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When interest in intelligent systems for clinical
medicine soared in the 1970s, workers in medical
informatics became particularly attracted to rule-based
systems. Although many successful rule-based
applications were constructed, development and
maintenance of large rule bases remained quite
problematic. In the 1980s, an entire industry dedicated
to the marketing of tools for creating rule-based
systems rose andfell, as workers in medical informatics
began to appreciate deeply why knowledge acquisition
and maintenance for such systems are difficult
problems. During this time period, investigators began
to explore alternative programming abstractions that
could be used to develop intelligent systems. The
notions of "generic tasks" and of reusable problem-
solving methods became extremely influential. By the
1990s, academic centers were experimenting with
architectures for intelligent systems based on two
classes of reusable components: (1) domain-
independent problem-solving methods-standard
algorithms for automating stereotypical tasks-and (2)
domain ontologies that captured the essential concepts
(and relationships among those concepts) in particular
application areas. This paper will highlight how
intelligent systems for diverse tasks can be efficiently
automated using these kinds of building blocks. The
creation of domain ontologies and problem-solving
methods is the fundamental end product of basic
research in medical informatics. Consequently, these
concepts need more attention by our scientific
community.

INTRODUCTION

Knowledge-based systems typically address reasoning
tasks that are highly dependent on large amounts of
domain information. The intelligent behavior of such
systems requires the processing of great numbers of
domain propositions organized into a knowledge base.
How best to design electronic knowledge bases and to
reason about them has been the subject of intense
investigation within the knowledge-based-systems
community for three decades. Workers have needed to
develop new ways of managing complexity and of

assuring maintainability over long system
lifecycles. The need for systems to store so many
domain facts and to reason about them to solve
intricate domain tasks has demanded major
advances in software engineering and software
architecture.

Many workers in medical informatics think of
knowledge-based systems in terms of the rule-
based approaches that were popularized during the
1970s. The widespread availability of generic
"shells" for constructing rule-based systems (such
as OPS5 and CLIPS) and the advent of standards
such as the Arden syntax' reinforces this notion.
Although the majority of knowledge-based systems
continue to be built using rule-based frameworks,
there are well-known limitations to the scalability
and maintainability of such systems. Simply put,
the construction of large software systems by
amassing unorganized collections of production
rules is a problematic enterprise. The purpose of
individual rules is often impossible to determine.
Potential interactions among rules are often
difficult to predict. Even the huge, commercial
rule-based systems such as XCON, which provided
some of the first convincing demonstrations of
knowledge-based technology, became
unmanageable without the imposition of
considerable additional structure on the rule base.2
Subsequent work to develop improved design
methodologies for knowledge-based systems has
emphasized techniques to manage complexity in
the knowledge base and to clarify the way in which
knowledge is used during problem solving.

GENERIC PROBLEM-SOLVING METHODS

By the middle of the 1980s, it was becoming
apparent to many that there were recurring
problem-solving strategies that were at the core of
many knowledge-based systems. Clancey3
proposed heuristic classification as a recurring
inference pattern that could be identified in
knowledge-based systems such as MYCIN and
PUFF.4 When performing heuristic classification,
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a problem solver took case data input into the system
(e.g., a patient's white blood cell count) and abstracted
those data into general descriptors (e.g., that the patient
was a "compromised host"). Heuristics would link
those abstractions to general candidate solutions (e.g.,
that bacteremia in compromised hosts often is caused
by Gram-negative organisms), and additional
knowledge would be used to refine general solutions
into specific classifications (e.g., the patient most likely
is infected with E. coli).

