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ABSTRACT The traditional crystallographic symmetry
elements of screw axes and glide planes are subdivided into
those that are removable and those that are essential. A simple
real-space criterion, depending only on Bravais class, deter-
mines which types can be present in any space group. This
terminological refinement is useful in expressing the comple-
mentary relation between the real-space and Fourier-space
formulations of crystal symmetry, particularly in the case of
the two nonsymmorphic space groups that have no systematic
extinctions (I212121 and I213). A simple analysis in Fourier
space demonstrates the nonsymmorphicity of these two space
groups, which finds its physical expression not in a charac-
teristic absence of Bragg peaks, but in a characteristic pres-
ence of electronic level degeneracies.

This paper serves two related purposes. (i) We show how the
geometric language of conventional crystallography can ben-
efit from a subdivision of screw axes and glide planes into two
varieties, which we call essential and removable, and we note the
elementary geometric criterion that determines which varieties
can be found in a given crystal structure. (ii) We discuss, in the
comparatively new framework of Fourier space crystallogra-
phy, the peculiar space group I212121 (no. 24) and its cubic
counterpart, I213 (no. 199). Alone among all the 157 nonsym-
morphic three-dimensional space groups, these two have no
systematic extinctions in their diffraction patterns: every wave
vector in the face centered reciprocal lattice is associated with
a Bragg peak of nonzero intensity.

The relation between these matters is this: while crystals
characterized by space-groups I212121 and I213 contain 2-fold
screw axes (21 axes), those 2-fold rotations fail to satisfy the
Fourier-space criterion for a screw. This clash of Fourier-space
and conventional nomenclature occurs for none of the other
space groups with nj in their International space-group sym-
bols. The reason is that the nj axes appearing in all space-group
symbols, with the sole exceptions of these two, are essential
screw axes. The space groups I212121 and I213 are unique
among these nonsymmorphic space groups in having only
removable screw axes, a feature the International nomencla-
ture obscures. In the Fourier-space scheme, rotations with
removable screw axes never are regarded as screws. Nomen-
clatural confusion can be avoided by using the terms screw
rotation and glide mirror to characterize rotations with essen-
tial screw axes and mirrors with essential glide planes.

Below we define essential and removable screw axes and
glide planes and give the simple connection between the
Bravais class of a crystal and whether or not it can have them.
We show how these elementary geometric criteria for the
removability of screw axes and glide planes lead directly in
Fourier space to the absence of the corresponding screw
rotations and glide mirrors. We construct the space groups
I212121 and I213 directly in Fourier space, identifying the

Fourier-space structure that makes them nonsymmorphic in
spite of the absence of screw rotations.

Screws and Glides in Three-Dimensional Real Space

The traditional description of crystal symmetry as summarized
in the International Tables of Crystallography (1) specifies two
kinds of rotation axes and mirror planes. (a) Axes or planes for
which the rotation or mirror is a symmetry of the crystal
without an accompanying translation. We shall call such
rotation axes or mirror planes simple. (b) Axes or planes for
which the rotation or mirror is only a symmetry of the crystal
when accompanied by a translation parallel to the axis or
plane.a Such rotation axes or mirror planes are called screw
axes or glide planes.

The space group of a crystal is said to be symmorphic if there
is a single point through which the axis of every rotation and
the plane of every mirror is simple; if there is no such point the
space group is nonsymmorphic.

In terms of these two kinds of axes or planes, a given rotation
(specified by the angle and direction, but not the location of its
axis) or a given mirror (specified by the orientation but not the
location of its plane) can come in three varieties: (i) a given
rotation (mirror) has only simple axes (simple planes); (ii) a
given rotation (mirror) has both simple and screw axes (simple
and glide planes); and (iii) a given rotation [mirror] has only
screw axes (glide planes).

Cases ii and iii provide grounds for an elementary but
nontraditional distinction between two kinds of screw axes or
mirror planes. We shall call the screw axes or mirror planes
occurring in case ii removable because their rotations or
mirrors can be made simple by a mere translation of the axis
or plane. We call the screw axes and mirror planes occurring
in case iii essential because there is no parallel axis or plane
about which the rotation or mirror is simple.

In terms of this distinction, there are evidently two different
ways in which the space group of a crystal can be nonsym-
morphic: (i) the crystal has at least one essential screw axis or
at least one essential glide plane and (ii) all screw axes and
glide planes are removable, but there is no single origin about
which all rotations and mirrors have simple axes and planes.

