images generate decision variable samples, the limiting point is significantly
below (1,1). In fact, using Eqn. 4 and the noted parameter values, the coordinates of the limiting
point are (0.63, 0.82). As explained in connection with Fig. 3 the area under the normal image
pdf is xmax, and that under the (bimodal) abnormal image pdf is ymax, where (xmax, ymax) are
the coordinates of the limiting point on the accessible part of the ROC curve, i.e., (0.63, 0.82)
in this case.

Fig. 5 shows the ROC curve and pdf for μ = 3, λ = 10, ν = 0.5 and s = 1. Due to the large value
of λ the accessible section of the ROC curve extends almost to (1, 1). Also, the highest rating
on abnormal images is likely due to a noise site z-sample, yielding the large peak in the
abnormal image pdf near 1.5 (the mean of the highest of ~10 samples from N(0,1) is about
equal to this value). A slight peak is also evident near zh = 3 due to the fewer times when the
signal site z-sample is the highest rating. The shapes of the normal image pdfs shown in Figs.
4 through 8 are close to Gaussian but strictly none of them are Gaussian. A subtle but visible
non-Gaussian tail is evident in Fig. 5, which represents the largest λ value in the examples
shown (λ = 10). With the exception of Fig. 6 the abnormal image pdfs are all significantly non-
Gaussian. The upper panel of Fig. 6 shows the ROC curve predicted by the search model for
μ = 3, λ = 3, ν = 1.0 and s = 1. This example most resembles a conventional ROC curve, although
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the accessible portion of the curve does not extend exactly to (1, 1). The pdf for the abnormal
images (lower panel, solid curve) is close to Gaussian. This is related to the certainty of a lesion
hit (ν = 1), the fact that s = 1 [if s > 1 the highest sample from N(3,1) would have a non-Gaussian
distribution], and the low probability of a noise site z-sample exceeding the signal site sample
(since μ = 3 is relatively large). However the pdf is not exactly Gaussian. Fig. 7 upper panel
shows the ROC curve for μ = 3, λ = 0.3, ν = 0.7 and s = 1. Due to the small value of λ, this
example shows an unusually small accessible portion of the ROC curve which extends to (0.26,
0.78). Note the relatively small area under the normal image pdf (0.26) as compared to the
abnormal image pdf (0.78); the missing areas are in the delta functions. Fig. 8 upper panel
shows the ROC curve for μ = 3, λ = 10, ν = 0.5 and s = 2. Excepting for the number of lesions
(s = 2 vs. s = 1) the parameter values are identical to those shown in Fig. 5. Note the larger
AUC, as compared to Fig. 5, demonstrating the expected increase with s.

Some of the abnormal image pdfs in the figures show evidence of bimodality. This has to do
with the fact that on abnormal images sometimes the signal site z-sample from N(μ,1) is the
highest rating, and sometimes the noise site z-sample from N(0,1) is the highest rating.
Bimodality is most evident in Fig. 4, which corresponds to ν = 0.5, when this effect is expected
to be maximum. Bimodal pdfs are also predicted by the contaminated binormal model (CBM),
(Dorfman and Berbaum, 2000).

DISCUSSION
The search model has parameters characterizing the perceived lesion signal-to-noise ratio
(μ ), the ability of the observer to avoid cognitively evaluating non-lesion locations (λ), and
the ability of the observer to find (i.e., cognitively evaluate) lesions (ν ). An expert observer
(or conversely an easy search task) would be characterized by large μ and / or small λ and / or
large ν. Such an observer would yield a larger figure of merit, AUC or θ, than an observer with
the opposite characteristics. The net performance depends on the interplay of the parameters
μ, λ and ν. For example, the expert observer (AUC = 0.964) whose ROC curve is shown in
Fig. 6 upper panel is perfect at finding lesions (ν = 1) but tends to cognitively evaluate about
1 non-lesion location per image (λ = 1). It is important to note that ν = 1 does not imply that
all lesions are marked by this observer. It simply means that all of the lesions were hit, i.e.,
they were considered for marking. A lesion is actually marked only if the corresponding
decision variable sample from N(μ,1) exceeds the lowest cutoff. An unusually low z-sample
and / or a strict criterion (ζ1 large) would both result in an unmarked lesion, but the figure of
merit, which is averaged over all z-samples and allows for the criterion effect, would be
unaffected. Similarly, λ = 10 does not mean that the observer marks about 10 non-lesion
locations per image. All search model parameters are characteristic of the observer and the task
but can be influenced by the experimenter. For example, by asking the observer to evaluate
normal regions that might not otherwise have been considered, one can potentially drive λ up
(and make more of the ROC space accessible). The magnitude of this effect is expected to
depend on the type of sites that the observer is asked to look at – if these are obviously irrelevant
sites (e.g., outside the anatomic area) then the observer will easily reject them and λ will be
unaffected. However, if the sites resemble lesions then one expects λ to be adversely affected.
Likewise μ and ν can also be influenced by reading conditions, e.g., poorly displayed images
or a viewing time restriction.

