Helionitronium trication (NO_2He^{3+}) and helionitrosonium trication ($HeNO^{3+}$)

GEORGE A. OLAH[†], G. K. SURYA PRAKASH, AND GOLAM RASUL

Loker Hydrocarbon Research Institute and Department of Chemistry, University of Southern California, University Park, Los Angeles, CA 90089-1661

Contributed by George. A. Olah, February 2, 1999

ABSTRACT The structures and stabilities of helionitronium trication NO₂He³⁺ and helionitrosonium trication HeNO³⁺ were calculated at the *ab initio* MP2/6–31G** level. The C_s symmetry structure was found to be a minimum for the NO₂He³⁺ trication, which is isoelectronic and isostructural with the previously studied NO₂H²⁺. Dissociation of the C_s symmetry structure into NO⁺ and OHe²⁺ is thermodynamically preferred by 183.1 kcal/mol (1 cal = 4.18 J), although a kinetic barrier of 12.4 kcal/mol has to be overcome. The C_{xv} symmetry structure was also found to be a minimum for the HeNO³⁺ trication.

Nitronium ion (NO_2^+) is the electrophile in the acid-catalyzed nitration of aromatics and activated aromatics with nitric acid (1, 2). Superelectrophilic (3) protonitronium dication (NO_2H^{2+}) , on the other hand, is responsible for nitration of highly deactivated aromatics with $NO_2^+BF_4^-$ in superacids, as shown by Olah et al. (4-7). Lower level calculations carried out by Simonetta (8) on the protonitronium dication indicated that the dication may not correspond to a minimum. However, our $HF/6-31G^*$, $MP2/6-31G^{**}$, and $B3LYP/6-31G^{**}$ levels calculations show that NO_2H^{2+} corresponds to a minimum (9, 10). Schwarz *et al.* (11) were indeed able to generate NO_2H^{2+} in the gas phase by dissociative electron impact ionization of HNO₃. The ¹⁷O NMR studies of nitronium ion in strong acid media have also been reported (10). The ¹⁷O NMR line broadening of nitronium ion peak in HSO₃F:SbF₅ has been attributed to proton exchange involving protonitronium dication NO₂H²⁺ (10).

Similar to NO_2^+ , NO^+ can also be acitivated to give superelectrophilic protonitrosonium dication in superacids (12). Calculations show that only the N-protonated form HNO^{2+} corresponds to a stable minimum and the O-protonated form is unstable and dissociates into the nitrosonium ion and a proton (12).

The structures and stabilities of helium-containing polyatomic ions (13) were calculated by Wilson *et al.* (14, 15), Schleyer *et al.* (16), Koch and Frenking (17, 18), and Radom *et al.* (19). Unencumbered He²⁺ is an even stronger acid than H⁺.[‡] Ab *initio* calculations show that helium is capable of forming strong bonds with carbon in cations such as in HeCCHe²⁺, as reported by Koch and Frenking (17, 18). Schleyer *et al.* (16) first calculated the quadruply charged tetraheliomethane tetracation CHe₄⁴⁺. Radom *et al.* have also presented theoretical evidence for the remarkable stability of CHe₄⁴⁺ (19). Olah *et al.* have also reported *ab initio* calculations that show that helium is capable of forming strong bond with carbon in heliomethonium dication CH₄He²⁺.

In continuation of our study of protonated onium dications (superelectrophiles) (3) we have now extended our theoretical investigations to helionitronium trication (NO_2He^{3+}) and helionitrosonium trication ($HeNO^{3+}$) and report our findings.

PNAS is available online at www.pnas.org.

FIG. 1. Calculated structures of 1–4 (calculated NBO charges).

RESULTS AND DISCUSSION

Geometry optimizations and frequency calculations were carried out by *ab initio* method using the correlated MP2/6–31G** level (20). From calculated frequencies, the optimized structures were characterized as minima, saddle point, or transition structure. The Gaussian-2 (G2) method (21) was used for accurate energy calculations. The G2 theory is a composite method based on MP2(FU)/6–31G* geometry that is treated in single-point calculations with a variety of basis sets at the post-self-consistent field level. Atomic charges at the MP2/6–31G** //MP2/6–31G** were obtained by using the natural bond orbital analysis (22) (NBO) method.

 NO_2He^{3+} . The C_s structure 1 and C_{2v} structure 2 (Fig. 1) were found to be minima on the potential energy surface of NO_2He^{3+} at the MP2/6–31G** level as indicated by frequency calculations (no. of imaginary frequencies = 0) at the same level. Calculated energies and frequencies are listed in Table 1 and Table 2, respectively. With the G2 theory, helium oxygen bonded 1, however, was found to be 99.3 kcal/mol (1 cal = 4.18 J) more stable than helium nitrogen bonded 2. Calculated structure of 1 and 2 together with NO_2^+ 3 are given in Fig. 1.