At around the same time, Chandrasekaran's group at
Ohio State University identified several recurring
problem-solving strategies in the medical knowledge-
based systems that they were building. Chandrasekaran
referred to these stereotypical problem-solving
behaviors as generic tasks. Meanwhile, John
McDermott's group at Carnegie-Mellon University was
noting a set of problem-solving methods that provided
the control structure for a number of other knowledge-
based systems built in non-medical areas.6 All these
investigators demonstrated that many intelligent
systems had highly regular mechanisms for sequencing
certain classes of inferences. These domain-
independent problem-solving strategies provided
standard ways of addressing certain kinds of application
tasks. Even though the original developers of these
knowledge-based systems might never have thought
about these regularities explicitly, there were
nevertheless a number of well-defined, generic
strategies that were emerging from analysis of how
diverse automated problem solvers addressed their
associated application tasks. These generic strategies
are now referred to as problem-solving methods by
nearly all workers in the knowledge-based-systems
community.

Problem-solving methods can provide a structure for
building intelligent systems. When a designer can
come to understand the domain knowledge needed to
solve an application task in terms of a predefined
problem-solving method, it becomes clear how each
element of the domain knowledge might ultimately
contribute to the problem-solving behavior of the
system. When designing a heuristic classifier,3 for
example, the developer can identify readily whether a
primitive inference is used to perform abstraction of
case data into general features, heuristic matching of
case descriptions to a possible solution, or refinement
of a general solution into a more specific classification.
The heuristic-classification model thus becomes a
unifying framework by which to relate all the elements
of domain knowledge that the developer might acquire.
Using the problem-solving method as the basis for
conceptual modeling limits the roles that domain
knowledge can play in problem solving to those
particular knowledge roles (e.g., feature abstraction,

heuristic match) that are defined by the method.
The role-limiting nature of problem-solving
methods makes it clear what domain knowledge is
needed to solve a task that can be automated with a
given method (all the method's roles need to be
filled for the method to work), and thus clarifies
the purpose of each piece of elicited knowledge.7

When associated with a piece of program code that
implements it, the problem-solving method
becomes much more than an abstraction useful for
conceptual modeling; the method becomes a
building block in the design model that a
programmer can use to implement a working
system.8 System builders can use the method
conceptually to help them to model the domain
knowledge that they need to acquire to build the
decision-support system, and then can use the
operational form of the problem-solving method to
implement the decision aid. In this manner, the
problem-solving method functions like an element
from a mathematical subroutine library: It pro-
vides a reusable piece of software that facilitates
implementation of the required computer program.

REUSABLE ONTOLOGIES

Chandrasekaran and his group made the claim that
problem-solving methods (i.e., "generic tasks") im-
posed such strong assumptions about domain
knowledge that is was impossible to think about
domain knowledge independent from some
problem-solving method9. They suggested that,
because the number of distinctions that a modeler
can make about the world is essentially infinite,
one cannot begin to identify domain concepts
relevant to a task until some problem-solving
method has been selected. More importantly,
because he believed that the meaning of the
domain knowledge could become apparent only
when that knowledge is applied to solve problems,
Chandrasekaran argued that it was useless to begin
to model application areas unless there was a
commitment to a problem-solving paradigm up
front.

Despite such concerns, workers in the 1980s came
to accept that very general concepts about the
application domain could be captured independ-
ently from the problem solver that ultimately might
automate some task. More importantly, if the basic
concepts in the application area could be
represented within a separate, editable data
structure, then the corresponding enumeration of
basic application-area concepts might be reused to
automate additional tasks. This point of view was
fundamental to the highly influential KADS model
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of knowledge engineering,'0 which encouraged
developers to build models that made a clear distinction
between basic domain concepts and the inferences and
task-related procedures that might be applied to those
concepts. In current parlance, these enumerations of
domain concepts-and of relationships among the
concepts-are referred to as domain ontologies." An
ontology provides a domain of discourse that is
understandable by both developers and computers, and
that can be used to build knowledge bases containing
detailed descriptions of particular application areas.