Somewhat surprisingly, among all the 230 space groups in
three dimensions, there are only two instances of nonsymmor-
phic space groups of type ii: the nonsymmorphic space groups
I212121 (no. 24) and I213 (no. 199) have only removable screw
axes, but there is no single origin through which every axis is
simple. Every one of the remaining 155 nonsymmorphic space
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aTranslations parallel to the rotation axis or mirror plane are special
because such translations are restricted to a small number of discrete
values. In contrast, given an axis A for a rotation r and any translation
d perpendicular to that axis, there is another axis A9 parallel to A such
that application of r about A9 is the same as application of r about A
followed by translation through d; and given a mirror plane P and any
translation d perpendicular to that plane, there is another mirror
plane P9 parallel to P such that mirroring in P9 is the same as mirroring
in P followed by a translation through d.
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groups has at least one essential screw axis or essential glide
plane.

The 21 occurring in the space-group symbols I213 and
I212121 are unique among all such subscripted rotation axes in
being associated with removable 2-fold screw axes. This devi-
ant notationb is needed to distinguish I213 and I212121 from the
corresponding symmorphic space groups I23 and I222. The
notation is potentially misleading, because every screw axis in
the nonsymmorphic cases is removable, and the symmorphic
cases also contain (removable) 2-fold screw axes.

There are elementary geometric criteria that determine
when a simple rotation axis or simple mirror plane can or
cannot be accompanied by parallel screw axes or glide planes,
and when a screw axis or glide plane is removable. The criteria
depend only on the Bravais lattice of translations that leave the
crystal invariantc: (a) a simple rotation axis (simple mirror
plane) has screw axes (glide planes) parallel to it if and only if
there are vectors in the lattice of translations whose compo-
nents parallel to the axis (plane) are not in the lattice; and (b)
a screw axis (glide plane) is essential if and only if its associated
nonlattice translation is not the component of a lattice vector
parallel to the axis (plane). These criteria follow straightfor-
wardly from two facts: (i) the nonlattice translation associated
with a screw axis or glide plane is only specified to within an
additive vector from the lattice of translations; and (ii) a
change of origin can shift that nonlattice translation by an
arbitrary translation perpendicular to the rotation axis or
mirror plane.

Several elementary geometric facts about screw axes and
glide planes follow directly from these criteria.

The simplest consequences are for 2- or 3-fold rotations. The
only possible nonlattice translations (modulo the sublattice
along the axis) for a 2- or 3-fold screw axis is a half or a third
of a lattice vector that primitively generates that sublattice. But
nonlattice projections of lattice vectors on the axis also must
differ from a lattice vector on the axis by a half or a third of
a primitive generating vector for the sublattice on the axis.
Therefore, if there are any lattice vectors with nonlattice
projections onto a 2- or 3-fold screw axis, then that screw axis
is removable. Thus, for example, because all rhombohedral
and cubic Bravais classes have lattice vectors whose projections
on the 3-fold axes are not lattice vectors, no space groups in
these Bravais classes can have essential 3-fold screw axes, but
all have removable 3-fold screw axes. And because the body-
centered orthorhombic lattice has nonlattice projections on its
2-fold axes, both of its space groups have removable 2-fold
screw axes.

Because a 6-fold axis (present only in the hexagonal system)
is also an axis of both 2- and 3-fold symmetry, all lattice vectors
must project to lattice vectors on the axis.d Therefore 6-fold
screw axes are always essential.

Because 4-fold axes are also axes of 2-fold symmetry, twice
the projection of any lattice vector onto the axis is a lattice

vector. As a result, if there are nonlattice projections onto a
4-fold axis (which happens in the centered cubic and tetragonal
Bravais classes) these prohibit essential 42 axes and produce
removable 42 axes. They are compatible with the existence of
essential 4-fold screw axes, but these must always occur as
coexisting parallel 41 and 43 axes.

In the case of a mirror, all nonlattice projections of lattice
translations into the plane of the mirror are the same, modulo
the sublattice of translations in the plane of the mirror.e Simple
mirrors must coexist with removable glide planes having such
special nonlattice translations. Essential glide planes are those
with nonlattice translations that are not of this special kind.

