VoL. 47, 1961 MATHEMATICS: H. W. KUHN 1657

nlM] = 3o(M).

(Cf. Hirzebruch, ref. 4, Theorem 8.2.2, p. 85.) The proof of Lemma 1 is baséd on the fact that
mn4+3(S™) is cyclic of order 24 for n > 5.
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1. Recently N. N. Vorobjev! has presented a constructive procedure for com-
puting all equilibrium points for the case of bimatrix (i.e., finite two-person non-
cooperative non-zero-sum) games. The purpose of the present note is to simplify
his algorithm both in theory and application. In the terms of his paper, the classi-
fication of extreme equilibrium strategies into two types is eliminated, and the enu-
meration of all such strategies is reduced to a single routine.

2. For the sake of easy comparison with Vorobjev’s work, his notation will be
used. If M is any matrix, M, denotes the ¢th row of M, M.; denotes the jth
column of M, and M7 denotes the transpose of M. Furthermore, J, denotes the
p-dimensional vector with all components equal to one, and O, denotes the p-
dimensional vector with all components equal to zero. Inequalities between vec-
tors are to hold in all components.

A bimatriz game T is defined by two real m by n payoff matrlces, A = (ay) and

= (by;): if player 1 chooses ze{ 1, } and player 2 chooses ]e{ 1, ..., n}, then
player 1 is paid ay; and 2 is paid b,j Mixed strategies for 1 and 2 are probability
vectors of dimension m and » and are denoted by X and Y respectively. Thus,

XJE=1,X20, and J,Y' =1, ¥ 20,
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If 1 uses mixed strategy X and 2 uses Y, then their expected payoffs are XAYT
and XBY7, respectively. An equilibrium point is a pair of mixed strategies (X, P)
such that

XAV 2 XA?"T and XBYT = XBYT

for all X and Y. The set of all equilibrium points for T, which is nonempty by the
theorem of Nash,? will be denoted by $;.
Clearly (X, ¥) €8 if and only if

XAY" 2 A, V" and XBY" = XB,
for all 7 and j.

3. Given any X, set 8(X) = { Y| X, Y) e Sr}. Since $(X) is the solution set of
the finite system of linear inequalities,

XAYT 2 4. Y" (G=1,...,m)
XBY" =2 XB,, (j=1,...,n)
Y=0, J,Y'=1,

it 1s clear that $(X) is a compact convex set, which is possibly empty (compare the
Lemma, pp. 319-320 of ref. 1). For any set X of mixed strategies X, set

$(xX) = N 8X).
XeX

Clearly, $(%) is also a compact convex set, which is possibly empty. For any set
8, K(8) will denote the set of extreme points of 8.
DEFINITION.  The mixed strategy Y is called an extreme equilibrium strategy if

Y e K(kél S(X)) = K(S(X))

for some finite set X = {Xl, X ,} of maixed strategres.

It should be clear that analogous definitions can be given with the roles of the
players reversed.

4. The results of Vorobjev can now be stated as follows:

THEOREM 1. It is possible to enumerate effectively finite sets X and Y, which contain
all extreme equilibrium strategies for the two players.

THEOREM 2. For any finile set X, it is possible to describe effectively the set $(X)
by computing its extreme potnts, which are finite tn number.

THEOREM 3.

S = U_ [x] X 8(%),
xcg
where [X] denotes the convex hull of X.

Vorobjev has derived Theorems 2 and 3 from Theorem 1 in a very elegant man-
ner. His proofs will be repeated here to make this account self-contained.

Proof of Theorem 2: Since $(X) is a compact convex set, to describe $() we need
only find K(8(x)). However, K(8(X)) C {fj, since ‘ﬁ contains all extreme equilib-
rium strategies. Set Yy = $(X) ﬂfy. To verify whether a point ¥ of 4 also lies in
$(x), we need only test the finite set of inequalities XA YT = Ai.YT, XI_BYT =
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XB.; for the finite set of points X ¢ . Since this process is finite, ¢Y is effectively
enumerable.

Since K(8(X)) € Y C 8(X), upon deleting those points of Yy which are convex
combinations of other points of ¢, the set K(8()) remains. Since ¢ is a finite set,
this process of deletion is effective.

