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pi[M] = 3a(M).
(Cf. Hirzebruch, ref. 4, Theorem 8.2.2, p. 85.) The proof of Lemma 1 is bagbd on the fact that
7rn+3(S5) is cyclic of order 24 for n > 5.

t In the sense of J. H. C. Whitehead.'0 Any two regular neighborhoods of K in M are com-
binatorially equivalent by reference 10, Theorem 23.
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1. Recently N. N. Vorobjevl has presented a constructive procedure for com-
puting all equilibrium points for the case of bimatrix (i.e., finite two-person non-
cooperative non-zero-sum) games. The purpose of the present note is to simplify
his algorithm both in theory and application. In the terms of his paper, the classi-
fication of extreme equilibrium strategies into two types is eliminated, and the enu-
meration of all such strategies is reduced to a single routine.

2. For the sake of easy comparison with Vorobjev's work, his notation will be
used. If M is any matrix, M. denotes the ith row of M, M.j denotes the jth
column of M, and MT denotes the transpose of M. Furthermore, J, denotes the
p-dimensional vector with all components equal to one, and O, denotes the p-
dimensional vector with all components equal to zero. Inequalities between vec-
tors are to hold in all components.
A bimatrix game r is defined by two real m by n payoff matrices, A = (aij) and

B = (brj): if player 1 chooses ie{ 1, .. ., m} and player 2 chooses jet 1, . . ., n}, then
player 1 is paid aij and 2 is paid byj. Mixed strategies for 1 and 2 are probability
vectors of dimension m and n and are denoted by X and Y respectively. Thus,

XJm1 X °Om and JyT=1 Y >
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If 1 uses mixed strategy X and 2 uses Y, then their expected payoffs are XA yT
and XBYT, respectively. An equilibrium point is a pair of mixed strategies (X, P)
such that

XAYT > XAYT and XBPT > XBYT

for all X and Y. The set of all equilibrium points for F, which is nonempty by the
theorem of Nash,2 will be denoted by SI.

Clearly (X, Y) e Sr if and only if

XAT > A . and XBYT . XB.

for all i and j.

3. Given any X, set S(X) = YI (X, Y) e Sr}. Since S(X) is the solution set of
the finite system of linear inequalities,

XA yT > A i. yT (i =1,...,m)

XBYT > XB.j (j =1,. ..,n)

Y _ O,, jnyT =

it is clear that S(X) is a compact convex set, which is possibly empty (compare the
Lemma, pp. 319-320 of ref. 1). For any set SC of mixed strategies X, set

S(9c)= n s(x).
Xe~c

Clearly, s(9C) is also a compact convex set, which is possibly empty. For any set
S, K(S) will denote the set of extreme points of S.

DEFINITION. The mixed strategy Y is called an extreme equilibrium strategy if
p

Y E K( n S(Xk)) = K(8(C))
k=1

for some finite set 9C = IX, ., X,} of mixed strategies.
It should be clear that analogous definitions can be given with the roles of the

players reversed.
4. The results of Vorobjev can now be stated as follows:
THEOREM 1. It is possible to enumerate effectively finite sets 9C and ij, which contain

all extreme equilibrium strategies for the two players.
THEOREM 2. For any finite set 9r, it is possible to describe effectively the set S(9r)

by computing its extreme points, which are finite in number.
THEOREM 3.

Sr = U [al] X S(X),

where [9C] denotes the convex hull of 9r.
Vorobjev has derived Theorems 2 and 3 from Theorem 1 in a very elegant man-

ner. His proofs will be repeated here to make this account self-contained.
Proof of Theorem 2: Since S(9r) is a compact convex set, to describe S(OC) we need

only find K(8(9f)). However, K(S(C)) C j, since '" contains all extreme equilib-
rium strategies. Set 8 = s(S) f . To verify whether a pOint Y of j also lies in

we need only test the finite set of inequalities XAYT > A_yT XBYT >
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XB.j for the finite set of points X e SX. Since this process is finite, 'y is effectively
enumerable.

Since K(8(Ot)) C C 8(9r), upon deleting those points of 1j which are convex
combinations of other points of cy, the set K(8(Sr)) remains. Since g is a finite set,
this process of deletion is effective.