The View from Fourier Space

Fourier-space crystallographyf starts with a point group whose
operations act on the reciprocal lattice L of wave vectors. All
point group operations act about the same origin, k 5 0. Under
point group operations, density Fourier coefficients acquire a
phase:

r~gk! 5 e2piFg~k!r~k!. [1]

The phase functions Fg are linearg on L and satisfy, as a direct
consequence of 1, the group compatibility condition

Fgh~k! ; Fg~hk! 1 Fh~k!. [2]

Two sets of phase functions related by

F9g~k! ; Fg~k! 1 x~gk 2 k!, [3]

where x is linear on L, are said to be gauge equivalent. The
function x is called a gauge function and F9 is said to differ
from F by a gauge transformation. Such gauge equivalent phase
functions can characterize densities that differ only by

r9~k! 5 e2pix~k!r~k!. [4]

The significance of 4 with x linear on L is that r9 and r have
identical positionally averaged real space autocorrelation func-
tions. Symmetry types of densities therefore are characterized
not by individual phase functions, but by gauge equivalence
classes of phase functions. Note that it follows from 3 that the
value of a phase function Fg at wave vectors k in the invariant
subspace of the point group operation g (i.e., with gk 5 k) is
the same throughout the entire gauge equivalence class. These
gauge invariant values of phase functions play a central role in
Fourier-space crystallography. Importantly, it follows from 1
that if Fg(k) is not zero (modulo 1) at a vector in the invariant
subspace of g, then r(k) must vanish—i.e., the Bragg peak
associated with the reciprocal lattice vector k is extinguished.h

The above paragraph may be viewed as just a re-expression
of well-known elementary facts about the symmetries of the
real space density r(r) in Fourier-space language. Thus for a
point group operation g acting on a crystal in real space to
leave the crystal invariant it must in general be accompanied
by a translation a that depends on the origin about which g acts.

bIt is cited in section 4.1 of volume A of the International Tables of
Crystallography (1) as a violation of the ‘‘priority rule,’’ which decrees
that when a rotation has parallel 2 (simple) and 21 (screw) axes (i.e.,
when a screw axis is removable) it should be identified in the
space-group symbol by a 2 without a subscript. The two space groups
also are cited in section 3.5 of the International Tables as a second very
special instance (the many examples of the first being provided by
Friedel’s law) of when a space group cannot be determined from the
diffraction diagram. This feature of I212121 and I213 seems first to
have been noted independently by M. J. Buerger (2) and G. Zhdanov
and V. Popelov (3).

cWe know of no explicit statement of these simple rules in the
crystallographic literature, perhaps because the distinction between
essential and removable screw axes or glide planes has received so
little attention.

dFor a lattice vector that projected to a nonlattice vector on the axis
would have to be both a third and a half of a primitive sublattice
vector, modulo the sublattice on the axis, which is impossible.

eView the lattice as a family of lattice planes parallel to the mirror
plane. The special translation is (any) one taking neighboring planes
into one another.

fFormulated by Bienenstock and Ewald (4), refined and extended by
Rokhsar, Wright, and Mermin (5), expounded in some detail by
Rabson, Mermin, Rokhsar, and Wright (6) and Mermin (7), and given
a rigorous and concise formulation by Dräger and Mermin (8). This
paragraph states those definitions of Fourier-space crystallography
that are essential for what follows.

gAs a consequence of the requirement that point group operations
preserve all positionally averaged real space density autocorrelation
functions of all orders.

hMermin (9) gives a concise discussion of how Fourier-space crystal-
lography treats extinctions.
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The phase function Fg(k) is nothing more than azky2p. The
different phase functions in a gauge equivalence class simply
correspond to the different values of a associated with differ-
ent choices of real space origin. The power of the Fourier-
space formulation is that nothing changes when the lattice of
wave vectors is generalized from a three-dimensional recipro-
cal lattice to a rank-D Z-module of wave vectors consisting of
the integral linear combinations of D three-dimensional wave-
vectors that are linearly independent over the integers.i This
more general case applies to an enormous variety of aperiodic
crystals whose densities have neither translational nor rota-
tional symmetry in real space, but whose density autocorre-
lation functions continue to possess rotational symmetries.
The Fourier-space language is essential if one wishes to
explore in a three-dimensional space the three-dimensional
symmetries of aperiodic crystals. It also can be a useful and
powerful tool for characterizing the more familiar symmetries
of ordinary periodic crystals, as we illustrate below.

Because all point group operations act through the origin of
Fourier space, the terms screw and glide cannot apply to a
point group operation in combination with a real-space origin
through which it acts; the terms give global characterizations
of the point group operation itself. Whether a point group
operation g is a screw or glide depends on the associated phase
function Fg. A point group operation g is a screw rotation or a
glide mirror if and only if the associated phase function Fg has
a nonzero (modulo unity) value for some reciprocal lattice
vector k in the invariant subspace of g. As noted above, such
values are invariant under gauge transformations (3).