The search model predicted ROC curves depend on s, the number of lesions per abnormal
image. All other parameters being equal images with s = 2 will yield a higher ROC curve than
images with s = 1. An example is shown in Fig. 8. Note the higher figure of merit in this case,
AUC = 0.831 vs. AUC = 0.711 for s = 1. The increase of the figure of merit with s is expected
since with more lesions in the image the observer is expected to hit more lesions but this should
not be interpreted as an expertise effect. If it were possible to estimate the parameters μ, λ and
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ν from free-response data obtained on an image set with s = 2, it would be possible, via Eqns.
12 and 13, to predict the performance for s = 1, and the latter quantity should be interpreted as
the true performance of the observer.

The ROC curves shown in Figs. 4 through 8 are "proper" in the sense that the slope is
monotonically changing, the curve always lies above the chance diagonal and the slope of any
point on the ROC curve is never smaller than the slope of the line connecting that point to (1,1).
A number of alternative procedures are available for fitting "proper" ROC curves, namely the
likelihood ratio based model (Metz and Pan, 1999), the contaminated binormal model, or CBM,
(Dorfman et al., 2000), the bigamma model (Dorfman et al., 1997) and the localization receiver
operating characteristic model (Swensson, 1996,Swensson et al., 2001).

An interesting consequence of the search model is the inaccessible portion of the ROC curve.
Any attempt by the experimenter to force the observer into the inaccessible portion is not
expected to succeed (this statement is only true to the extent that λ is unaffected by the forcing).
The inaccessible portion is particularly pronounced for observers characterized by small values
of λ. In such cases the operating points are clustered near the initial near-vertical section of the
ROC curve. There is evidence (Dorfman et al., 2000) that observers sometimes provide data
like this and that it is difficult to get them to generate appreciable numbers of false positives.
This type of data clustering presents degeneracy problems for binormal model based analysis
of such data. Instructions to the observers to "spread their ratings" (Metz, 1989) or to use
"continuous" ratings (Metz et al., 1998) do not always seem to work. According to the search
model the images that produce no decision variable samples will always be classified in the
lowest bin no matter how lax the criterion. To the experimenter such observers will appear to
be not heeding the advice to spread their ratings. Note that the CBM also provides an alternative
explanation for the data clustering and initial near-vertical section of the ROC curve.

Some reasons for the inaccessible portion of the ROC curve, and for the need for the delta
functions, have already been given. Basically these are both due to the fact that some images
generate no hits. Since these concepts are fundamentally different from all existing ROC
models, we elaborate further on the need for the delta functions and the inaccessible portion.
One could argue that when the observer sees nothing to report then he starts guessing, and
indeed this would enable the observer to move along the dotted portion of the curve in Fig. 3.
This argument implies that the observer knows when his threshold is at negative infinity, at
which point he turns on the guessing mechanism [the observer who always guesses would
move along the chance diagonal connecting (0,0) and (1,1)]. In my opinion this is unreasonable
to expect. It is more likely that the observer will turn on the guessing mechanism at a low but
finite value of the threshold. Different choices of the switching threshold would result in
different ROC curves [the limiting point in Fig. 3 would move along the continuous portion
and consequently the slope of the dotted line connecting it to (1,1) would change]. The existence
of two thresholds, one for moving along the non-guessing portion and one for switching to the
guessing mode would require abandoning the concept of a universal ROC curve. To preserve
this concept one needs the delta functions at negative infinity and the inaccessible portion of
the ROC curve.