The structure 1 is characterized by a long N—O₂ (1.586 Å) bond. This is 0.430 Å longer than N—O bond of NO₂⁺ **3**. The O—He bond distance is 1.163 Å, which is slightly longer than that of calculated He₂O²⁺ (1.148 Å) (16). This observation indicates that helium is strongly bonded to the oxygen of **1**. The O1—N—O2 bond angle is 171.0°. The trication **1** is isoelectronic with protonitronium dication NO₂H²⁺. The trication **1** is also isostructural with the previously calculated structure of NO₂H²⁺ (9, 10).

The publication costs of this article were defrayed in part by page charge payment. This article must therefore be hereby marked "*advertisement*" in accordance with 18 U.S.C. §1734 solely to indicate this fact.

Abbreviations: G2, Gaussian-2; NBO, natural bond orbital.

[†]To whom reprint requests should be addressed.

[‡]Polypositive ions more acidic than the unencumbered proton are, i.e., He^{2+} , Li^{3+} , and Be^{4+} .

Table 1. Total energies (Hartree) and relative energies

		MP2/6-31G**		Relative energy,
Structure	Ion	(ZPE)	G2	kcal/mol
1	NO ₂ He ³⁺	204.98651 (6.6)	205.26923	0.0
2	NO ₂ He ³⁺	204.88682 (11.7)	205.11102	99.3
3	NO_2^+	204.23933 (6.7)	204.48421	492.6
4	NO_2He^{3+} (TS)	204.96464 (5.3)		12.4†
	OHe ²⁺	76.00562 (1.9)	76.16218	
5	HeNO ³⁺	129.73938 (6.2)	129.85375	0.0
6	NO ⁺	129.24259 (2.8)	129.39888	285.4

Zero point vibrational energies (ZPE) are at MP2/6-31G**//MP2/ 6-31G** level scaled by a factor of 0.93. Relative energies based on G2. †Based on MP2/6-31G**//MP2/6-31G** + ZPE with G2, selfconsistent field values did not converge.

The NBO charge calculations (Fig. 2) show that the helium atom of **1** bears less positive charge than any of the oxygen or nitrogen atoms. The nitrogen atom of trication **1** bears almost the same positive charge as the nitrogen atom of the nitronium monocation NO_2^+ **3**. This observation shows that in the reaction NO_2^+ **3** + He²⁺ \rightarrow NO₂He³⁺ **1**, most of the charges from helium transfer to the oxygen atoms of **1**. These results also show that the unusually long N—O2 (1.586 Å) bond is probably due to charge-charge repulsion.

Two possible dissociation paths for the ion 1 were considered, and their energetics were calculated with the G2 method. The dissociation into NO⁺ and OHe²⁺ was calculated to be exothermic by 183.1 kcal/mol. We also have located a transition structure, **4** (Fig. 1), for the dissociation process. Structure **4** lies 12.4 kcal/mol higher in energy than **1**. Thus, **1** has considerable kinetic barrier for such dissociation. In comparison, the barrier toward such a dissociation of protonitronium dication NO₂H²⁺ into NO⁺ and OH⁺ was calculated to be 38.5 kcal/mol. Another possible dissociation of **1** into NO₂⁺ 3 and He²⁺, however, was calculated to be highly unfavorable (endothermic by 492.6 kcal/mol).

HeNO³⁺. Two possible structures, N-heliated and O-heliated forms, can be considered for the helionitrosonium trication. The N-heliated $C_{\infty\nu}$ structure **5** (Fig. 2) was found to be a minimum on the potential-energy surface of HeNO³⁺ at the MP2/6-31G^{**} level, as indicated by their frequency calculations at the same level. The O-heliated structure is unstable, and dissociate to the NO⁺ **6** and He²⁺. Similar to O-heliated structure, the O-protonated nitrosonium dication NOH²⁺ is also unstable and dissociates into the NO⁺ **6** and H⁺ on optimization (12). The N—He bond distance of **5** is 1.269 Å, 0.106 Å longer than O—He bond in **1**. The N—O (1.083 Å) bond is 0.043 Å longer than N—O bond in NO⁺ **6**. Calculated NBO charges of **5** and **6** are given in Fig. 2. The dissociation

Table 2. MP2/G-31G** calculated frequencies and IR intensities

Structure	Frequencies, cm^{-1} (IR intensities in K_m/mol)	
1	330 (0); 339 (8); 415 (19); 807 (2); 1,347 (40); 1.706 (190)	
2	562 (40); 643 (80); 916 (1); 1,269 (26); 2,421 (328); 3,015 (1,351)	
4	i236 [†] (268); 248 (2); 257 (1); 379 (7); 1,330 (112); 1,754 (968)	
5	800 (1); 1,256 (160); 1,777 (16)	

[†]Imaginary frequency.

