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Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive, and usually fatal pulmonary disease
for which there are no proven or approved drug therapies. Anti-inflammatory and
immunosuppressive agents have been largely ineffective. The precise relationship of IPF to other
idiopathic interstitial pneumonias (IIPs) is not known, despite the observation that different
histopathological patterns of IIP may co-exist in the same patient. We propose that these different
histopathological “reaction” patterns may be determined by complex interactions between host and
environmental factors that alter the local alveolar milieu. Recent paradigms in IPF pathogenesis have
focused on dysregulated epithelial-mesenchymal interactions, an imbalance in TH1/TH2 cytokines
and potential roles for aberrant angiogenesis. In this review, we discuss these evolving concepts in
disease pathogenesis and emerging therapies designed to target pro-fibrogenic pathways in IPF.

CLINICAL EVALUATION AND DIAGNOSTIC APPROACH TO IPF
Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive parenchymal lung disease with a
median survival of less than three years following diagnosis, although the clinical course can
be highly variable (1,2). No pharmacologic therapies have proven effective for this disorder
(3). IPF is the most common of the idiopathic interstitial pneumonias (IIPs, Figure 1) with a
prevalence of 13−20 per 100,000 people in the general population (3,4). It is more common in
men than women and its prevalence increases with age (3,4). Predictors of a worse outcome
include progressive dyspnea, oxygen desaturation during the 6-minute walk (5), worsening
pulmonary function and gas-exchange (6,7), the presence and extent of honeycombing on high-
resolution computed tomography (HRCT) (8), and the presence of pulmonary hypertension
(2,9).

The diagnosis of IPF is based on clinical, radiographic and histopathologic evaluations (3).
Common clinical features consist of progressive dyspnea, dry cough and the presence of basilar
“velcro-like” rales on examination. Digital clubbing and clinical signs of cor-pulmonale may
be present. Extrapulmonary signs/symptoms are usually absent, while constitutional symptoms
such as fatigue and malaise may be noted. Secondary causes of pulmonary fibrosis such as
collagen-vascular disease, chronic hypersensitivity pneumonitis, adverse drug reactions,
granulomatous diseases and pneumoconiosis must be excluded. More recently, HRCT has
taken a more prominent role in the diagnosis of IPF and can help distinguish IPF from other
IIPs (10). A patchy pattern of peripheral, subpleural and predominantly lower lobe reticular
opacities combined with honeycombing, traction bronchiectasis and the absence of significant
ground glass opacities together constitute the classic radiographic features of IPF. The presence
of these features on HRCT, when reported by an experienced chest radiologist, correlates well
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with the histologic pattern of usual interstitial pneumonia (UIP) on surgical lung biopsy (11,
12). Thus, classic radiographic findings in the context of an appropriate clinical presentation
may abrogate the need for a surgical lung biopsy; however, a bronchoscopy with transbronchial
biopsy may be advisable in this setting, primarily to exclude infection and malignancy.

In the absence of typical clinical and radiographic features, a surgical lung biopsy is
recommended for the definitive diagnosis of IPF. Diagnostic accuracy may be improved if
biopsies are obtained from multiple lobes, as recent studies have shown that several distinct
histopathologic patterns may co-exist in the same patient and the presence of UIP on any biopsy
confer a worse prognosis (13). Histopathologic features of UIP include patchy areas of fibrosis
in association with areas of normal lung architecture, the so-called “temporal” heterogeneity
of UIP. Mild inflammatory cell infiltration may be present in UIP, but is not a prominent feature.
Fibroblastic foci, consisting of aggregates of myofibroblasts underlying “injured,” reparative
epithelium, are key histologic features of IPF (14). The presence and extent of fibroblastic foci,
while not pathognomonic, are of prognostic value in IPF as the profusion of these lesions
correlates with a worse prognosis (15).

PATHOGENESIS OF IPF
The etiopathogenesis of IPF remains enigmatic. Phenotypic changes in alveolar epithelial cells
are an early and consistent features of IPF, suggesting that alveolar epithelial cell injury and
apoptosis are key to the pathogenesis of IPF (14,16-18). The cause(s) of alveolar epithelial cell
injury associated with IPF is unknown, and host responses to tissue injury are likely to involve
a combination of host-specific, genetic and environmental factors (Figure 1). Certain latent
viral infections have been associated with IPF suggesting a possible infectious etiology
(19-23). Other environmental factors, including cigarette smoke, have also been associated
with the development of IPF (24,25). Genetic factors seen with increased frequency in patients
with IPF include mutations in surfactant protein C and polymorphisms of tumor necrosis factor-
alpha (TNF-α) (26-29). Additionally, polymorphisms in transforming growth factor-β1 (TGF-
β1) are associated with more rapid progression of IPF (30).

The relationship between IPF and other IIPs, such as nonspecific interstitial pneumonia (NSIP)
and desquamative interstitial pneumonia (DIP) are not well defined. Recent studies have
identified UIP, NSIP and even DIP in biopsy specimens from the same patient, suggesting that
host responses may produce different histopathologic tissue reactions to the same stimulus/
injury or that these histopathologic patterns represent a continuum that varies temporally and
spatially within the same lung (13,31,32). Current prevailing hypotheses in the pathogenesis
of IPF have focused on dysregulated interactions between epithelial and mesenchymal cells,
a shift from TH1 to TH2-polarized host immune response, and aberrant angiogenesis.
Additionally, recent data have demonstrated that acute exacerbations, marked by rapid clinical
deterioration in previously stable patients with IPF, contribute to the increased mortality (33).
Interventions to reduce the frequency and severity of these acute exacerbations may improve
outcomes in IPF. These evolving concepts of disease pathogenesis and the natural history of
IPF are the bases for emerging pharmacotherapies for the treatment of this complex disease.