One may wonder why the widths of the signal and noise distribution in Fig. 1 are assumed to
be the same. The conventional ROC model assumes that the widths in general are different.
One reason is model parsimony – it is undesirable to introduce a parameter that may not be
needed. Introducing a wider width for the signal distribution in Fig. 1 would also destroy the
"proper" ROC curve characteristic of the equal variance model. Another reason is that the
search model, as it stands, provides an explanation for the well-known observation (Green and
Swets, 1966) that most binormal model fitted ROC curves imply a larger width for the abnormal
image pdf relative to the normal image pdf. This is evident in all the pdfs shown in this work
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and is due to two effects. (a) Multiple samples occurring on normal images yield a narrower
highest rating pdf (Fisher and Tippett, 1928) which effect is more pronounced when λ is large,
see Fig. 5 for an example. (b) For abnormal images a broadening of the pdf occurs since
sometimes the noise site, sampled from N(0,1), yields the highest rating and sometimes the
signal site, sampled from N(μ,1), yields the highest rating. This effect is most pronounced when
ν = 0.5, see Fig. 4. It should be noted that the CBM also explains the observation that most
binormal model fitted ROC curves imply a larger width for the abnormal image pdf.

Several similarities between search-model predicted ROC curves and those predicted by the
CBM have already been noted. CBM is intended for ROC data, i.e., without localization,
whereas the search model describes localization studies. Because of this difference
comparisons only become possible when one considers ROC curve predictions of the two
models. A detailed comparison of the two models is presented in the Appendix. Comparisons
with other ROC models are outside the scope of this work.

The ROC curves shown in the paper are logical predictions of the search model assumptions.
Whether or not they fit actual operating points of real observers cannot be established until one
has a method for estimating the parameters of the search model from observer search data.
Currently I do not have the estimation capability. A similar situation applied to the case of
ROC curves predicted by the likelihood ratio decision variable which had the interesting
characteristic of being "proper". Only recently was a procedure developed to estimate
likelihood ratio based ROC curves from ratings data (Metz and Pan, 1999). I make no claim
that search model predicted ROC curves will yield demonstrably better fits to ROC data. If the
limiting point is far enough into the right-hand portion of ROC space, the extension of the
curve by the straight line is minimal, and such cases can probably be well-fitted by any
competing continuous model. When the limiting point moves toward the left-hand portion of
ROC space, then the data is not expected to be well-fitted by the binormal model, but can
probably be fitted by CBM. Strictly speaking the existence of a limiting point is inconsistent
with all continuous ROC models, and especially so for small λ. However, due to the relatively
small number of cases in most ROC studies, it will probably be difficult to distinguish between
search model and continuous model predicted ROC curves (Hanley, 1988).

The present search model builds on work by several other authors who have attempted to
advance beyond the simple ROC paradigm. Some of these works have already been commented
on. Swensson authored one of the earliest search models for medical imaging (Swensson,
1980) when he described a two-stage process that is similar in concept to the present search
model. His work on the location receiver operating characteristic (LROC) paradigm and a curve
fitting procedure that simultaneously fits LROC data and yields proper ROC curves (Swensson,
1996, Swensson et al., 2001) is noteworthy insofar as it too attempts to address the localization
issue. The issue of satisfaction of search is another attempt to go beyond the simple ROC
paradigm (Berbaum et al., 1990). Finally, it should be noted that there are several tasks in
imaging that go beyond the search task considered in this work. As an example, in
mammography one is interested in finding (i.e., detecting) lesions and once a lesion has been
found one seeks to classify the lesion as benign or malignant. The search model applies to the
detection task and not to the classification task. Current ROC concepts and analyses continue
to be applicable to the classification task.
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APPENDIX

