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Abstract

Bioinfonnatics studies two important information
flows in modem biology. The first is the flow of
genetic information from the DNA of an individual
organism up to the characteristics of a population of
such organisms (with an eventual passage of
information back to the genetic pool, as encoded
within DNA). The second is the flow of experimental
information from observed biological phenomena to
models that explain them, and then to new
experiments in order to test these models. The
discipline of bioinformatics has its roots in a number
of activities, including the organization of DNA
sequence and protein three-dimensional structural
data collections in the 1960's and 1970's. It has
become a booming academic and industrial enterprise
with the introduction of biological experiments that
rapidly produce massive amounts of data (such as the
multiple genome sequencing projects, the large scale
analysis of gene expression, and the large scale
analysis of protein-protein interactions). Basic
biological science has always had an impact on
clinical medicine (and clinical medical information
systems), and is creating a new generation of
epidemiologic, diagnostic, prognostic, and treatment
modalities. Bioinformatics efforts that appear to be
wholly geared towards basic science are likely to
become relevant to clinical informatics in the coming
decade. For example, DNA sequence information
and sequence annotations will appear in the medical
chart with increasing frequency. The algorithms
developed for research in bioinformatics will soon
become part of clinical information systems.

In this paper, I briefly review the intellectual roots of
bioinformatics and how the field has evolved in the
last few years. Fortunately, a core set of scientific
paradigms have provided a focus to the field. Even
in this short period, however, there has been a change
in the nature of the questions being asked and the
types of experiments being attempted. These
changes are consistently leading bioinformatics
towards problems of clinical relevance. Some

molecular biology information systems already have
important clinical implications. I will discuss the
differences in the culture and approach to science of
clinical informatics and bioinformatics, but will argue
that the two disciplines share important intellectual
challenges which make them very closely allied
fields (despite the cultural differences). Finally, I
will identify a few areas common to both disciplines
where developments in one field may help catalyze
faster progress in the other. For example, useful
database integration technologies have (arguably)
matured more rapidly within bioinformatics than in
clinical informatics. At the same time, clinical
informatics embraced the idea of controlled
terminologies relatively early, and offers lessons to
those in bioinformatics attempting similar tasks.

What is Bioinformatics?

Bioinformatics, as a discipline (or subdiscipline) has
been recognized for less than 10 years. The first
efforts in bioinformatics can be traced back to the
early application of computers to biology in the
1950's and 1960's. The early applications of
computers to molecular biology were for graphical
rendering of three-dimensional molecular structures
(1), and the creation of databases of molecular
sequence (2) and three-dimensional structure
information (3). Bioinformatics can generally be
defined as the study of how information technologies
are used to solve problems in biology. The precise
definition of bioinformatics is a matter of some
debate. The most narrow usage of the term refers to
the creation and management of biological databases
in support of genomic sequences. The most broad
usage includes essentially all applications of
computers and information sciences to problems in
biology. Of course, bioinformatics is based on the
fundamental paradigm of molecular biology: genetic
information is stored in sequences of DNA bases (a
four letter alphabet), which get translated into
sequences of protein amino acid building blocks (a
twenty letter alphabet). Protein sequences have a
remarkable ability to reproducibly fold into a three-
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dimensional shape, and this shape confers on them
the ability to form a variety of critical functions for
life: enzymatic catalysis, structural support,
generation of motion, reception of signals between
cells, and transduction of forces (light, pressure,
shear) into chemical signals, to name a few. The
functions of proteins combine within a cell to create a
living apparatus. Unicellular organisms (such as
bacteria) and multicellular organisms (such as
people) then function in their environment to acquire
nourishment and reproduce. Over time, the demands
of the environment create a pressure for these
organisms (or their offspring) to build proteins that
are better suited to compete for resources. This leads,
in turn, to changes in the DNA code in response to
environmental pressures, and through Darwinian
natural selection.