Epithelial-Mesenchymal Interactions in IPF
Dysregulated interactions between epithelial and mesenchymal cells within the context of a
damaged basement membrane and the surrounding extracellular matrix are increasingly
recognized as a key control point in the pathogenesis of fibrotic disorders (Figure 2).
Morphologic changes suggestive of epithelial cell injury and apoptosis are early features in the
histopathology of IPF (14,16-18). Several studies have described phenotypic alterations in type
II alveolar epithelial cells (AECs) including proliferation, (16), bronchiolarization (34,35),
apoptosis and regenerative hyperplasia (36).
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Underlying areas of atypical and apoptotic epithelial cells are fibroblastic foci containing
activated contractile myofibroblasts that secrete abundant extracellular matrix (ECM) proteins
(14). These myofibroblasts are closely associated with areas of epithelial cell death and
regeneration (37). In IPF, dysregulated interactions between epithelial and mesenchymal cells
may promote a “vicious cycle” of epithelial injury/apoptosis and mesenchymal cell activation
leading to progressive fibrosis.

Epithelial Cell Phenotypes—Reestablishing an intact epithelium following injury is a key
component of normal wound healing. This may require orchestrated epithelial cell responses
that include proliferation and expansion of progenitor/stem cells, migration and differentiation.
The homeostatic function of an intact epithelium may be necessary to suppress mesenchymal
cell activation. Altered epithelial cell phenotypes may contribute to fibrosis through excess
elaboration of soluble factors, such as TGF-β1, that activate the underlying mesenchyme
(38). In addition to secretion of fibrogenic cytokines, altered epithelial cell phenotypes
contributing to the pathogenesis of IPF may include exaggerated or inappropriate epithelial
cell apoptosis, dysregulated proliferation/differentiation and impaired migration (Figure 2).

There is abundant histopathologic and ultrastructural evidence of ongoing epithelial cell
apoptosis in patients with IPF (39-43). Moreover, several studies in animal models have shown
that inhibition of apoptosis attenuates pulmonary fibrosis (44) (45). The specific mediator(s)
responsible for epithelial cell apoptosis in pulmonary fibrosis remain unclear and several
different mechanisms, including TGF-β1, oxidative stress, Fas activation, and angiotensin II
have been proposed. In epithelial cells, TGF-β1 typically functions as a tumor suppressor
through growth-inhibition and induction of apoptosis (46). In an animal model, conditional
activation of TGF-β1 in murine lung epithelium caused marked epithelial cell apoptosis and
pulmonary fibrosis (47). Moreover, inhibition of epithelial cell apoptosis, both by
pharmacologic caspase inhibition and genetic inactivation of the early growth response gene,
blocked pulmonary fibrosis induced by TGF-β1 overexpression (47). Oxidative stress resulting
from the release of reactive oxygen species (ROS) by activated phagocytic cells has also been
proposed as a mechanism for epithelial cell injury in IPF (48). Although ROS are well
recognized to induce cell injury, they are also important regulators of intra- and inter-cellular
signaling (49). TGF-β1 is a strong inducer of the sustained production of extracellular oxidants
in human lung fibroblasts (50,51) and extracellular hydrogen peroxide (H2O2) generated by
IPF myofibroblasts in response to TGF-β1 has been shown to mediate paracrine induction of
epithelial cell apoptosis/death (52). Upregulation of the Fas signaling pathway has been
demonstrated in human IPF (42) and a number of studies in animal models have explored the
role of the Fas-Fas ligand cascade in epithelial cell apoptosis, sometimes with conflicting
results (53-55). Angiotensin II has also been proposed as a soluble mediator of epithelial cell
apoptosis in the pathogenesis of IPF. Inhibition of angiotensin II or the angiotensin receptor
has been shown to block Fas-mediated epithelial cell apoptosis (56-58). Moreover, IPF-derived
fibroblasts can induce paracrine epithelial cell apoptosis through generation of angiotensin II
(56). In animal models, inhibition of angiotensin II activation and blockade of its receptor
abrogates bleomycin-induced fibrosis (44,59,60).

Epithelial cell regeneration/proliferation and differentiation are critical components of wound
healing that may be impaired in fibrotic tissue responses. Exogenous administration of
epithelial cell mitogens/motogens appears to be able to attenuate fibrosis in animal models.
One of these growth factors, hepatocyte growth factor (HGF), is secreted by myofibroblasts
and functions as an epithelial cell mitogen and motogen with actions that tend to oppose those
of TGF-β1 (61,62). Thus, while HGF stimulates epithelial cell proliferation/migration (63), it
also promotes myofibroblast apoptosis (64). Fibroblasts/myofibroblasts isolated from patients
with IPF secrete lower levels of HGF than normal lung fibroblasts (65). Moreover, HGF has
demonstrated anti-fibrotic activity in animal models of renal, hepatic, pulmonary and
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myocardial fibrosis (64,66-68). Interestingly, interferon gamma (IFN-γ) has been shown to
upregulate the HGF receptor in alveolar epithelial cells (69).

Keratinocyte growth factor (KGF) is another epithelial cell mitogen/motogen that is secreted
by mesenchymal cells (70-72). TGF-β1 has been shown to block the mitogenic effects of KGF
on type II alveolar epithelial cells (73). In lung injury models, intratacheal instillation of KGF
prior to bleomycin injury has been shown to attenuate fibrotic responses (74). In a recent study,
IPF-derived fibroblasts generated equivalent amounts of KGF under basal conditions when
compared to control fibroblasts; however, IPF-fibroblasts generated significantly lower levels
of KGF following IL-1β stimulation (75). Collectively, these studies suggest that impaired
regulation of HGF and/or KGF, may impair reepithelialization and contribute to the
pathogenesis of pulmonary fibrosis.

Impaired epithelial cell migration may also contribute to the development of fibrosis by
delaying or preventing reconstitution of the alveolar epithelium. In animal models of lung
injury, growth factors that induce epithelial cell migration, including HGF and GM-CSF, have
been shown to attenuate pulmonary fibrosis (67,76). The plasminogen activation system has
been shown to play an important role in the pathogenesis of bleomycin-induced murine
pulmonary fibrosis. Overexpression of PAI-1, which inhibits plasminogen activation,
promotes fibrosis while suppression of PAI-1 or overexpression of uPA (a plasminogen
activator) attenuates fibrosis (77-80). Although the precise mechanism of protection remains
unclear, modulation of this proteolytic system can regulate wound healing and
reepithlialization (63,81,82).