Proof of Theorem 3: Let (X, Y) E Sr. Then K(8(Y)) C 9:, because Xi contains all
extreme equilibrium strategies. Let OC denote the finite set K(8(Y)). If X E

S(Y), then X e [K(8(Y))] = [sr] because S(Y) is a compact convex set. Clearly
9C c S(Y) and hence Y E S(X*) for all X* e S. This means Y e s(9C) = n s(x*).

X*ex
Conversely, let X e [9C] and Y E S(lC) for some finite set 9C C . Then 9C C

S(Y) and [9C] c S(Y) because S(Y) is convex. Therefore, X E S(Y), which means
(X, Y) e Sr.

5. Proof of Theorem 1: The proof will be based on the following two lemmas.
LEMMA 1. Let Y be an extreme equilibrium strategy. Set a = max A j. yT.

Then (Y, a) is an extreme solution of the following system:

aJT > A yT y > O J yT 1

Proof: For Y to be an extreme equilibrium strategy means that there exists a
finite set C = { X1,. ..., X, } such that Y is an extreme solution of

XkA Y >Ai.Y (i =1,. ..,m; k =1, ..., p)

XkBY XkB.j (j = 1,. ..,n; k= 1,.., p)

Y >- On JnyT=1.

Clearly, XkA Y = a for k = 1, ..., p.
Suppose Y = '/2(Y' + Y") and a = 1/2(a' + a'), where (Y', a') and (Y", a')

are distinct solutions to the system

a _ Ai.YT (i =1, ...,m)

XkBY _ XkB.j (j = 1, .. ., n; k = , ..., p)

Y _ O JnyT = 1.

Then,

= max Ai.Y . 1/2(max A .Y + max Ai.YT) < 1/2(a' + a") =

and hence,

max Ai.YT = a', max Ai.YfyT = a".

On the other hand,

& = XkAYT - 1/2(XkA yT + XkA yT) 1'/2(a' + a") = e

and hence,

XkAYT = a', XkA Y, = a

for k = 1 ..., p. However, this proves Y' E S(C) and Y" E 8(a). Since Y =
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1/2(Y' + Y") is extreme in 8(9t), this implies Y' = Y" = Y and hence a' = a" =
a. However, this contradicts (Y', a') $ (Y', a").

Therefore, Y is an extreme solution to the system in which the inequalities

XkBYT XkB.j (j = 1, ..., n; k = 1, ..., p)

are adjoined to the system of the lemma. However, these merely require that
yj = 0 for those j for which XkB.j < max XkB.1 for some k. Call this set N. Sup-

posey = V/2(Y' + Y"), where Y' and Y" are distinct solutions to the system of the
lemma. Since Y' _ On, Y" >-On, and yj = 0 for j e N, we have y, = y = 0 for
j e N and hence Y' and Y" also solve the enlarged system. This contradiction
proves the lemma.
LEMMA 2. Let (Y, &z) be an extreme solution of the system

aJT > A yT y> jyT=1
Then there exists an s by s submatrix D ofA such that

D D _JST
i's 0/

is nonsingular. Furthermore, renumbering rows and columns, if necessary, to place D
in the upper left corner of A,

Yj XE /D |il1D/ilk D j (j = 1, .., s)
yj= 0 (j=s+1,...,n)

=IDI/IDI = IDI DiZI1/11 1 / i, El=1

(Dry denotes the cofactor of aij in D; DI and |DJ denote the determinants of D and
D).

Proof: If (Y, &x) is an extreme solution to

oJT > AYT y _ onX jnyT = 1,

then A {. yT = at for some i. Reindex rows, if necessary, so that Ai. pT = & for i =
1, ..., rand A,.YT < a for i = r + 1, ....,m. Since Y >On and JnYT =1,
yj > 0 for some j. Reindex columns, if necessary, so that yj > 0 for j = 1, ..., s
andyj = Oforj= s+ 1, ...,n.

I contend that the system of equations
8

E aijyj= (i = 1, ...,r)
j=l

8

y= 1
i=1

has the unique solution yj = y1 for j = 1,. ., s and a = a. Suppose, to the con-
trary, that there are distinct solutions (y', ..., y/, a') and (yl, .. ., y, a') and
define R' and Y" by
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Y,= Yi + E(Y;i-Y;) and yj = yj + E(Y ;-YJ) (j= 1, ...,S)
y,= y,'=O0 (j= s + l,...,n),

where E > 0 is to be chosen. Since yj > 0 for j = 1, ..., s it is clear that Y' .
s s

0, and Y" > 0, for E sufficiently small. Furthermore, since yj = yj =
j=1 j=1

1, we have jn ,T = 1 and jn p#T = 1.