Perhaps the best way to define the field is to outline
the scope of topics covered in the three principle
scientific meetings in the field (the International
Conference on Intelligent Systems for Molecular
Biology', the Pacific Symposium on Biocomputing2,
and the Annual Conference on Computational
Biology3). These meetings typically include reports
of methodologies in the following areas: alignment
and analysis of DNA and protein sequence
information, three-dimensional alignment and
analysis of macromolecular (RNA, DNA and protein)
structure, assessment of how small molecules (e.g.
potential therapeutic agents) interact with drug
targets, integration of heterogeneous biological
databases, representation of biological information to
facilitate sharing, communication and automated
analysis by computers, analysis of networks of
interacting gene products, simulation of biological
processes ranging from chemical reactions to
intercellular communication, and analysis of data
created by large scale biological experiments. The
biological problems that are addressed include
prediction of protein structure and function, design of
small molecules to augment or inhibit biological
function, analysis of complex genetic phenomena,
design of modified macromolecules for medical or
industrial uses, and understanding how genetic
factors contribute to host susceptibility to disease
(and pathogenicity of infectious agents).
Computational biology is sometimes used
synonymously with bioinformatics, although it tends
to be more inclusive of all computational and
information science approaches to biology, whereas
bioinformatics currently is focused on computational

1 http://www-lbit.iro.umontreal.caISMB98/
2 http://www.cgl.ucsf.edu/psb/
3 http://www.mssm.edu/biomath/recomb98.html

molecular biology. This distinction is likely to erode
because all of biology clearly has a molecular basis,
and so new problems are likely to draw
bioinformatics professionals increasingly into other
areas of biology (4, 5).

There has been some debate about whether
bioinformatics (or computational biology) represents
a separate branch of scientific investigation, or is a
subdiscipline of biology. This is a question about
which many people using computer technologies in
biology have a strong opinion. On one hand,
bioinformatics professionals typically receive a
different training from biologists--there is more
emphasis on quantitative fields such as probability,
statistics and computer science, and there is less
emphasis on training in bench research techniques.
These differences in training spill out into differences
in the culture of conferences, professional societies
and publications. For example, all three major
bioinformatics conferences include rigorously peer-
reviewed papers collected in printed proceedings (a
practice typical of the computer science community),
whereas biological conferences rarely contain peer-
reviewed work, and do not "count" in standard
measures of academic productivity. On the other
hand, the problems being attacked in bioinformatics
are biological ones, and so it can be considered a
field of biology. This simple logic, however, is
problematic. Biology is still dominated by
experimentalists who do not always acknowledge the
importance of computation as a research area within
biology. "If you don't do bench experiments, you are
not a real biologist" is a frequent refrain. Some
biologists consider bioinformatics investigators to be
important primarily as providers of biologically-
relevant computing services, and do not acknowledge
the set of core paradigms that guide bioinformatics
research. The independent status of bioinformatics
as a discipline will stand on the success of the field in
defining a clear, separable research agenda, creating
administrative units in academia and industry that
support this agenda, and gaining attention and
support from public and private funding agencies. To
that end, the International Society of Computational
Biology (ISCB) has recently been formed4, and
begun to address these issues in an organized manner.

Most senior investigators in bioinformatics have
entered the field through a variety of backgrounds,
including through traditional training in the
biological sciences or computational
science/statistics. There is now a small but growing

4 http://www.iscb.org/
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set of training programs to train young scientists in
bioinformatics. These programs typically include a
mix of computer science, probability and statistics,
and core biological courses. The key stimulus for the
development of the field has been the availability of
computer technologies to build large biological
databases. In many ways, the pioneering efforts to
create the basic databases for DNA sequences
(GENBANK (6) and EMBL (7)) and for three-
dimensional biological structures (the Protein Data
Bank (3)) have created the infrastructure required to
catalyze bioinformatics. In a oft-repeated sequence
of events, biologists with valuable or voluminous
data gathered together to create resources for the
storage of this data in a standard format. These
collections of data attracted the attention of computer
scientists and statisticians (as well as other biologists)
who then began to create algorithms for the analysis
of these collections, and methods for connecting the
databases together. In a very real sense,
bioinformatics has illustrated the popular mantra
"Build it, and they will come." Simply by
organizing the data and making it available, cottage
industries developed to support the deposition,
retrieval, cross-linking and analysis of the data. As
time passed, principles emerged and become part of
the core paradigm within the field.