Once reestablished, an intact epithelium functions to suppress fibroblast/myofibroblast
activities; the loss of this suppressive effect may contribute to the pathogenesis of pulmonary
fibrosis. Intact epithelial cells secrete PGE2, a cyclooxygenase (COX)-dependent arachadonic
acid metabolite which suppresses fibroblast proliferation (83,84), migration (85),
differentiation (86), and collagen synthesis (87). Animal models support a role for PGE2, as
COX-2 deficient mice develop increased fibrosis and leukotriene-deficient mice are protected
from fibrosis following intratracheal bleomycin-induced lung injury (88,89). Importantly,
PGE2 levels in the epithelial lining fluid are significantly reduced while levels of leukotriene
B4 and C4 are increased in lung homogenates of patients with IPF, (90,91).

Recent studies have reported the potential derivation of lung epithelial cells from the bone
marrow or systemic circulation. Krause and colleagues showed that transplanted bone marrow-
derived stem cells may engraft as type II pneumocytes in the lung (92). Kotton et al.
demonstrated increased numbers of bone marrow-derived stem cells in the lung following
bleomycin-induced injury (93). More recent studies, however, suggest that some of these
earlier findings may have been confounded by technical limitations of in-situ labeling and that
true engraftment of the lung by bone marrow-derived stem cells may not occur, even in
response to an injury (94). Bone marrow-derived stem cells have been used as a vehicle for
transgene expression in the lung epithelium (95). The precise role(s) of circulating bone
marrow-derived cells in repair and regeneration of the alveolar epithelium in response to injury
is presently unclear.

Finally, there has been recent interest in alternative fates of epithelial cells, particularly with
regard to epithelial-mesenchymal transition (EMT). Wnt/beta-catenin, a signaling pathway that
is crucial in embryonic development and is implicated in EMT, is activated in epithelial cells
at bronchiolo-alveolar junctions in IPF lung (18). Recent evidence suggests that EMT may
contribute to the fibrotic responses in lungs of IPF patients (96). Further studies are required
to determine the precise role and significance of EMT in the pathogenesis of IPF.
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Mesenchymal Cell Phenotypes—Underlying areas of epithelial injury in lungs of patients
with IPF are fibroblastic foci composed of aggregates of activated fibroblasts/myofibroblasts,
which are the key effector cells in fibrogenesis (14,97,98). Fibroblasts have the ability to
undergo distinct phenotypic transitions and participate in the stereotypic repair processes of
diverse human tissues and organs (99,100). Myofibroblasts are contractile and highly activated,
secretory cells with characteristics intermediate between fibroblasts and smooth muscle cells
(100,101). Following injury, mesenchymal cells infiltrate wounds, differentiate into
myofibroblasts and secrete ECM proteins that help constitute a provisional matrix which serves
as the “scaffold” for normal tissue repair (101). Contraction of the provisional matrix
approximates epithelial cell margins to facilitate reepithelialization while collagen secretion
stabilizes the contracted matrix (100). Interestingly, recent studies indicate that lung
mesenchymal cells following injury may derive from several sources including resident
interstitial fibroblasts (102), circulating fibrocytes (103,104), bone marrow-derived fibroblast
precursors (105) and lung epithelial cells via epithelial-mesenchymal transition (96,106,107).

For normal healing to occur, wound myofibroblasts must undergo apoptosis (108); failure of
apoptosis leads to myofibroblast accumulation, exuberant ECM production, persistent tissue
contraction, and pathologic scar formation (100). TGF-β1 is a critical mediator of the
myofibroblast phenotype and has been implicated in the pathogenesis of fibrotic disease in
virtually every organ system studied (32,97,109,110). In rodent models, over-expression of
TGF-β1 leads to pulmonary fibrosis (111,112) and blockade of TGF-β signaling abrogates
fibrosis (113). In contrast to its effects on epithelial cells, TGF-β1 promotes an anti-apoptotic
phenotype in fibroblasts (114,115).

Multiple other soluble and insoluble substances in the cellular microenvironment have been
shown to promote a “pro-fibrotic” mesenchymal cell phenotype. Soluble factors that induce
myofibroblast differentiation include endothelin-1 (116), thrombin (117), and
thrombospondin-1 (118). Consistent with a pro-fibrotic role, angiotensin II acts as a fibroblast
mitogen (119) and the ACE inhibitor, captopril, inhibits fibroblast proliferation (120).
Angiotensin II also induces the synthesis of TGF-β1 in several cell systems (121,122). The
ECM itself plays a key role in regulating mesenchymal cell phenotypes, as the composition
and biomechanical properties of the ECM may also regulate myofibroblast differentiation,
contractile capacity and apoptosis (123-126). Moreover, adhesion-dependent activation of
focal adhesion kinase is required for stable induction of myofibroblast differentiation by TGF-
β1 (127).

Soluble and insoluble factors secreted by myofibroblasts can contribute to the development of
fibrosis through several mechanisms. First, the activated myofibroblast may be a source of
soluble mediators that induce epithelial cell injury/apoptosis through paracrine signaling (52,
128). Autocrine secretion of growth factors promotes activation of pro-survival signaling
pathways in myofibroblasts (114), and the autocrine induction of TGF-β1 itself may amplify
these signaling pathways in fibroblasts while inhibiting epithelial cell growth and/or inducing
epithelial cell apoptosis. Additionally, decreased production of “epithelial-protective” factors
by myofibroblasts may feed into a state of epithelial-mesechymal dysrepair. For example,
fibroblasts/myofibroblasts from IPF patients have a reduced capacity to elaborate the epithelial
cell mitogens, HGF and KGF (65,75). Myofibroblasts are likely the most important source of
ECM proteins in the chronically injured lung. TGF-β1-stmulated generation of extracellular
hydrogen peroxide has been shown, in certain contexts, to induce oxidative cross-linking
reactions in the matrix overlying myofibroblasts (129). Such alterations in the biochemical and
biophysical properties of the ECM may perpetuate dysregulated epithelial and mesenchymal
phenotypes.
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Finally, myofibroblasts may participate in the initiation or propagation of inflammatory
responses (130). The myofibroblast has been described as an “inflammatory cell” due to its
capacity to secrete multiple cytokines, chemokines and growth factors (130-132). Additionally,
IPF-derived myofibroblasts and fibroblasts induced to undergo myofibroblast differentiation
in response to TGF-β1 have been shown to generate extracellular oxidants (50,52).