Proof of Theorem 3: Let (X, Y) e $p. Then K(8(Y)) € &, because X contains all
extreme equilibrium strategies. Let & denote the finite set K(8(Y)). If X e
8(Y), then X e [K(8(Y))] = [x] because $(Y) is a compact convex set. Clearly
X C $(Y)and hence Y ¢ $(X*) forall X* e X. Thismeans Y €8(X) = X*Qr S(X*).

Conversely, let X e [X] and Y € $(X) for some finite set ¢ € . Then X C
8(Y) and [X] C $(Y) because $(Y) is convex. Therefore, X e $(Y), which means

(X y Y) € Sr.
5. Proof of Theorem 1: The proof will be based on the following two lemmas.
Lemma 1. Let ¥ be an extreme equilibrium strategy. Set @ = max A, ¥".

Then (Y, &) is an extreme solution of the following system:
aJh 2 AY", Y 20, J.Y'=1

Proof: FYor ¥ to be an extreme equilibrium strategy means that there exists a
finite set ¢ = {X,,..., X,} such that ¥ is an extreme solution of

X AYT 2 A YT (@=1,... ,m k=1,...,p)
X BY'2XB;, (j=1,...,n; k=1,...,p)
Yzo, JY'=1

Clearly, X;AVT = afork =1, ..., p.
Suppose ¥ = 1/5(Y’ 4+ Y") and @ = Y/s(a’ + a”"), where (Y, &’) and (Y", a”)
are distinet solutions to the system

az ALY (G=1,...,m)
X:BY'=2XB, (G=1,...,n k=1,...,p)
Y =20,J,Y" =1
Then,

a =max 4, 7" < '/y(max A,.Y'" + max A,.Y"") £ /s(a’ + ") = &,

1

and hence,

max 4,.V'7T = o', max 4. Y"T = a".
1 1

On the other hand,
a=X AV = 1/5(XAY'T + X,AY"T) £ Vola! + ") = &
and hence,
X AY'T = o, X, AY"T = o
for k = 1, ..., p. However, this proves Y’ ¢ $() and Y” € $(X). Since ¥ =
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1/(Y’ 4+ Y") is extreme in $(), this implies ¥’ = Y” = ¥ and hence o’ = o" =
a. However, this contradicts (Y, &') #= (Y”, &”).
Therefore, Y is an extreme solution to the system in which the inequalities

X:BYT =z X,B., (j =1, v k=1,...,p)

are adjoined to the system of the lemma. However, these merely require that
y; = 0 for those j for which X;B.; < max X,;B ; for some k. Call this set N. Sup-
1

pose ¥ = 1/,(Y’ + Y"), where Y’ and Y” are distinct solutions to the system of the
lemma. Since ¥’/ = 0,, Y” = 0,, and 5, = 0 forj ¢ N, we have y; = y; = 0 for
j € N and hence Y’ and Y” also solve the enlarged system. This contradiction
proves the lemma.

LemMa 2. Let (¥, &) be an extreme solution of the system
oJI = AYT, Y =0, J.YT=1
Then there exists an s by s submatrix D of A such that

_ D —JT
D =
Js 0

18 nonsingular. Furthermore, renumbering rows and columns, if necessary, to place D
in the upper left corner of A,

5”=‘§ D“/IDI = ngiJ 'Zl D, (G=1,...,9)

w) =

¥3=0 G=s+1,...,m)

= = [o| /15| = [p|/ %, Da

(Dy; denotes the cofactor of ai; in D; |D| and ]DI denote the determinants of D and
D).
Proof: 1If (¥, @) is an extreme solution to
oJI = AYT Y = 0, J.YT =1,

then 4,. 77 = afor'somei. Reindex rows, if necessary, so that 4, ¥7 = afori =
1,...,rand A, YT <afori=r+1,...,m. Since ¥ = 0, and J,¥7 =1,
¥; > 0 for some j. Reindex columns, if necessary, so that ; > O0forj =1, ..., s
and j; = O0forj=s+4+1,...,n.

I contend that the system of equations

8

Zlaijyj= a (E=1,...,7
i<

8
Z yy =1
i=1
has the unique solution y; = y,forj = 1, ..., sand @« = @ Suppose, to the con-
trary, that there are distinet solutions (y;, ..., ¥, @) and (¥, ..., ¥s, @”) and

define ¥” and ¥” by
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Vi=Ftey—y) and F=F+eW—y) G=1...,9
=%=0 (G=s+1,..,n),
where ¢ > 0 is to be chosen. Since 5; > 0 forj = 1, ..., s it is clear that ¥’ =

0, and 7" = O, for e sufficiently small. Furthermore, since zs: y,/« = Zj y; =
1, we have J, 7’7 = 1and J,7"7 = 1. = !
For these mixed strategies, we have
A V7" =a+ el —a"), AV T=a+ e —0a') @=1,...,7)

and
44.1'.17/1' = Ai. yT + € 2:1 ai,-(y;- — y;), Ai- I—,”T = Ai_?T + € z:l aij(y; - y]’)
i= i=
@G=r4+1,...,m).