The recent explosive growth in bioinformatics can be
traced to one phenomenon: the emergence of the
genome sequencing projects, and other large scale
data collection efforts in biology. The opportunities
for understanding completely the biological processes
underlying the normal physiology of both hosts and
pathogens have created an expectation for a new
generation of medical diagnostics and therapeutics.
The pharmaceutical industry has recognized the
importance of having people who both understand
biology, and have skills in computing with biological
data. The technologies catalyzing this growth include
the genome sequencing projects (8, 9), as well as new
methods for systematically determining which
proteins physically interact with one another in a cell
by creating all possible pairs of proteins in an
experiment that can detect the presence or absence of
an interaction (10, 11). Other technologies are
being developed that allow a snapshot to be taken of
all genes in a cell that are being used (or expressed)
within a cell (12). The profile of gene expression
over time can be used to understand the sequence of
interconnected events that occur during the life of a
cell. Obviously, an understanding of how these
patterns of expression change in response to external
challenges such as infections or physiological stress
will be essential for understanding which sets of
genes should be targeted for new therapeutic or

diagnostic approaches. Similarly, understanding
how these expression patterns change in response to
internal challenges, such as the development of a
cancer by improper regulation of important genes,
will be critical for developing approaches to these
problems.

Unlike other areas of science and engineering,
biological data (including medical data) seems to
have prominent features that make the
straightforward transfer of technologies difficult.
Biological data are sparser and noisier than the
typical data from many areas of engineering.
Biological objects rarely have straight lines and right
angles, and so standard simplifications can become
irrelevant. There are rarely reductionist models that
can be used to summarize the behavior of the
smallest subunits in a biological system (we simply
do not yet know the rules by which molecules act).
Probabilistic reasoning is critical in looking at
biological systems. Finally, the concept of
sequences (their representation, storage and analysis)
is critical and central in biology, and does not occur
in many other areas of information science.

Accomplishments of Bioinformatics

There are two classes of accomplishments that can be
attributed to bioinformatics. The first is a set of
empirical principles that have become accepted by
the field, and create the context which guides both
research and training. The second class is the
particular artifacts (databases and algorithms) that
have been developed, and which are serving
biological science. A full exposition of the principles
underlying the research agenda within bioinformatics
would require an entire textbook, but can be
summarized to provide a general sense of the field.

1. The structure of protein molecules is strongly
conserved even when evolution makes multiple
changes (mutations, deletions, insertions of amino
acid building blocks) to the sequence. That is, there
are many similar biological structures with very
different sequences (less than 10% of amino acid
building blocks identical in an alignment of two
sequences), but it is very rare to find similar
sequences that don't have similar structures (13).

2. Biological sequences can be aligned optimally
using algorithms based on dynamic programming.
These mathematically optimal alignments are most
reliable when the similarity between sequences is
high (>30% identical), but become less reliable in the
range below 25% (14).
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3. The physical interactions between molecules can
be approximated with a set of energy equations that
capture the basic physical attractions and repulsions
between atoms. If carefully modeled, these energy
equations are sufficient to model the dynamic
behavior ofmolecules (15, 16).

4. Many (but not all) functions of proteins are
encoded in linear segments of protein sequence
("sequence motifs") that can be recognized even
between proteins that otherwise have very divergent
sequences (17). Other functions are encoded in the
three-dimensional arrangement of biophysical and
biochemical properties ("3D motifs") that illustrate
how different sequences can create similar
microenvironments (18).

5. Probabilistic models of sequences, particularly a
class of models known as Hidden Markov Models,
can sensitively characterize a class of related
sequences, and can recognize new members of the
class (19).

6. Three-dimensional biological structures can be
aligned using geometric algorithms that consider the
distances between corresponding atoms. The proper
correspondences between atoms can be determined
using a combination of geometric and functional
considerations (20-22).

7. Some elements of the three-dimensional structure
of biological macromolecules can be predicted with
70% confidence from local sequence (continuous
stretches of about 20 amino acids) alone (23, 24).
The remainder of the information required to
construct the 3D structure is contained in the
sequence, but requires consideration of long range
interactions (not within local stretches of amino
acids).