The Role of Inflammation and the TH1/TH2 Hypothesis
The role of inflammation in the pathogenesis of IPF has been the subject of considerable debate
(133). For several decades, chronic inflammation was the prevailing and dominant paradigm
in IPF pathogenesis (134,135). However, the failure of anti-inflammatory strategies to improve
outcomes in patients with IPF and the lack of prominent inflammation in IPF lung biopsy
specimens have prompted a reevaluation of the role of inflammation in pathogenesis (136,
137). A recent study using microarray analyses comparing lung tissues from patients with IPF
and hypersensitivity pneumonitis showed that the IPF gene signature was distinguished by the
relative lack of typical inflammation-associated genes (138). While a comprehensive review
of the inflammatory mechanisms in fibrogenesis is beyond the scope of this review, the reader
is referred to existing reviews on this subject (139,140). The precise role of inflammation and
classical inflammatory cells in the pathogenesis of IPF remains uncertain. Evolving hypotheses
regarding the role of inflammation now focus more on the balance between a “pro-
inflammatory” TH1 cytokine profile and a “pro-fibrotic” TH2 cytokine profile.

The TH1/TH2 hypothesis proposes that progressive fibrosis results from a maladaptive
immune/inflammatory response to a chronic or persistent pathogen/antigen (141,142). In the
typical host, a variety of cells may respond to pathogens/antigens by producing either TH1
cytokines [such as interferon gamma (IFN-γ) and interleukin (IL)-12] which tend to suppress
fibrotic responses or TH2 cytokines (such as IL-4, IL-10, IL-13) that promote fibrotic
responses. This hypothesis proposes that an inappropriate shift in the TH1/TH2 cytokine
balance, favoring the TH2 profile, results in the development of fibrotic disease (recently
reviewed in reference #142). Much of our understanding of TH1/TH2 polarization in the
pathogenesis pulmonary fibrosis has come from rodent models of fibrosis provoked by
intratracheal bleomycin to induce epithelial injury (143,144). Since the bleomycin animal
model is an imperfect model of IPF (145), the significance of these findings to human IPF is
unclear. Interestingly, even in the bleomycin animal model, the precise roles of host immune
T-cell responses are not entirely clear. One study showed that T-cell depleted mice are capable
of developing bleomycin-induced pulmonary fibrosis (146), while another study showed that
CD-28, necessary for co-stimulatory T-cell activation, was required for the fibrotic response
to injury (147). Despite the imperfections of animal modeling and the controversial role of
inflammation, recent studies in human IPF tissues and IPF-derived cells seem to support the
TH1/TH2 polarization hypothesis. Increased expression of the receptors for IL-4 and IL-13 was
shown in lung tissues from IPF patients compared with those from patients with non-IPF
idiopathic interstitial pneumonias (148). Fibroblasts derived from IPF lung similarly
demonstrated increased expression of these TH2 cytokine receptors (149). The use of a chimeric
protein comprised of human IL-13 and a truncated version of Pseudomonas exotoxin appears
to attenuate the proliferation of IPF-derived fibroblasts to a greater extent than non-IPF derived
fibroblasts (149).

The Role of Angiogenesis in IPF
Angiogenesis is an important component of wound healing and aberrant angiogenesis has been
associated with fibrosis in cutaneous wound models (99,150). In rodent models, lung injury is
followed by marked pulmonary vascular changes including neovascularization (150). In
patients with IPF, early studies demonstrated the presence of pulmonary-systemic vascular
anastomoses (151). A more recent study showed increased levels of pro-angiogenic
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chemokines and cytokines in the plasma of patients with IPF compared to normal volunteers
(152).

In a series of studies using both in-vivo murine models and lung tissue from IPF patients, Keane
and colleagues have shown differences in the expression of “angiogenic” ELR+ CXC
chemokines (IL-8/CXCL8, ENA-78/CXCL5, MIP-2/CXCL2) and the “angiostatic” interferon
(IFN)-inducible ELR− CXC chemokines (IP10/CXCL10). Patients with IPF have increased
expression of angiogenic ELR+ CXC chemokines and decreased expression of the angiostatic
chemokines (153,154). Moreover, both inhibition of the angiogenic chemokines and
administration of angiostatic chemokines have been shown to attenuate murine pulmonary
fibrosis in the bleomycin model (155-157). Mice deficient in the angiostatic chemokine IP10/
CXCL10 develop increased pulmonary fibrosis following bleomycin-induced lung injury
(158). Collectively, these studies suggest that an imbalance of angiogenic and angiostatic
chemokines contributes to the pathogenesis of pulmonary fibrosis and that intervention targeted
at this imbalance may be beneficial in the treatment of IPF.

Two recent studies, however, have reported decreased neovascularization in fibroblastic foci
of patients with IPF (159,160). Another recent study reported elevated levels of endostatin, an
inhibitor of angiogenesis, in the serum of IPF patients (161). Interestingly, a post-mortem study
of lungs from patients with scleroderma-associated lung disease showed early increases in
microvascularity with subsequent decreases in later stages of disease (162). Thus, continued
investigation into the spatial and temporal regulation of angiogenesis may be necessary to
determine the precise role(s) of angiogenic and angiostatic factors in the pathogenesis of human
IPF.

Pulmonary Hypertension in IPF
Pulmonary hypertension may be an important risk factor for increased mortality in IPF patients
(2). Early studies showed that patients with IPF had elevated mean pulmonary artery pressures
compared to patients with non-IPF interstitial lung diseases; pulmonary pressures increased
with exercise to a greater extent in IPF patients than in non-IPF patients (163). Another study
reported that impaired gas exchange in IPF patients was associated with increases in pulmonary
vascular resistance (164). More recent retrospective studies have shed further light on the
association between pulmonary hypertension and IPF. In one study, pulmonary hypertension
inversely correlated with gas exchange; moreover, IPF patients with pulmonary hypertension
had increased mortality (9). In another study of IPF patients during an actue exacerbation,
pulmonary hypertension was present in all six patients in whom an echocardiogram was
obtained (165).