A good example of a well-understood ontology is the
categorization that Yahoo! provides users for searching
the Internet. The Yahoo! ontology defines broad
categories of entries on the World Wide Web. Users
understand the ontology, and use it to locate the
concepts that define their interests; the Yahoo! search
engine also can process the ontology, and uses it to
locate corresponding Web pages. The only relation-
ships among the concepts in the Yahoo! ontology are
taxonomic; there is no attempt to describe concepts in
the ontology in terms of other relationships or
attributes. Nevertheless, it is clear that the engineering
of machine-processable ontologies has become a major
business for companies promoting access to complex
information sources. (The UMLS semantic network'2
provides a more modest example of how an ontology
can assist information retrieval in clinical domains.)

The notion of reusable ontologies has become
increasingly important to developers of intelligent
systems. Just as modern database systems are driven by
conceptual schemas that define the classes of entities
about which the database stores specific data, modem
knowledge-based systems incorporate as a central
component of their knowledge bases a model of the
classes of entities about which problem solving takes
place. This ontology defines the relevant concepts and
the attributes that concepts may have, but generally is
silent regarding the specific values of the attributes that
are assumed by particular instances of the concepts.
For example, an ontology may indicate that there is a
concept called disease, which has an attribute called
common name; we would not expect the ontology to
indicate that there is an instance of a disease called
"'streptococcal pharyngitis" when this disease has the
common name of "strep throat." Of course, an ontology
is not constructed without considerable forethought
regarding what instances ultimately will need to be
represented. Consideration of potential instances
informs the developer's conceptualization of the classes
that need to be included in an ontology; once the
ontology has been defined, the instances are then
represented in terms of the applicable classes and
relationships.

Because ontologies are models, there is not a single
correct way to define ontologies. There are many
different perspectives that a modeler can take on a
domain, and sometimes alternative perspectives
may need to be captured simultaneously. An
ontology represents a convenient way of
characterizing a set of concepts and relationships in
an application area. The merits of a particular
ontology can be measured only in terms of how
well that ontology supports development of the
application programs for which it was designed,
and of how easy it is for developers to reuse that
ontology to build new applications.

Within the knowledge-based-systems community,
there has been explosive interest in reusable
ontologies in recent years. Developers are
interested in the creation of libraries of ontologies
that can capture the set of "core" concepts needed
to model an application area, thus paving the way
for reuse of previously developed ontologies within
new systems.'3"4 Developers also see reference
ontologies as a means for providing a canonical
description of concepts that can allow integration
of multiple information sources, particularly when
individual information sources adopt idiosyncratic
ways of referring to the same concept'. Within
medical informatics, there is close association
between the problems of creating controlled
terminologies and those of building reference
ontologies. Research projects such as GALEN'6,
for example, are exploring how an ontology of
clinical concepts can be used for a variety of
purposes, including automated translation among
vocabularies, structured data entry, and decision
support.

KNOWLEDGE BASES

Because an ontology typically does not contain
instances of concepts, we can view a knowledge
base as an instantiation (or an extension) of an
ontology. Thus, a knowledge base comprises
"filled in" concept descriptions, enumerating the
details of the particular application being built. In
the EON system for protocol-based medical care,17
for example, a general ontology defines the general
structure of clinical protocols (the notions of drug
therapy, laboratory tests, etc.); the particular
knowledge bases on which EON operates,
however, define specifications for particular
protocols (i.e., individual protocols for AIDS,
breast cancer, and so on).

Given a domain ontology, knowledge-acquisition
systems such as Prot6g6l8 allow straightforward
entry of the corresponding knowledge base. The
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Proteg6 system permits developers to create a domain
ontology using a simple editing system. Proteg6 then
uses the domain ontology to create programmatically a
user interface through which subject-matter experts can
enter the detailed content knowledge required to
populate a knowledge base. The tools generated by
Prot6ge also can be used to browse and to update the
knowledge base as necessary-provided that the
overarching domain ontology remains constant. If the
ontology should change, then it may be necessary to
generate new knowledge-entry tools that capture the
corresponding changes to the concepts and relationships
in the ontology. (Of course, generating such tools
automatically using Prot6g6 is considerably more
convenient than having to reprogram such tools by
hand.)