8. The task of evaluating the compatibility of a new
sequence to a known structure (can this sequence
adopt this known structure?) is considerably easier
than predicting the structure of a new sequence ab
initio (what structure does this sequence adopt?) (25).

9. Variation (especially correlated variation) in both
host and pathogen DNA genetic information can be
used to understand which proteins are involved in
disease, and how they interact (26).

The impact of bioinformatics has also been made
with the development of a set of algorithms and
databases that are routinely used, some ofwhich were
developed by bioinformatics researchers, and others

of which have been adopted as important
bioinformatics resources. To understand the
capabilities of modem bioinformatics tools, let us
consider a scenario: imagine a physician seeing a
new patient who says that she was told she has "a
genetic form of diabetes." The physician is not sure
which syndrome the patient may have, and decides to
go on the World Wide Web (WWW) to investigate
the known genetic syndromes associated with
diabetes. The physician could (today!) traverse the
WWW to gather information in the following
manner.

1. The physician might first go to the National
Center for Biotechnology Information (NCBI)
web pages.5 The NCBI maintains a number of
databases for biology and molecular medicine,
which are integrated within the Entrez server
(27).

2. The Online Mendelian Inheritance of Man
(OMIM) resource contains a compilation of
human genetic disorders, including automatic
links to references in the literature and to the
involved genes in the genetic databanks (28). A
search for the word "diabetes" reveals multiple
disorders, including "Diabetes Mellitus,
Autosomal Dominant, Type II." The OMIM
entry mentions that the primary defect is in the
control of a gene encoding the protein
glucokinase, and includes links to the database of
protein sequences encoding the glucokinase
gene.

3. A search for the term "glucokinase" in the
protein sequence database, as part of NCBI's
Entrez server yields a hit to the human
glucokinase gene, including different versions
that are created under different physiological
conditions. This gene is linked to its underlying
DNA sequence, protein sequence, as well as a set
of references in the literature.

4. The link to the MEDLINE literature database is
followed, in which the original article reporting
the association of diabetes with a modification in
this gene is provided.

5. The link to the protein sequence database is
followed, and the detailed sequence of amino
acids for this gene can be found. An algorithm
can be run using this sequence to find all related
sequences in the protein sequence databases,
SWISS-PROT and PIR (29, 30). In addition, a
library of motifs that have been associated with
various functions is used to search for the
occurrence of these motifs in glucokinase. It is

5 http://www.ncbi.nlm.nih.gov/
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found to bind the small molecules glucose and
ATP, among others.

6. The genetic databank, GENBANK, is then
accessed from the protein sequence to see the
detailed sequence of DNA bases that encode for
the gene. The GENBANK record mentions that
one region of the gene can have some inserted
DNA that alters regulation ofthe gene.

7. The protein sequence entry is also linked to an
entry in the Protein Data Bank, the database of
three-dimensional structure. This entry provides
the 3D coordinates of all the atoms in
glucokinase as determined by x-ray
crystallography, and provides a pictorial
summary of the key structural features of the
protein. By virtue of structural-similarity
metrics, the database also provides links to other
related protein structures from other organisms.
Algorithms are also available to annotate the key
functional sites within the protein, so that the
precise location of glucose binding can be
identified, as well as where the ATP molecule
binds, and other sites of interest on the molecule.

At this point, the physician has used a number of
databases to collect information about the disease,
and its associated molecular components. Not
routinely available today, however, are the obvious
next set of tools, to allow the physician to 1) confirm
the diagnosis by ordering genetic testing of the
patient to sequence the relevant pieces of DNA, 2)
select an appropriate treatment based on the
manifestations of the disease and the results of the
diagnostic genetic tests, 3) discuss with the patient
the prognosis of this disease, in terms of anticipated
course of untreated disease, of disease treated
appropriately, as well as possibly prenatal counseling
about the likelihood of transmission of this disease to
children. Finally, the physician might ask the
patient if she were interested in participating in a
clinical study of a set of new treatments for this
disease, which are based on an understanding of the
genetics.