These potential links between pulmonary hypertension and increased IPF mortality have
spurred an interest in vasoactive pharmacologic agents in the treatment of lung fibrosis-
associated pulmonary hypertension. A preliminary study examined the effects of various
vasodilators - inhaled prostacyclin, intravenous prostacyclin and nitric oxide – administered
sequentially to eight patients with pulmonary hypertension associated with fibrotic lung
disease; in this study, inhaled prostacyclin decreased pulmonary hypertension without affecting
systemic blood pressure, shunt fraction, or ventilation/perfusion matching (166). Similarly,
sildenafil, a phosphodiesterase-5 inhibitor approved for the treatment of pulmonary
hypertension, was compared with epoprostenol in a randomized trial of 16 patients with
pulmonary hypertension associated with fibrotic lung disease. Sildenafil induced pulmonary
vasodilatation to the same degree as epoprostenol, but did not adversely affect ventilation/
perfusion matching or oxygenation (167). A phase II multicenter trial of the safety and efficacy
of inhaled prostacyclin in IPF patients with established pulmonary hypertension is currently
underway (www.clinicaltrials.gov/ct/gui/show/NCT00109681).
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NOVEL THERAPEUTIC STRATEGIES FOR IPF
Therapeutic strategies targeting inflammation with corticosteroids, azathioprine,
cyclophosphamide, cyclosporine A and mycophenalate mofetil have shown no definitive
benefit in the treatment of IPF (3,168,169). This contrasts with other fibrotic lung diseases in
which immunosuppressive therapies appear to have more favorable results (170-174). While
one cannot rule out a role for inflammation or the possibility of a dysregulated, ongoing, low-
grade TH2-mediated host response to a persistent or recurrent antigen in the pathogenesis of
IPF, inflammation is not a prominent feature when patients come to clinical attention (14,
136). Here, we will highlight some of the emerging therapies that are currently in, or nearing,
clinical trials for IPF (summarized in Table 1).

Interferon Gamma-1b (IFN-γ1b)
IFN-γ appears to target several pathways in the pathogenesis of fibrosis. First, as a TH1
cytokine, it may modulate the TH2 polarization reported in such chronic disorders (142). IFN-
γ may also mediate anti-fibrogenic effects by reducing fibroblast proliferation, chemotaxis and
collagen production (175-178). Additionally, IFN-γ induces the expression of angiostatic
ELR− CXC chemokines, thereby blocking potential angiogenic signals (179). Finally, IFN-γ
may aid in re-epithelialization through upregulation of the HGF receptor in alveolar epithelial
cells (69). In contrast to these effects, early studies suggested that IFN-γ can function as a
mitogen for fibroblasts (180-182). Furthermore, a recent study reported that IFN-γ failed to
inhibit TGF-β1 stimulated collagen synthesis, contraction or myofibroblast differentiation in
keloid-derived fibroblasts, suggesting that mesenchymal cells in fibrotic lesions may be
resistant to the suppressive effects of IFN-γ (183).

Treatment with IFN-γ inhibits renal, pulmonary and hepatic fibrosis in animal models
(184-186). In humans, an early clinical trial showed promising results with stabilization/
improvement in the pulmonary functions in patients administered IFN-γ (187). These favorable
results, however, were not confirmed in a follow-up multicenter, randomized, double blind,
placebo-controlled trial (188). In this large Phase III trial, no significant benefit was seen in
the primary endpoint of progression-free survival or in secondary endpoints of pulmonary
function or quality of life. A trend towards decreased mortality was seen in the IFN-γ-treated
group in retrospective subgroup analysis of patients with less severe disease (FVC > 55%
predicted and DLCO > 35%). There is an ongoing prospective clinical trial designed to further
evaluate the efficacy of IFN-γ1b in this patient subgroup [International Study of Outcomes in
IPF with IFN-γ1b (INSPIRE)].

Pirfenidone
Pirfenidone is a pyridone compound [5-methyl-1-phenyl-2(1H)-pyridone] that inhibits
fibroblast proliferation, differentiation and ECM synthesis (189). Several potential
mechanisms have been proposed for the anti-fibrotic effects of pirfenidone; one possible
mechanism relates to suppression of tumor necrosis factor-alpha (TNF-α), which is thought to
be a key cytokine in pathogenesis of IPF. Other potential mechanisms include suppression of
TGF-β1 transcription (190) and downregulation of heat shock protein 47 (HSP47), a protein
involved in procollagen secretion in rodents treated with bleomycin (191,192). Additionally,
pirfenidone may function as a free radical scavenger to reduce oxidative stress (193,194). In
animal models, pirfenidone attenuates liver (195), peritoneal (196), renal (197), biliary (198)
and pulmonary (199,200) fibrosis.

Several studies have investigated the effects of pirfenidone in humans with pulmonary fibrosis.
In a compassionate-use protocol enrolling 54 patients with IPF, pirfenidone treatment was well
tolerated, allowed most patients to discontinue conventional therapy and some patients
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appeared to stabilize lung function (201). In a randomized placebo-controlled trial of 21
patients with pulmonary fibrosis due to Hermansky-Pudlak syndrome, pirfenidone-treated
patients had a reduced rate of decline in lung function (202). Recently, a prospective,
randomized, placebo-controlled trial of 107 patients with IPF reported no significant change
in the primary endpoint [the lowest oxygen saturation (SaO2) during a 6-minute walk at 6
months] (203). Significant improvements were seen in the subgroup of patients with less severe
disease (those who maintained SaO2 greater than 80% during their baseline 6-minute walk).
Moreover, the treatment group had a significant reduction in the number of acute exacerbations
of IPF (203), a relevant clinical endpoint as these episodes are increasingly recognized as a
major cause of mortality in patients with IPF (33). Given the lack of benefit in the primary
endpoint, further study is required before pirfenidone can be recommended for general use in
the treatment of IPF.