Relation of the search model to contaminated binormal model (CBM)
Some similarities between contaminated binormal model (CBM) and search model predicted
ROC curves have already been noted. Here a more detailed comparison of the two models is
presented. CBM is intended for ROC data, i.e., without localization, whereas the search model
describes localization studies. CBM models a single decision variable sample per image
whereas the search model allows multiple samples per image. In CBM there is an α parameter
(0 ≤ α ≤ 1) defined as the proportion of abnormal cases where the abnormality is visible. In
CBM each normal image yields one sample from N(0,1) and each abnormal image yields
one sample from either N(μ,1), with probability α, or from N(0,1), with probability 1-α, i.e.,
the abnormal image pdf is bimodal. In the search model each normal image yields n samples
from N(0,1) where n ≥ 0, and each abnormal image yields in addition u samples from N(μ,1)
where u ≥ 0. CBM strictly applies to one lesion (or abnormality) per abnormal image (s = 1)
whereas the search model allows multiple lesions. If CBM is applied to more than one lesion
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per abnormal image, the strictly Gaussian bimodal pdf model is not expected to hold, since
lesion visibility will not be binary (visible or not visible).

In CBM the single z-sample determines the ROC rating whereas in the search model the highest
of n+u samples, zh, determines the ROC rating. Although the pdfs shown in Figures 4 and 7
appear similar to some of the plots in the CBM paper, there are fundamental differences. In
CBM the normal image pdf and the bimodal abnormal image pdf are constructed from strictly
Gaussian shaped functions. In the search model the pdfs are always strictly non-Gaussians, in
some cases obviously so, e.g., Figs. 5 and 8. In CBM the total area under the normal image
pdf is unity, and the total area under the two components of the abnormal image pdf is also
equal to unity. This is not true of the search-model-predicted pdfs, where the corresponding
quantities, excluding the delta functions, are xmax and ymax. See 7 for a pronounced example
of the different areas.