FIG. 2. Calculated structures of 5 and 6 (calculated NBO charges).

of **5** into NO⁺ **3** and He²⁺ was calculated to be also highly unfavorable (endothermic by 285.4 kcal/mol).

Present *ab initio* molecular orbital study shows that the helionitronium trication NO_2He^{3+} **1** is a minimum on its potential energy surface. Its dissociation into NO^+ **6** and OHe^{2+} is thermodynamically preferred by 183.1 kcal/mol, although a kinetic barrier of 12.4 kcal/mol has to be overcome. In structure **1**, helium is strongly bonded to the oxygen. Similarly, helionitrosonium trication $HeNO^{3+}$ **5** also was found to be a stable minimum on the potential energy surface of $HeNO^{3+}$.

This is paper 52 in the series "Onium Ions"; paper 51 is ref. 23. Support of our work by the National Science Foundation and the Office of Naval Research is gratefully acknowledged.

- Goddard, D. R., Hughes, E. D. & Ingold, C. J. (1950) J. Chem. Soc. 2559–2561.
- 2. Olah, G. A., Malhotra, R. & Narang, S. C. (1989) *Nitration: Methods and Mechanisms* (VCH, New York).
- 3. Olah, G. A. (1993) Angew. Chem. Int. Ed. Engl. 32, 767–788.
- 4. Olah, G. A. & Lin, H. C. (1974) Synthesis 444-445.
- Olah, G. A., Reddy, V. P. & Prakash, G. K. S. (1992) Synthesis 1087–1089.
- Olah, G. A., Orlinkov, A., Oxyzoglou, A. & Prakash, G. K. S. (1995) J. Org. Chem. 60, 7348–7350.
- Olah, G. A., Wang, Q., Orlinkov, A. & Ramaiah, P. (1993) J. Org. Chem. 58, 5017–5018.
- 8. Cremaschin, P. & Simonetta, M. (1974) Theor. Chim. Acta. 34, 175–177.
- Olah, G. A., Rasul, G., Aniszfeld, R. & Prakash, G. K. S. (1992) J. Am. Chem. Soc. 114, 5608–5609.
- Prakash, G. K. S., Rasul, G., Burrichter, A. & Olah, G. A. (1996) in *Nitration: Recent Laboratory and Industrial Developments, ACS Symposium Series* 623, (Am. Chem. Soc., Washington, D.C.), pp. 10–18.
- 11. Weiske, T., Koch, W. & Schwarz, H. (1993) J. Am. Chem. Soc. 115, 6312–6316.
- Olah, G. A., Hartz, N., Rasul, G. & Prakash, G. K. S. (1995) J. Am. Chem. Soc. 117, 1336–1343.
- 13. Frenking, G. & Cremer, D. (1990) Struct. Bonding (Berlin) 73, 17–95.
- 14. Wilson, S. & Green, S. (1980) J. Chem. Phys. 73, 419-424.
- 15. Cooper, D. L. & Wilson, S. (1981) Mol. Phys. 41, 161-163.
- 16. Schleyer, P. v. R. (1985) Adv. Mass. Spectrom. 287-301.
- 17. Koch, W. & Frenking, G. (1986) J. Chem. Soc. Chem. Commun. 14, 1095–1096.
- Frenking, G., Koch, W., Reichel, F. & Cremer, D. (1990) J. Am. Chem. Soc. 112, 4240–4256.
- 19. Wong, M. W., Nobes, R. H. & Radom, L. (1987) J. Chem. Soc. Chem. Commun. 233–234.
- Frisch, M. J., Trucks, G. W., Schlegel, H. B., Gill, P. M. W., Johnson, B. G., Robb, M. A., Cheeseman, J. R., Keith, T. A., Peterson, G. A., Montgomery, J. A., *et al.* (1995) GAUSSIAN 94 (Gaussian, Inc., Pittsburgh), Rev. A1.
- Curtiss, L. A., Raghavachari, K., Trucks, G. W. & Pople, J. A. (1991) J. Chem. Phys. 94, 7221–7226.
- 22. Reed, A. E., Curtiss, L. A. & Weinhold, F. (1988) *Chem. Rev.* 88, 899–903.
- Olah, G. A., Rasul, G., Burrichter, A., Hachoumy, M., Prakash, G. K. S., Wagner, R. I. & Christe, K. O. (1997) *J. Am. Chem. Soc.* 119, 9572–9573.