PUTTING THE PIECES TOGETHER

In modern approaches, the building of intelligent
systems is not to be construed as the encoding of
production rules or the creation of specific knowledge
representations. Rather, the process is viewed as the
assembly of domain ontologies and (domain-
independent) problem-solving methods. Given a task to
automate, the challenge is to identify-or to con-
struct-an appropriate problem-solving method, and to
link that problem solver to an ontology that defines the
relevant concepts in the application area. Thus, in our
own laboratory, we have taken a general-purpose
constraint-satisfaction problem-solving method known
as propose-and-revise19 and associated that method with
a number of different ontologies to build a variety of
systems. When the propose-and-revise method
operates on an ontology of elevator parts, building
codes, and engineering constraints, it automates the task
of designing elevators for new buildings.20 When
propose-and-revise operates on an ontology that
describes the molecular components of the E. coli
ribosome and the kinds of constraints that experimental
data place on the location of those molecular
components in three-space, it automates the task of
determining plausible conformations for the ribosome.2
Similarly, we have developed appropriate ontologies to
use propose-and-revise to address the tasks of ventilator
management22 and the planning~ofantiretroviral therap
for patients who have AIDS. In building all thete
application programs, the propose-and-revise problem-
solving method was completely reusable. The
challenge in each case was in identifying how the
generic data on which the propose-and-revise method
operates can be related to the specific concepts in each
domain ontology.

In general, as the knowledge-based-systems com-
munity has turned to building systems from reusable
problem-solving methods and domain ontologies, the

principal challenge has been to define the best way
to glue the pieces together. In the approach that we
have taken in the Prot6ge project24, we have
defined different types of mappings that provide
the necessary relations. Thus, in systems built
using Protege, we create explicit objects that link
particular data elements on which the problem-
solving method operates to particular concepts in
the domain ontology. Current work concentrates
on refining an ontology of these kinds of mappings.
This mappings ontology provides a structure for
linking domain ontologies and problem-solving
methods, guiding the process by which the two
principal components are brought together within
the same software system.

Workers on the Proteg6 project believe that
maximal flexibility can be achieved by using
declarative mappings to relate problem-solving
methods to domain ontologies. The developers of
the KADS methodology,3 however, make no
commitment to the manner in which ontologies and
problem-solving methods should be brought
together in an actual implementation. Other re-
searchers, such as Fensel,25 suggest that it may be
more efficient to modify the problem-solving
method directly by means of an adapter that can
facilitate its interoperation with a domain ontology.
Although there is considerable unanimity that
domain ontologies and generic problem-solving
methods provide the right kinds of abstractions for
building intelligent component-based systems,
there is less agreement on the optimal way for
these individual components to communicate with
one another. Unfortunately, in many knowledge-
based systems that are constructed using discrete
domain ontologies and problem-solving methods,
the individual components are brought together in
ad hoc ways that are dependent on the particular
implementation environment.

DISCUSSION

For many years, workers in the field of
conventional software engineering have anticipated
a time when complex systems could be built
rapidly by bringing together reusable software
components. Although the general goals of
software reuse have remained elusive,26 the
knowledge-based-systems community has
achieved increasing success in reusing domain
ontologies and problem-solving methods to craft
new applications. The reuse of the propose-and-
revise method to construct four different end-user
systems provides an clear demonstration of how
software components can be reapplied to construct
programs for a variety of applications.27
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Although the actual reuse of program code remains a
difficult problem in conventional software engineering,
there has been considerable interest recently in the
reuse of design patterns that can help developers to
structure their software solutions28. Design patterns in
object-oriented programming provide exemplars to
facilitate the conceptual modeling and implementation
of software systems. The reusable domain ontologies
and problem-solving methods being investigated by the
knowledge-based systems community, however, allow
much more direct reuse of previously tested solutions in
the construction of new software. Domain ontologies
and problem-solving methods provide not only a
framework for conceptual analysis and design, but also
actual program code that can be incorporated wholesale
into evolving applications.