It is a basic theorem of Fourier-space crystallography that a
phase function Fg can vanish on the invariant subspace of g, if
and only if there is a gauge in which it vanishes everywhere.j
In such a gauge 1 reduces to

r~gk! 5 r~k!, [5]

and g is a simple rotation or simple mirror about the point r 5
0. Thus a Fourier-space screw rotation or glide mirror is one
that in real space has only essential screw axes or essential glide
planes. Removable real-space screw axes or glide planes are
not associated with Fourier-space screw rotations or glide
mirrors.

We noted above that essential 2- and 3-fold screw axes are
incompatible with the existence of vectors in the real-space
lattice of translations with nonlattice projections on the axis.
It is instructive to examine how the existence of such vectors
leads directly in Fourier space to the vanishing of the associ-
ated phase function on the axis. Note first that such vectors
exist in the real-space lattice of translations if and only if they
exist in the reciprocal lattice of wave vectors.k For let P project
into the invariant subspace, and let a be a direct lattice vector
with Pa not in the direct lattice. Because Pa is not a direct
lattice vector there must be some vector of the reciprocal
lattice k for which (Pa, k) is not an integral multiplel of 2p. But
because (Pa, k) 5 (a, Pk) it follows that (a, Pk) is not an
integral multiple of 2p, which means that Pk is not in the
reciprocal lattice.

So it is enough to understand why the existence of a
reciprocal lattice vector whose projection on a 2- or 3-fold axis
is not in the reciprocal lattice, should guarantee the vanishing
of the phase function associated with that 2- or 3-fold rotation
at wave vectors on the axis. This follows from the group

compatibility condition (2), which, applied repeatedly to the
identity gn 5 e requires for arbitrary k that

0 ; Fe~k! ; Fgn~k! ; Fg~k 1 gk 1 · · · 1 gn21k! 5 Fg~nPk!,

[6]

where P projects into the invariant subspace of g. Necessarily,
nPk is a reciprocal lattice vector. Therefore when n is 2 or 3,
if Pk is not a reciprocal lattice vector, then Pk must differ from
an integral multiple of b by 6byn, where b is a primitive vector
for the (one-dimensional) reciprocal sublattice along the axis.
Consequently nPk differs from an integral multiple of nb by
6b. But because Fg(nb) [ 0 as a special case of 6, it follows
from 6 and the linearity of Fg that 0 [ Fg(nPk) [ 6Fg(b).

Fourier-Space Treatment of Space Groups Nos. 24 and 199

In conventional crystallographic language a space group is
symmorphic if there is a single origin about which every point
group operation is a symmetry of the crystal without an
accompanying translation. In Fourier-space language this
translates into the requirement that there should be a gauge in
which every phase function vanishes (modulo unity). A nec-
essary condition for a space group to be symmorphic is thus
that the phase function for each point group operation van-
ishes on the invariant subspace of that operation. Is this also
sufficient?

We show in the Appendix that if a phase function vanishes
on its invariant subspace then there is a gauge in which it
vanishes everywhere. But for a space group to be symmorphic,
there must be at least one gauge in which every phase function
vanishes everywhere. Space groups nos. 24 and 199 are the
unique examples of space groups in which all phase functions
vanish on their invariant subspaces but there is no gauge in
which they all vanish everywhere. Nevertheless, their nonsym-
morphicity is established by the existence of certain gauge
invariant, nonvanishing linear combinations of phase func-
tions.

We show below how this follows directly from the rules of
Fourier space crystallography summarized above, but first we
note that it is a result of general interest, rather than a mere
isolated curiosity. Within any given arithmetic crystal class, the
absence of a nonsymmorphic space group without extinctions
is the necessary and sufficient condition for the space-group
types of that class to be entirely determined by the values of
their phase functions on the invariant subspaces of their
associated point group elements. Clearly the condition is
necessary: if an arithmetic crystal class contains a nonsym-
morphic space group without extinctions then there are two
space groups within that class (the second being the symmor-
phic one) whose phase functions vanish (and therefore agree)
on the invariant subspaces of their point group operations. The
space-group type in such an arithmetic crystal class is thus not
determined by the phase functions on the invariant subspaces.