Current Challenges to Bioinformatics

The discussion in the previous section shows that
there has developed a core set of "truths" in the field,
which focus effort and provide a set of paradigms
upon which individual investigators work. The
information about diabetes and the glucokinase gene
reveals at once the great array of tools and databases
that have become available, but also highlights
significant work that remains--in particular the
integration of bioinformatics tools with clinical

informatics tools concerned with the delivery of care.
Together, these two sources of information promise
to provide the information necessary for the
development and delivery of new therapies, targeted
to the particular genetic background of patients. The
linkage of clinical medical information to molecular
information represents one of the primary challenges
for bioinformatics in the next century. As the
genome sequencing projects mature and complete,
we will have the genetic DNA sequences of both
humans and a host of human pathogens, and
informatics tools will be necessary to deliver this
information in appropriate ways to medical decision
makers. The information will impact decisions
about diagnosis, prognosis, treatment and
epidemiology.

Genomic information is already playing a leading
role in the generation of new therapeutics for
medicine. The ability to associate particular genes
with particular organs, and the ability to associate
defects in these genes with disease now allows drug
targets to be identified primarily by computational
analysis. Instead of the old paradigm of expensive,
repetitive screening of candidate drug compounds
against targets of interest, we can now imagine a
scenario in which DNA sequence information is
selectively collected in a patient (or group of related
patients) to determine the set of proteins involved in a
pathological process. These proteins are analyzed
computationally to understand their functional
properties and to look for places where their function
can be augmented, diminished or modified
(depending on the nature of the disease process).
Other computational techniques are then used to
design small compounds that interact with these
proteins, based on principles of structural
interactions. Finally, the compounds are analyzed
and compared with known medications to assess
possibilities for drug-drug interactions and toxicities.
The small set of compounds that remain can finally
be synthesized and tested in animals. The entire drug
discovery process, under this (currently not possible)
scenario is done computationally up to the point
when the medication is actually synthesized and
tested in animals. The expensive, large scale "shot-
gun" screening of today is avoided, and can be
automated with computational technologies.

The promise of integrating molecular biological
information with the processes of delivering
improved patient care and accelerating the discovery
of useful new therapeutics requires significant
progress in a number of areas, and these constitute
the primary challenges to bioinformatics.
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Simulationsfrom Molecules to Populations

The first major challenge to bioinformatics is the
creation of detailed physiological models at a
molecular level. In order to understand disease
processes and how molecular components contribute
to them, it will be necessary to develop techniques
for simulating the physiology within a cell.
Currently, physiological modeling at the organ level
has only been linked successfully with molecular
simulations in a few areas. With the genome projects
complete, we will have a complete catalog of the
molecular players involved in physiology, and our
task will be to accurately model the interactions
between proteins, DNA, RNA, small molecules and
their physiological aqueous milieu. We will depend
upon both simulation from first principles of physics,
as well as upon reasoning by analogy to other
systems where the details have been worked out. The
ability to model single cells will then provide the
basic data necessary to perform simulations of entire
organs and organisms. In turn, these simulations may
provide parameter values necessary to simulate
populations. These population models will be critical
in understanding the spread of disease in a
population, as well as the spread of genetic traits, and
the spread of resistance to therapy.

The effective linking of biomedical data for
"clinical genomics"

The ability to organize and interlink data sources
from new biological and medical experiments will
require the creation of new paradigms for database
and knowledge base organization. The apparent
success of the "large science" approach embodied in
the genome sequencing projects has affected the way
many biologists conceive of their work. There are
more new technologies being developed for the large
scale collection of data. These massive efforts at
comprehensive data collection contrast to the
traditional approach in which individual
investigators work within a single, highly specialized
experimental system trying to elucidate principles
that apply more generally. At the same time, this
new biological data is offering new ways to stratify
patients in clinical trials, and pharmaceutical
companies have already created an infrastructure to
acquire high quality information about patients
during the course of a clinical trial. These two data
sources are extremely valuable independently, but
may contain valuable information when properly
combined. This becomes the challenge of what some
have termed "clinical genomics" or the marriage of
clinical investigation with genomic science. These
data sources must be organized and linked in a

manner that allows investigators to "mine" them for
new knowledge. Enough biological databases have
been designed that we are beginning to understand
how to effectively organize these resource. Standard
relational database technology is rarely the most
effective way to capture the information collected,
and new methods for organizing and distributing data
are required..