Zileuton
An imbalance in eicosanoids, arachadonic acid metabolites that include leukotrienes (e.g.
LTB4/LTC4) and prostaglandins (e.g. PGE2), has been implicated in the pathogenesis of IPF;
in general, leukotrienes mediate pro-fibrotic effects while cyclooxygenase-2 (COX-2)-
dependent PGE2 mediates anti-fibrotic effects (recently reviewed in ref #(204)). Fibroblasts
from IPF patients synthesize decreased levels of PGE2 at baseline (65,91) and following TGF-
β1 treatment (88). Moreover, IPF fibroblasts may be resistant to the suppressive effects of
PGE2, as exogenous PGE2 has an impaired ability to decrease their proliferative capacity
(205).

In animal models, COX-2 deficiency is associated with increased bleomycin-induced fibrosis
(88) while leukotriene-deficient mice are protected (89). The chemokine, monocyte
chemoattractant protein-1 (MCP-1) inhibits PGE2 synthesis by alveolar epithelial cells
resulting in enhanced fibroblast proliferation (206); mice deficient in the MCP-1 receptor,
CCR2, are protected from pulmonary fibrosis (207), supporting a role for MCP-1/CCR2
mediated suppression of PGE2 in the pathogenesis of fibrosis. Finally, PGE2 mediates the anti-
fibrotic actions of GM-CSF in murine models (208).

Collectively, these data support a role for eicosanoid imbalance favoring increased leukotrienes
and decreased prostaglandins in the pathobiology of IPF. Although there are no published data
on the use of prostaglandin agonists or leukotriene-inhibitors in humans with IPF, there is an
ongoing Phase II clinical trial investigating the safety and efficacy of the 5-lipoxygenase
inhibitor, Zileuton, at the University of Michigan.

Etanercept
TNF-α is a pro-inflammatory cytokine that may also have roles in the regulation of the ECM
and has been implicated in IPF pathogenesis. Alveolar epithelial cells and macrophages from
patients with IPF express elevated TNF-α levels (209,210). Moreover, several studies have
identified associations between TNF-α gene polymorphisms and pulmonary fibrosis (28,29,
211,212). Murine models support a role for TNF-α in the pathogenesis of pulmonary fibrosis.
Transgenic overexpression of TNF-α induces a form of lymphocytic fibrosing alveolitis
(213) and adenoviral-mediated overexpression of TNF-α in rat lungs induces inflammation,
patchy fibrosis and myofibroblast accumulation (214). Mice deficient in TNF receptors or
treated with a soluble TNF receptor develop decreased bleomycin-induced pulmonary fibrosis
(215,216). Paradoxically, several studies demonstrate that TNF-α may suppress collagen
synthesis by fibroblasts (217-220) and activate certain matrix mettaloproteinases (221,222).
TNF-α deficient mice develop an intense and persistent inflammatory response without a
decrease in lung hydroxyproline content following intratracheal bleomycin, suggesting that
the absence of TNF-α may not, in itself, attenuate the fibrotic response to injury (223).
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Moreover, TNF-α overexpression actually reduces fibrosis induced by TGF-β1 overexpression
(224). A Phase II clinical trial of etanercept (a soluble TNF-R-Fc fusion protein) in IPF has
been completed and the results were recently presented in abstract form (225). Eighty-seven
patients with mild-moderate IPF were randomized to receive twice-weekly subcutaneous
etanercept or placebo. After 48 weeks of therapy, etanercept treatment resulted in no significant
differences in the primary endpoints (FVC, DLCO, or the differences in alveolar-arterial
oxygen gradient) or in the secondary endopoints (TLC, resting oxygen saturation, and 6-minute
walk distance). However, some trends for improvement in physiologic parameters were noted
which may yet lead to another trial of this agent.

N-acetyl Cysteine
Oxidative stress is thought to play a critical role in IPF pathogenesis (reviewed in ref #(226)).
Localized generation of ROS may induce epithelial cell injury/apoptosis, a key ultrastructural
feature of UIP/IPF. Inflammatory cells from patients with IPF generate increased levels of
oxidants compared to normal volunteers (48) and the epithelial lining fluid of IPF patients
contains both increased concentrations of myeloperoxidase (48) and decreased levels of the
anti-oxidant, glutathione (GSH) (227). N-acetyl cysteine (NAC) may mediate anti-oxidant
effects through augmentation of GSH synthesis. It is safe, efficacious and approved for the
treatment of acetaminophen overdose (228) and in the prevention of contrast nephropathy
(229). Both GSH and NAC decrease fibroblast proliferation in-vitro (230). In patients with
IPF, aerosolized GSH decreases ROS production by alveolar macrophages in IPF (231). Both
oral and intravenous NAC increase GSH levels in bronchoalveolar lavage fluid (232,233). In
a small prospective trial of oral NAC in combination with immunosuppressive therapy in
patients with IPF, the NAC-treated group had increased levels of GSH in epithelial lining fluid,
decreased markers of oxidative stress and improvements in pulmonary function (234). A
preliminary study randomizing 30 IPF patients to inhaled NAC or a control for 12 months
reported that inhaled NAC had no effect on quality of life or pulmonary function, but did lead
to improvements in the lowest oxygen-saturation during a 6-minute walk (235). A large,
prospective Phase III clinical trial of oral NAC combined with prednisone/azathioprine
compared to prednisone/azathioprine alone has recently been reported(236). In this study, 182
patients were randomized to receive oral NAC (300 mg, three times daily) or placebo in
addition on prednisone and azathioprine. After 12 months of therapy, the addition of NAC
resulted in a significant decrease in the primary endpoints of decline in vital capacity and
DLCO. No significant difference was observed in the secondary endpoint of mortality. It is not
known if the positive effects of NAC are related to modulation of prednisone and azathioprine
treatment since NAC monotherapy and placebo arms were not included in this trial (237).