But the condition is also sufficient, for if Fg
(1) and Fg

(2) are
two sets of phase functions associated with two different
space-group types, then the differences Fg

(1) 2 Fg
(2) also will

satisfy the group compatibility condition (2), and are therefore
themselves a set of phase functions for some space-group type.
But if Fg

(1) and Fg
(2) agree on the invariant subspaces of their

point-group operations, then their differences will vanish on
all those invariant subspaces. Because Fg

(1) and Fg
(2) describe

distinct space-group types they cannot be gauge equivalent,
and therefore their differences cannot be gauge equivalent to
a set of phase functions that are zero everywhere. Their
differences are thus a set of phase functions describing a
nonsymmorphic space group, in the same arithmetic crystal
class, without extinctions.

iNow, however, functions linear on L can no longer be extended to
functions linear on all of three-dimensional wave-vector space.

jThe ‘‘if’’ part is obvious; the ‘‘only if’’ part has not been explicitly
stated in the literature; we give a proof (valid for periodic or aperiodic
crystals) in the Appendix.

kThis fact also holds for 4- and 6-fold rotations and for mirrors.
lBecause otherwise Pa would be in the reciprocal of the reciprocal
lattice, which is the direct lattice.
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We now show that the phase functions for space groups nos.
24 and 199 have this peculiar property:

(a) I212121 (No. 24). The basis of the face-centered orthor-
hombic reciprocal lattice consists of the three vectors b1, b2, b3
that can be expressed in terms of three mutually orthogonal
vectors a, b, c of different lengths as:

b1 5 b 1 c, b2 5 c 1 a, b3 5 a 1 b. [7]

The possible phase functions are determined by requiring
the group compatibility condition (2) to hold throughout the
point group. To ensure this it suffices to impose 2 on the point
group generating relations. The generators of G 5 222 can be
taken to be the two 2-fold rotations ra and rb about the axes a
and b, with generating relations:

ra
2 5 e, rb

2 5 e, ~rarb!
2 5 e. [8]

Because Fe(k) [ 0, application of the group compatibility
condition (2) to each of 8 gives

Fra
~rak 1 k! ; 0, Frb

~rbk 1 k! ; 0, Frc
~rck 1 k! ; 0, [9]

where we have used rc 5 rarb to write 9 in a symmetric form.
Because phase functions are linear on the reciprocal lattice,

for the conditions (9) to hold for all k it suffices for them to
hold for each of the reciprocal lattice primitive vector bi given
in 7. Because rk 1 k gives twice the projection of k onto the
axis of a 2-fold rotation r, each of the three relations (9) gives
just a single condition, when applied to each of the three
primitive vectors in 7.

Fra
~2a! ; 0, Frb

~2b! ; 0, Frc
~2c! ; 0. [10]

Because 2a, 2b, and 2c are primitive generating vectors for the
three sublattices on the three 2-fold axes, every phase function
vanishes on the invariant subspace of its point-group opera-
tion—i.e., there are no extinctions.

The distinct gauge equivalence classes of phase functions are
determined by the possible values for the two independent
point-group generators ra and rb at the primitive reciprocal-
lattice generating vectors bi. Expanding the third of the
conditions (10) using rc 5 rarb and the group compatibility
condition (2) gives

2Fra
~2c! 1 Frb

~2c! ; 0. [11]

Subtracting the first of the two relations of 10 from 11 and
adding the second, converts it into a relation between primitive
generating vectors:

Frb
~2b1! 2 Fra

~2b2! ; 0. [12]

This allows for two classes of phase functions, satisfying

Frb
~b1! 2 Fra

~b2! ; 0 or 1
2

. [13]

Because 12 is a linear combination of relations derived from
the (gauge invariant) group compatibility conditions (2), the
combination of phases on the left side of 13 is gauge invariant
(as can also be verified directly). The nonzero choice for this
combination therefore gives a nonsymmorphic space group.
Even though Fra

and Frb
both vanish on the invariant subspaces

of their point-group operations, there is no gauge in which they
both vanish everywhere.

The peculiar combination of phases appearing in 13 has no
obvious geometric significance. Interestingly, however, it is
precisely the combination of phases that determines that the
electronic levels in the nonsymmorphic space group I212121
have 2-fold degeneracies at the points 1⁄2(6a 6 b 6 c). This is
shown in König and Mermin (10), which explains how the

theory of electronic level degeneracies in crystals (the theory
of space-group representations in the periodic case) is directly
related to the phase functions of Fourier-space crystallogra-
phy.