Improved support for biomedical investigation in a
data-intensive era.

Bioinformatics does not only study the flow of
information from genes to organisms and
populations, but also studies the ways in which
biomedical investigators use information in their
cycles of hypothesis generation and testing. The
same data about which we are so excited threatens to
confuse and frustrate investigators because of its
volume. It therefore becomes critical to develop
methods to assist investigators (both clinical and
basic science) in the robust analysis of data. These
methods include the development of useful
paradigms to support biomedical collaboration at a
distance. How should scientists interact with
resources that store data and computational methods
for manipulating this data? How should scientific
results be published, made available for others,
indexed and effectively communicated. For example,
the graphical display of biomedical information can
be used to summarize information effectively.
Certain domains of biology have developed standard
conventions for the display of data (31). Computer
technologies are required to capture these
conventions and use them for the automated creation
of graphics to display the contents of databases or the
results of new algorithms. Similarly, as the
developers of biocomputing tools make them
available to the scientific community, there is a
danger that tools will be misapplied and data
misinterpreted. There is therefore an urgent need for
tools to assist in the diagnosis of problems that arise
during data analysis and the creation of scientific
models. Since most data analyses require multi-step
processing (involving many algorithms with
associated parameters), it is important to have tools
that provide expert assistance in understanding
problems that arise while analyzing data.
Traditionally, small biological experimental systems
have been simple enough to allow individual
investigators to manually track the work of other
groups, in order to identify problems with their
underlying models and conflicts of the models with
the supporting data. The mass of biological data, and
the increasing specialization of investigators causes
two problems. First, it is impossible to look at
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complex computational models and identify their
flaws without automated assistance in the form of
systematic sensitivity analyses and expert systems for
diagnosing errors. Second, it is impossible to be
aware of all the possibly relevant work being done in
allied fields. Computational methods are required to
bring relevant information to the attention of
investigators, so that rapid progress can be made, and
redundant work can be minimized.

In addition to the incremental improvement of
existing algorithms and data repositories, the
development of simulation capabilities, the highly
linked storage of data, and the development of tools
to support the use of these capabilities represent the
three major areas into which most current
bioinformatics efforts can be classified.

Bioinformatics and clinical informatics

Why should clinical informatics investigators give
any consideration to bioinformatics? The emphasis
of clinical informatics on the delivery of health care
is quite different from the emphasis of bioinformatics
on support of basic biological research. There are
good reasons, however, why investigators from these
two "cousin" disciplines should follow progress in
the other discipline. First, molecular information is
rapidly impinging upon the traditional concerns of
clinical informatics. It is very likely, for example,
that sequence information will routinely be stored in
the medical record in the next five to ten years. The
lessons learned in the creation and maintenance of
the biological genetic databases will be useful to
those designing the electronic medical record of the
future. Similarly, the genetic background of patients
is likely to be a critical element of their past medical
history, and may effect the way patients are stratified
in clinical studies. Finally, the methods for tracking
infectious disease and for determining optimal
treatment are likely to be driven by considerations of
genetic and structural features of the pathogen, which
will directly use tools developed within the
bioinformatics community. Already, databases have
been created to track the HIV sequences of individual
patients, and followed as they are exposed to
different anti-viral drug regimens (26). As new
antibiotics are designed against highly resistant
bacteria, it is likely that the indications for their use
will be based on molecular sequence and structural
models.