The use of distinct domain ontologies and problem-
solving methods contrasts sharply with traditional
object-oriented architectures, in which program code
(in the form of "methods") is interleaved with the
representation of the domain model (in the form of
class and instance objects). Standard object systems
facilitate specialization of program code on the basis of
distinctions in the domain model (i.e., method
polymorphism), and can clearly identify the data
structures that are most closely related to the control
structures that operate on those data. Such properties
make traditional object-oriented systems rather
malleable whenever programmers must adapt their
software to evolving requirements. Object-oriented
languages also make it relatively straightforward for
developers to graft new functionality onto existing
program code. At the same time, the tight linkage
between the class hierarchies that constitute the domain
model and the program code embodied in the objects'
methods makes it difficult for an analyst to view either
element independently. Thus, in a traditional C++
program, it is impossible to consider control-flow
relationships separately from the data structures that
comprise the object hierarchy. It also is impossible to
view the data model without being distracted by
associated program code.

The development of intelligent systems using separate
domain ontologies and reusable problem-solving
methods is particularly justified when the ontologies or
the methods are likely to be reused to build new or
derivative applications. The additional up-front
engineering costs required to design the components for
reuse then can be amortized over subsequent
development efforts. This approach also is particularly
attractive when developers can anticipate unusual
requirements for software maintenance. The need for
significant program revisions may result from domain
models or domain-specific facts that are likely to evolve
over time. In this situation, the incorporation of

declarative domain ontologies can make domain-
dependent information explicit, accessible, and
easily editable, thus minimizing the difficulty of
updating the system. A high degree of software
maintenance may also be necessary when
developers design new algorithms to achieve better
performance; encapsulating an algorithm as a
problem-solving method allows systems engineers
to "plug in" new control strategies without having
to alter either the domain ontology or the
knowledge base.29 (Of course, the mappings
between to domain ontology and the new problem-
solving method will need to be changed.)

At face value, the use of components such as
ontologies and reusable problem-solving methods
can make our software artifacts easier to build,
easier to understand, and easier to maintain over
time. These advantages occur because domain
ontologies and problem-solving methods provide a
means to view an intelligent system at a high level
of abstraction-one that separates out the
enumeration of domain concepts from the way in
which those concepts might be used during
problem-solving. Of course, the developers of
rule-based systems in the 1970s contended that
they had separated out "declarative knowledge" (in
the form of rules) from "procedural knowledge" (in
the form of inference engines that process those
rules). Unfortunately, the inference engines of
rule-based systems are special-purpose programs
that operate on specific data structures (i.e.,
production rules). The rules, on the other hand,
implicitly may encode considerable control-flow
information.30 In modem architectures, problem-
solving methods are not procedures that operate on
predefined data structures, but rather procedures
that operate on ontologies.

This paper has emphasized the utility of domain
ontologies and reusable problem solvers from a
systems engineering perspective. We also must
recognize, however, that these software
components reflect conceptually the results of
basic research in medical informatics. Our
community continues to undergo considerable
introspection regarding what the scientific
contributions of medical informatics might be.3'
Development of information technology for
clinical applications does not, at the surface, seem
to involve the testing of hypotheses or the
discovery of new theories. A unifying observation,
however, is that research to understand the
structure of medical knowledge ultimately requires
the conceptual modeling of domain ontologies and
the identification or invention of appropriate
problem-solving methods. To build clinical in-
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formation systems requires that we develop theories of
how medical knowledge may be organized and
processed. Such work requires that developers-either
explicitly or implicitly-construct ontologies that
reflect the way in which they construe medical
knowledge. It also requires that the developers
recognize problem-solving procedures that process the
ontological knowledge in appropriate ways. Even if
our domain ontologies and generic problem-solving
methods could not be translated into useful and reusable
software components, the elucidation of those
ontologies and methods is an important scientific
contribution. At the same time, because we can use
such ontologies and methods as basic building blocks
for constructing intelligent systems, there is now a
direct mechanism to translate the conceptual results of
our work into software artifacts that may have
considerable clinical utility.
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