For these mixed strategies, we have

Ai.Y = -a + E(a - a"), Ai.Y = (x + E(a - a') (i = 1 , r)

and s~~~~~~~~~~~~~~~~~~~~
AX. = A X.Y + E ai,(yj - yJ) A i

T = AX.Y + e E aij(y -
i=1 j=1

(i=r+1, ..., m).
Since Ai. yT < a for i = r + 1, ..., m, it is possible to choose a fixed a with the same
sign as a' - a" such that

(a + 6)JT > A TYT, (& - j)jT > AY1tT

for some E > 0 sufficiently small. Hence, (Y', a + 8) and (Y", -8) solve the
system of the lemma. However, (Y ) = 1/2{ (Y', a + 6) + ( a", - 8)I is an
extreme solution. Hence, 8 = 0, which implies a' = a", and Y' = Y", which im-
plies (y', , y8) = (y, , y). This proves the contention made above.
The remainder of the proof is standard.3 The uniqueness of the solution to the

equation system implies that the columns of the matrix

/all . .. a,,-1

al. ... ars 1

:1... : 0

are linearly independent. Hence we can choose s rows (including the last row) so
that

al .. . a1,

a,1 ... a., -1
1 ... I O

is nonsingular (the rows may have to be renumbered again). We shall call the
matrix

(all ... a13
D = {. :,

a,1 ... a.,!
which is a square submatrix of A, a kernel for the extreme solution Y (not "the"
kernel since the steps in its construction are not unique). The formulas for Y and
a then follow by Cramer's rule.
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Since there are only a finite number of square submatrices of A, the proof of
Theorem 1 follows by combining Lemmas 1 and 2. Note that not every kernel
which provides an extreme solution to the system of Lemma 2 need provide an
extreme equilibrium strategy. However, the finite set y consisting of all mixed
strategies computed from the kernels certainly contains all extreme equilibrium
strategies.
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1.-We shall consider transformation groups or actions-(7r, X) where X is a
locally compact Hausdorff space and Xr = fB X ... X#T,, each #j being cyclic of prime
order p. An action (7r, X) is free if the fixedpoint set F(y) is empty for each cyclic
subgroup -y. The free part iY of an action (ir, X) is the open set X - u F(ly); the
induced action (7r, i) is free. We shall consider the problem of determining the
cohomology of the orbit spaces of free actions, in particular, the orbit spaces 5/ir.
In the case of cohomology spheres, we simplify and complete the computation
given in an earlier note.'

2. Some Cohomology Groups.2 An action (7r, X) being given, let A' (X) be
the Zp(7r)-module of Alexander-Spanier cochains on X, values in Z, modulo those
of empty support, and let A (X) be the submodule of compactly supported elements.
A (X) is identical with the module of compactly supported sections of the Alex-
ander-Spanier sheaf on X, values in Zp. Let H (X) = H(A (X)) where H stands for
cohomology, and for t & Zp(7r), let H(X) = H(tA(X)). Multiplication by- an
element vin Zp(7r) induces 77*: H(X) Ht,(X). We have also i*: HE,,(X)
HE(X) induced by the inclusion t77A (X) -{ ~A (X).
Forg9z 7r, g 5'< 1, let o-(g) = 1 + 9 + . . . + gPl, T(g) = 1 -9 and let p(g) be

either one of v(g), r(g) and p(g) the other. Evidently, p(g)p(g) = 0.
Let y be the cyclic subgroup generated by g. The support of each element of

p(g)A(X) lies in X - F(-y). In fact, if x E F(-y), c C A(X), we have (gc)(x) =
c(g(x)) = c(x). Hence, (uc)(x) = pc(x) = 0, (TC)(X) = c(x) - c(x) = 0; so pc
(p = p(g)) vanishes on F(-y). If y acts trivially on X, then p* annuls H(X), since
in this case F(,y) = X.

Let go = X and for s = 1, ..., r let 9j = X - ul F(fli). We have inclusions
A (§s) c A (X),pa... psA (9s) - pi ... psA (X). The second of these is bijective.
For let c E A (X). The support of pi ... psc is in X - F(0h), i = 1,. . . s, hence is in
S3. Therefore, Pi ... psc can be identified with an element of pi. ps A (9s). It is