The second reason that clinical informatics
investigators should track progress in bioinformatics

is that the two fields share very similar
methodologies of applied computer science,
including human-computer interactions, algorithms,
probabilistic reasoning, diagnosis, database
integration, knowledge representation, information
retrieval, analysis of three-dimensional structural
models, and studying the organization and structuring
of the scientific literature. For every area of clinical
informatics investigation, one can find an equivalent
area within bioinformatics. As might be expected,
however, the two fields have focused on these areas
with different priorities, and so we find that certain
areas of bioinformatics have matured more quickly
that corresponding areas within clinical informatics,
and vice-versa. In general, clinical informatics has
focused more on the task of expert reasoning in the
area of diagnosis and treatment. This is hardly
surprising, given the daily tasks of physicians.
Bioinformatics has only recently approached the task
of emulating the diagnostic reasoning skills of
experimental scientists as they design and debug
experimental protocols and scientific models. In
addition, clinical informatics has long recognized the
need for standardized terminologies for clear
communication (including, for example, SNOMED,
ICD-9, CPT and many other vocabularies developed
with particular medical activities in mind) (32-34),
whereas the terminology in most molecular biology
databases is quite nonstandard and idiosyncratic.
The importance of facile and fluid interfaces to
information resources is obvious in the setting of
time-pressured physicians who will only use systems
that fit into their daily routine, and has created a
strong impetus for studying the user-interface issues
associated with introducing technology into a work
environment. Molecular biologists have been more
patient with bioinformatics resources, and so the
pressure for matching the tool to the task has, until
recently, not been as strong within bioinformatics.
With the exponential increase in the availability of
biological data, however, there is more of a perceived
time pressure, and the lessons from clinical
informatics should be quite useful within
bioinformatics.

At the same time, bioinformatics has made progress
in other areas that have moved more slowly in
clinical informatics. The general availability of
biological data, and the culture of sharing data within
biology has lead to a variety of novel database
integration technologies which are difficult to
develop in clinical informatics because of the need to
respect patient privacy. There are several
technologies for integrating combinations of
relational, object oriented and flat-file databases that
are in routine use (35). Bioinformatics has also
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benefited from a closer relationship to the
contributing parent endeavors of biology and
computer science. For this reason, bioinformatics
seems to have established a better defined set of core
principles that form the basis for the discipline. It is
not hard to identify the core data representations and
algorithms that are critical for entering this field (as
outlined above), and this provides an anchor which
allows new investigators to position their work and
convey the "well known" problems they are
attacking, and what the previous measures of success
should be. The heterogeneous nature of clinical
informatics has rarely allowed a set of core principles
to be elucidated (the use of Bayes' Rule in diagnostic
reasoning may be one), and thus it is frustrating to
identify the "core principles" of the field. Finally,
validation of bioinformatics techniques is somewhat
easier than in clinical informatics, where the
interventions often involve patient care, where
control experiments may be difficult or impossible to
run. A bioinformatics-generated hypothesis can often
be tested in the laboratory of an interested
experimentalist, and the published data sets are large
enough to allow routine division into "training" and
"test" sets. The high stakes nature of clinical data
can often make such validation experiments difficult.
At the same time, there are many open areas within
bioinformatics and clinical informatics where success
in one domain is likely to carry directly over. In
particular, efforts to standardize the formats for data
exchange, and for declaring distributed computing
components are likely to be similar within the two
disciplines. The need for methods to analyze, store
and retrieve bitmapped images (radiographic studies,
electron micrographs, molecular structural
ensembles, experimental assays, cell fields,
karyotypes, etc...) are shared and could be combined.
Finally, the organization of the biomedical literature
is of great interest to both areas. The increased use
of structured documents for reporting biomedical
research is likely to create an infrastructure that will
permit the creation of more useful tools for assisting
in the cross-referencing of the biomedical literature
(36, 37).

At some universities bioinformatics and clinical
informatics students both train together. At Stanford,
students within the Medical Informatics Training
program can undertake dissertation projects in either
discipline. The Stanford program in informatics was
established primarily for clinical informatics in the
early 1980's. In the last 7 years, however, we have
increased our presence and focus on bioinformatics.
Students in medical informatics are required to take
basic courses in both clinical and bioinformatics,
including decision making, image analysis and

computational molecular biology. The rest of the
curriculum remains essentially the same for computer
science, probability, statistics, with a slight change in
emphasis from human physiology to molecular
biology in the "domain biology" course area.
Students complete the program eligible to work in
either clinical informatics or bioinformatics. Our
goal is to prepare them to lead the next generation of
medical information scientists who will be faced with
the new challenges of providing information support
within a clinical enterprise that has been
revolutionized by developments in molecular
biology.
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