Tetrathiomolybdate
Tetrathiomolybdate (TM) is a copper-chelating compound that has been shown to protect from
fibrogenic effects of bleomycin in animal models of pulmonary fibrosis (238). The mechanism
(s) for the anti-fibrotic effects of TM may be mediated, in part, by its anti-angiogenic effects
(239). TM may also suppress the in-vivo expression of pro-fibrotic mediators, SPARC and
TGF-β1, in response to lung injury (240,241). The protective effect of oral TM is observed
even when the drug was administered several days after bleomycin injury, suggesting that anti-
fibrotic effects cannot be explained by the blockade of the early inflammatory response in this
model (238). A Phase I/II clinical trial of TM in IPF patients refractory to previous
immunosuppressive therapies is nearing completion at the University of Michigan.

Bosentan
Endothelin-1 (ET-1) is smooth muscle cell and fibroblast mitogen that is secreted by alveolar
epithelial cells, vascular endothelial cells and macrophages (242). ET-1 has been linked to
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activated fibroblastic phenotypes (243-246). ET-1 overexpressing transgenic mice develop
chronic inflammation and pulmonary fibrosis (247). Bleomcyin-induced pulmonary fibrosis
is attenuated by treatment with an endothelin receptor antagonist (248); although, another study
showed no effect on collagen deposition in this model (249). Patients with IPF demonstrate
increased expression of ET-1 in proliferating type II epithelial cells, endothelial cells, and
inflammatory cells (250,251).

Bosentan is an oral, non-selective endothelin receptor antagonist that is currently approved for
the treatment of pulmonary hypertension (252). A Phase II multi-center, double-blind trial
randomizing 158 patients with IPF to treatment with Bosentan or placebo has been completed
(BUILD-1). The results have not been presented in a peer-review format; however, a press-
release from Actelion reported that there was no significant difference seen in the primary
endpoint of improvement in 6-minute walk. They did report a trend for improvement in the
secondary endpoint of combined death or treatment failure (www.actelion.com).

Inhibitors of TGF-β1 Signaling
A large body of evidence implicates TGF-β1 as a key mediator of human fibrotic disorders.
Animal models have demonstrated that blocking TGF-β1 prevents injury-provoked pulmonary
fibrosis (111-113). TGF-β1 is upregulated in fibrotic foci of UIP/IPF (253,254). Anti-TGF-
β1 therapies involving monoclonal antibodies, small molecule inhibitors, and other approaches
(anti-sense oligonucleotides, receptor kinase inhibitors) are currently being investigated.
Recently, Bonniaud and colleagues used an animal model of pulmonary fibrosis induced by
the adenoviral-mediated overexpression of TGF-β1 to show that oral treatment with a small
molecule inhibitor of type-1 TGF-β receptor (ALK-5) kinase activity could attenuate the
development and progression of pulmonary fibrosis (255).

Despite its pro-fibrotic properties, TGF-β1 also has important homeostatic functions as an
immune- and tumor-suppressive cytokine (46). Although inhibition of TGF-β1 signaling
protects mice from fibrosis, recent animal studies have shown that an extended loss of TGF-
β1 signaling can induce emphysematous changes in the lung (256,257). These concerns temper
enthusiasm for the long-term inhibition of TGF-β1 as a therapeutic strategy for the treatment
of IPF. Continued investigation and better understanding of the divergent post-receptor
signaling mechanisms of TGF-β1 may allow for more targeted blockade of its pro-fibrotic
actions in the future (258).

Protein Kinase Inhibitors
Protein kinases are critical intracellular intermediates in the regulation of cell signaling and
phenotype. The successful use of the c-Abl kinase inhibitor, imatinib mesylate (Gleevec®) in
oncologic disease (259) provided proof-of-principle that protein kinase inhibitors could be used
to target altered (activated) signaling pathways in certain human diseases. Recent
investigations suggest that several protein kinases are potential targets of inhibition for the
treatment of IPF.

c-Abl and Platelet-Derived Growth Factor Receptor Kinase—Recently, TGF-β1 has
been shown to activate the Smad-independent c-Abl tyrosine kinase that appeared to mediate
ECM synthesis in fibroblasts (260). Treatment with imatinib mesylate decreased bleomycin-
induced pulmonary fibrosis in mice (260). Another group reported that this drug decreases
fibroblast proliferation and bleomycin-induced murine pulmonary fibrosis through inhibition
of platelet derived growth factor (PDGF)-receptor activation (261). Similarly, a recent study
with three different inhibitors of PDGF signaling (including imatinib mesylate) demonstrated
a reduction in radiation-induced pulmonary fibrosis (262). A multi-center Phase II clinical trail
of imatinib mesylate (Gleevec) in IPF is nearing completion.
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Focal Adhesion Kinase—Focal adhesion kinase (FAK) is a tyrosine kinase that regulates
cell proliferation, migration and survival (263). This adhesion-dependent FAK pathway is
required for differentiation of fibroblasts to the myofibroblast phenotype (127). Inhibition of
FAK signaling may also induce fibroblast apoptosis (264), while forced activation of FAK
signaling can protect fibroblasts from apoptosis through activation of Akt (265). Recent studies
demonstrate that FAK and Akt are expressed in areas of fibrosis following intratracheal
bleomycin in mice and that treatment with a protein kinase inhibitor (AG1879) that blocks
TGF-β1-induced FAK and Akt in myofibroblasts attenuates fibrogenic responses to bleomycin
(266).

p38 MAP Kinase—p38 MAP kinase is activated by a variety of stimuli and participates in
multiple cellular processes through the activation of downstream transcription factors (267).
Early and delayed activation of p38 MAPK by TGF-β1 have been described (268,269).
Furthermore, p38 MAPK activation is necessary for the activation of Akt by TGF-β1 in human
lung fibroblasts, supporting a role for p38 MAPK in the anti-apoptotic phenotype of human
lung fibroblasts (114). Finally, p38 MAPK activation has been implicated in proliferative
responses of fibroblasts in response to TGF-β1 treatment (270). Inhibition of p38 MAPK has
been shown to attenuate bleomycin-induced pulmonary fibrosis in murine models (271,272).