Both models predict a straight line portion to the ROC curve that ends at (1,1) but in CBM this
portion is continuously accessible to the observer whereas in the search model it is not. The
reason is that in CBM a decision variable sample always occurs whereas in the search model
there are images where no samples occur. The ν parameter of the search model (the fraction
of lesions that are hit) is related to the CBM α parameter (the proportion of abnormal cases
where the abnormality is visible). Both approach the limits 0 and 1 as μ approached 0 and
infinity, respectively, but the two are not identical. The reason is that CBM does not use
localization information whereas the search model does. Therefore the terms "visible" and "hit"
are not equivalent. The mathematical relationship between α and ν is outside the scope of this
paper, but as an illustration of the difference consider the following example. Suppose CBM
is applied to a localization study and consider an image with n = u = 1 and where the signal
site is more suspicious than the noise site. In CBM this would yield a sample from N(μ,1).
Therefore the ensemble of such images would tend to increase the estimate of α. Now consider
an image with n = u = 1 but where the signal is less suspicious than the noise. In CBM this
would yield a sample from N(0,1). Therefore the ensemble of such images would tend to
decrease the estimate of α. In contrast for the search model the estimate of ν would be indifferent
to the two cases (since u = 1 in either case).
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Fig. 1.
The search model for a single rating free-response study. The basic parameters of the model
are μ, λ and ν, and s is the number of lesions per abnormal image. The two unit variance
Gaussian distributions labeled Noise and Signal represent the pdfs of the z-samples from noise
sites and signal sites, respectively. The number of noise sites n and the number of signal sites
u are modeled by a Poisson and a Binomial distribution, respectively. The total number of
decision sites per image in n+u. Each decision site yields a z-sample from the Noise or Signal
distribution, for a noise site or a signal site, respectively. When a z-sample exceeds ζ, the
observer's threshold, the observer marks the corresponding location. Noise site z-samples
exceeding ζ are recorded as non-lesion localizations and corresponding signal site z-samples
are recorded as lesion localizations.
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Fig. 2.
The pdfs of the decision variable zh of the highest rated site for μ = 3, λ = 0.3, ν = 0.7 and s =
1. The dotted lines correspond to the normal cases and the solid lines to the abnormal cases.
The delta functions at –infinity are for convenience shown as narrow Gaussians centered at
−17.5. The two pdfs centered near 0 and 3 generate the continuously accessible portion of the
ROC curve shown as the solid line in Fig. 3. The pdfs centered at -infinity generate the
inaccessible portion of the ROC curve shown as the dotted line in Fig. 3.
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Fig. 3.
Geometrical interpretation of the area under the curve (AUC). The parameter values are as in
Fig. 2. The area under the continuous section of the ROC curve, extending from (0, 0) to
(xmax, ymax) and which is labeled A, corresponds to AUC1 in Eqn. 12. The area of the rectangle
labeled B is the contribution due to perfect discrimination between the abnormal image pdf in
Fig. 2 and the delta function normal image pdf at -infinity. The area of the triangle labeled C
is the contribution due to chance level discrimination between the two delta function pdfs at -
infinity in Fig. 2. The sum of the areas B and C corresponds to AUC2 in Eqn. 12.
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Fig. 4.
The ROC curve (upper panel) and pdfs (lower panel) for μ = 5, λ = 1, ν = 0.5 and s = 1. The
open circles in the upper panel in this and succeeding plots are experimental ROC operating
points from the simulations. The accessible portion of the ROC curve extends from (0, 0) to
(0.63, 0.82). Note the strong bi-modality in the abnormal image pdf arising from the fact that
half of the lesions are not hit. Therefore the highest decision variable for such images must
have originated from a z-sample from N(0,1) yielding the peak near 0.
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Fig. 5.
The ROC curve and pdf for μ = 3, λ = 10, ν = 0.5 and s = 1. Due to the large value of λ the
accessible section of the ROC curve extends almost to (1, 1). Also, the highest rating on
abnormal images is likely due to a noise site z-sample, yielding the large peak in the abnormal
image pdf near 1.5. A slight peak is also evident near zh = 3 due to the fewer times when a
signal site z-sample is the highest rating.
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Fig. 6.
The ROC curve predicted by the search model for μ = 3, λ = 3, ν = 1.0 and s = 1. This example
most resembles a conventional ROC curve although strictly the accessible portion of the curve
does not extend to (1, 1) and the pdfs are not exactly Gaussians.
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Fig. 7.
The ROC curve predicted by the search model for μ = 3, λ = 0.3, ν = 0.7 and s = 1. Due to the
small value of λ, this example shows an unusually small accessible portion of the ROC curve
which extends to (0.26, 0.78). The areas under the normal (abnormal) image pdfs are these
values, namely 0.26 and 0.78, respectively. Note the clustering of the operating points near the
initial vertical section of the ROC curve.
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Fig. 8.
The ROC curve predicted by the search model for μ = 3, λ = 10, ν = 0.5 and s = 2. Excepting
for the number of lesions, the parameter values are identical to those shown in Fig. 5, which
was for s = 1. The dotted curve corresponding to Fig. 5 is shown in the upper panel for
convenience.
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Table 1
This table summarizes the relevant data for the ROC curves shown in this paper. The parameters μ, λ and ν are
the basic parameters of the search model. The integer s is the number of lesions per abnormal image, assumed
constant over all abnormal images. The quantities xmax and ymax are the coordinates of the end-point of the
continuous section of the ROC curve. AUC1 is the area under the continuously section of the curve shown by
solid lines and AUC2 is the area under the inaccessible section of the curve, shown by dotted lines. Their sum
equals AUC, the total area under the curve, which is the figure of merit for the search task. The entries that are
indicated as "1.000" are the rounded value to three decimal places; the exact value is slightly smaller than unity;
similarly the entries indicated as "0.000" are actually slightly larger than zero.

Figure μ λ ν s xmax ymax AUC1 AUC2 AUC
4 5 1 0.5 1 0.632 0.816 0.416 0.334 0.750
5 3 10 0.5 1 1.000 1.000 0.711 0.000 0.711
6 3 3 1 1 0.950 1.000 0.914 0.050 0.964

2, 3, 7 3 0.3 0.7 1 0.259 0.778 0.188 0.658 0.847
8 3 10 0.5 2 1.000 1.000 0.831 0.000 0.831
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