Since A; 7" < afori =r+ 1, ..., m, itis possible to choose a fixed 8 with the same
sign as o’ — «” such that

@+ 8)JL = AV"T, (@a—8JL =z APT

for some ¢ > 0 sufficiently small. Hence, (¥’, & + 8) and (¥”, @ — 6) solve the
system of the lemma. However, (¥, @) = 1/,{(¥’, a + 8) + (7", a — 8)} is an
extreme solution. Hence, 8 = 0, which implies o’ = a”, and ¥’ = ¥”, which im-
plies (y1, ..., ¥2) = (1, ..., ys). This proves the contention made above.

The remainder of the proof is standard.®? The uniqueness of the solution to the
equation system implies that the columns of the matrix

an N (131 —1
an ... G —1
1 R | 0

are linearly independent. Hence we can choose s rows (including the last row) so
that

an Lo s -1
D = A ... Qs —1
1 R | 0

is nonsingular (the rows may have to be renumbered again). We shall call the
matrix

which is a square submatrix of A, a kernel for the extreme solution ¥ (not ““the”
kernel since the steps in its construction are not unique). The formulas for ¥ and
& then follow by Cramer’s rule.
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Since there are only a finite number of square submatrices of 4, the proof of
Theorem 1 follows by combining Lemmas 1 and 2. Note that not every kernel
which provides an extreme solution to the system of Lemma 2 need provide an
extreme equilibrium strategy. However, the finite set Y consisting of all mixed
strategies computed from the kernels certainly contains all extreme equilibrium
strategies.
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1.—We shall consider transformation groups—or actions—(w, X) where X is a
locally compact Hausdorff space and = = 8, X ... XB,, each 8; being cyclic of prime
order p. An action (m, X) is free if the fixedpoint set F(v) is empty for each cyclic
subgroup v. The free part § of an action (w, X) is the open set X — U F(y); the
induced action (w, F) is free. We shall consider the problem of determining the
cohomology of the orbit spaces of free actions, in particular, the orbit spaces §/.
In the case of cohomology spheres, we simplify and complete the computation
given in an earlier note.!

2. Some Cohomology Groups.>—An action (w, X) being given, let A’ (X) be
the Z,(w)-module of Alexander-Spanier cochains on X, values in Z,, modulo those
of empty support, and let A (X) be the submodule of compactly supported elements.
A(X) is identical with the module of compactly supported sections of the Alex-
ander-Spanier sheaf on X, valuesin Z,. Let H(X) = H(A(X)) where H stands for
cohomology, and for § € Z,(x), let H(X) = H(tA(X)). Multiplication by an
element 7 in Z,,(;r) induces n* : H(X) — H(X). We have also ¢*: H,(X) —
H(X) induced by the inclusion {4 (X) = ¢4 (X).

Forg& mg=l,letalg) =14+g+ ...+ ¢"} 7(g) =1 — gand let p(g) be
either one of o(g), 7(g) and 5(g) the other. Evidently, p(g)5(g) = 0.

Let v be the cyclic subgroup generated by g. The support of each element of
p(@)A(X) lies in X — F(y). Infact, if x € F(v), ¢ € A(X), we have (gc)(z) =
c(g(z)) = c(x). Hence, (oc)(x) = pe(x) = 0, (rc)(x) = c(xr) — c(xr) = 0; so pc
(p = p(g)) vanishes on F(vy). If v acts trivially on X, then p* annuls H(X), since
in this case F(y) = X.

Let G = X andfors = 1,...,rlet G = X — uiF(B:). We have inclusions
A(Gs) € AX), p1. .. psA(Gs) = p1 . .. psA(X). The second of these is bijective.
Forletc € A(X). Thesupportof p;...pscisin X — F(B:),2=1,...s, hence is in
G,. Therefore, p; . . . psc can be identified with an element of p; ... ps A(Gs). Itis