Other Potential Pharmacologic Agents
We have already discussed the potential roles of angiotensin-II in the pathogenesis of IPF.
Inhibitors of both angiotensin-converting enzyme and the angiotensin receptor are widely used
for the treatment of hypertension, ischemic cardiomyopathy and diabetic nephropathy. Clinical
experience with these drugs in IPF, however, is limited. A recent retrospective analysis from
the Mayo clinic found no significant differences in the survival of IPF patients receiving an
ACE-I compared to IPF patients who were not receiving an ACE-I (273).

Connective Tissue Growth Factor (CTGF) is a growth factor that is produced by fibroblasts in
response to TGF-β1 stimulation and is thought to mediate some of the pro-fibrotic effects of
TGF-β1 (274). In murine models, CTGF expression is upregulated by bleomycin (275).
Adenoviral-mediated overexpression of CTGF in lungs of mice, however, induces only
transient fibrosis (276). Increased expression of CTGF has been demonstrated in alveolar
epithelial cells and interstitial fibroblasts in IPF (277). Monoclonal antibodies to CTGF are
currently in Phase I/II clinical trials in IPF.

CONCLUSION
Idiopathic pulmonary fibrosis is a progressive, debilitating lung disease for which the etiology
remains unclear and for which no proven effective therapies exist. Clinical and laboratory
investigations have led to changing paradigms in disease pathogenesis and evolving new targets
for therapeutic intervention. Therapeutic strategies targeting fibroblast phenotypes
(myofibroblast differentiation, proliferation and survival), epithelial regeneration and
apoptosis, angiogenesis, ECM regulation and pulmonary hypertension are supplanting
traditional anti-inflammatory/immunosuppressive strategies. Continued investigations into the
signaling mechanisms supporting these dysregulated cellular phenotypes are likely to identify
future targets for intervention.
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Figure 1.
Idiopathic interstitial pneumonias (IIPs) represent an overlapping spectrum of inflammatory
and fibrotic tissue reactions or histopathologic patterns in response to an “unknown” injury.
At one end of the spectrum are IIPs marked predominantly by diffuse inflammatory cell
infiltration; these IIPs tend to be more responsive to anti-inflammatory and immunosuppressive
drug therapy. At the other end of the spectrum are IIPs characterized by fibrosis with minimal
inflammation; these disease processes tend to have poor responses to currently available
pharmacologic agents. Host factors (such as age and genetic polymorphisms) in combination
with environmental factors (such as exposure to infectious agents and cigarette smoke) likely
determine the resulting histopathological reaction patterns. DIP, desquamative interstitial
pneumonia; RB-ILD, respiratory bronchiolitis associated-interstitial lung disease; COP,
cryptogenic organizing pneumonia; NSIP, non-specific interstitial pneumonia; AIP, acute
interstitial pneumonia; UIP, usual interstitial pneumonia.
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Figure 2.
The pathogenesis of IPF is complex and three major hypotheses or paradigms for the
pathogenesis of IPF have emerged: dysregulated epithelial-mesenchymal interactions, aberrant
angiogenesis and the TH1/TH2 cytokine imbalance. Epithelial-mesenchymal interactions
between altered epithelial and mesenchymal phenotypes results in dysregulated interactions
between these cellular compartments. In response to an unknown stimulus, alveolar epithelial
cells in IPF develop a phenotype characterized by increased apoptosis, dysregulated
proliferation, impaired regeneration/differentiation and perhaps impaired migration. Alveolar
epithelial cells elaborate increased TGF-β1 and endothelin-1 along with decreased levels of
PGE2. Mesenchymal cells in this alveolar microenvironment acquire a contractile,
synthetically active myofibroblast phenotype. Myofibroblasts retain the capacity to proliferate
and are resistant to apoptosis while secreting large amounts of extracellular matrix proteins,
soluble growth factors/cytokines and extracellular oxidants. Soluble mediators and the
insoluble matrix elaborated by these myofibroblasts may, in turn, lead to aberrant
reepithelialization that perpetuates a feed-forward cycle. IPF fibroblasts/myofibroblasts and
alveolar epithelial cells contribute to an imbalance in angiogenic chemokines that may promote
neovascularization and aberrant angiogenesis in IPF. A “shift” in the host immune response,
favoring a TH2 cytokine profile, has been postulated to contribute to initiation and/or
progression of IPF.
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TABLE 1
Emerging pharmacotherapy targeting fibrogenic pathways in IPF

Name/Class Mechanism of Action Clinical trials Other
Interferon-γ1b Modulates TH1/TH2 balance; inhibits fibroblast

activation
Phase 3 (completed) Phase
3 (ongoing)

Pirfenidone Suppresses TNF-α; inhibits TGF-β; free radical
scavenger

Phase 2 (completed) Phase
3 (planned)

Zileuton Inhibits 5-lipoxygenase; Modulates eicosanoid
imbalance

Phase 2 (ongoing) Approved for asthma

Etanercept Inhibits TNF-α receptor binding Phase 2 (completed)
N-acetyl cysteine Anti-oxidant; glutathione precursor Phase 3 (completed) Approved for

acetaminophen
overdose and contrast
nephropathy

Tetrathiomolybdate Inhibits angiogenesis; Inhibits TGF-β, TNF-α
production; anti-oxidant

Phase 1/2 (ongoing)

Bosentan Endothelin-1 receptor antagonist Phase 2/3 (ongoing) Approved for pulmonary
hypertension

Monoclonal Anti-TGF-β
Antibodies

Inhibits binding of TGF-β to its receptor Phase 1/2 in scleroderma
and post-trabulectomy scar
prevention; initiated in IPF

TGF-β receptor kinase
inhibitors

Protein kinase inhibitor; Blocks TGF-β type 1
receptor kinase activity

Planning stages for IPF

Imatinib mesylate Protein kinase inhibitor; Inhibits c-Abl and PDGF
tyrosine kinase

Phase 2 (ongoing) Approved for CML and
GIST

AG1879 Protein kinase inhibitor; Modulates
myofibroblast differentiation and survival by
inhibiting FAK/Src kinases and Akt.

Pre-clinical

Anti-CTGF Monoclonal antibody against CTGF Phase 2 (ongoing)

Treat Respir Med. Author manuscript; available in PMC 2008 February 6.