(b) I213 (No. 199). We can continue to take 7 to give the
primitive generating vectors for the face-centered-cubic recip-
rocal lattice, with the understanding that the mutually orthog-
onal vectors a, b, and c now have equal lengths. The generators
of the tetrahedral point group 23 can be taken to be the 2-fold
rotation ra about a and the 3-fold rotation r3 that takes a3 b,
b 3 c, and c 3 a. The generating relations can be take to be

ra
2 5 e, r3

3 5 e, ~r3ra!
3 5 e. [14]

As in the orthorhombic case, applying the group compatibility
condition (2) to each of these gives the conditions

Fra
~rak 1 k! ; 0, Fr3

~r3
2k 1 r3k 1 k! ; 0,

Fr39
~r39

2 k 1 r39k 1 k! ; 0, [15]

where r39 5 r3ra, which takes a3 b, b32c, and 2c3 a. Each
part of 15 gives a single relation when applied to the bi:

Fra
~2a! ; 0, Fr3

~2a 1 2b 1 2c! ; 0, Fr93~2a 1 2b 2 2c! ; 0.
[16]

Each of these relations sets a Fg equal to zero at a vector that
primitively generates the invariant subspace of g, so there are
no extinctions along the axes of ra, r3, or r39. There are
therefore no extinctions at all, because the group compatibility
condition (2) insures that if Fg vanishes on its invariant
subspace, the same is true for all point group operations
conjugate to g.m But because r93 5 r3ra, under the group
compatibility condition (2) the third relation in 16 expands to

Fr3
~2a 2 2b 1 2c! 1 Fra

~2a 1 2b 2 2c! ; 0. [17]

Subtracting the first relation of 16 from 17 and adding the
second, converts 16 to

Fr3
~4b2! 1 Fra

~2b3 2 2b2! ; 0. [18]

This allows for two distinct gauge equivalence classes of phase
functions, differing by the gauge invariant relationsn

Fr3
~2b2! 1 Fra

~b3 2 b2! ; 0 or 1
2

. [19]

The way in which these two nonsymmorphic space groups
without extinctions emerge from this analysis is so simple and
natural, that what is surprising is not their existence, but the
fact that in every one of the remaining cases, the vanishing of
every phase function on its invariant subspace is incompatible
with the existence of any nonzero gauge invariant linear
combination of phase functions. It would be interesting to
know whether such possibilities are more common in higher
dimensional spaces.o

Appendix

The value of a phase function Fg is gauge invariant on the
invariant subspace of g, so if there is a gauge in which Fg

mFor it follows from Eq. 2 that Frgr21 (rk) [ Fr(gk) 1 Fg(k) 1
Fr21(rk) and that 0 [ Fr21(rk) 1 Fr(k). Therefore, when gk 5 k,
Frgr21(rk) [ Fg(k).

nAs in the orthorhombic case, the nonvanishing of this combination of
phases is directly related to the existence of electronic level degen-
eracies, as shown in König and Mermin (10).

oNo examples that are not trivially related to these two have yet turned
up in any of the many investigations of space groups for aperiodic
three-dimensional crystals.
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vanishes, it must vanish on that invariant subspace. We prove
here that this vanishing is also sufficient: if Fg(k) [ 0 whenever
gk 5 k, then there is a gauge in which Fg vanishes for all k.

We must show that if

Fg~k! ; 0 whenever gk 5 k, [20]

then there is a function x linear on the lattice of wave-vectors
L such that

Fg~k! 1 x~gk 2 k! ; 0. [21]

Let Lg be the set of all vectors q of L that are of the form

q 5 gk 2 k [22]

for some vector k in L. Clearly Lg is a sublattice of L. Define
x on Lg by

x~q! ; 2Fg~k!. [23]

The definition is unique even if the correspondence (22)
between q and k is not, because if

q 5 gk* 2 k* [24]

with k9 Þ k, then

g~k 2 k*! 5 k 2 k*. [25]

Therefore, k 2 k9 is in the invariant subspace of g where Fg
vanishes. Because Fg is linear on L,

Fg~k! ; Fg~k*!. [26]

This leads to 21 holding for all k in L. Because x is linear on
Lg as a consequence of the linearity of k 3 gk 2 k and the
linearity of Fg, it only remains to show that x can be extended
from Lg to a function linear on the whole lattice L. This follows
from the fact that any function linear on a submodule of a
Z-module can be extended to a function linear on the entire
Z-module. (We state this in the language of Z-modules—linear
vector spaces over the integers—to establish that the proof
applies even in the aperiodic case, where the rank of L exceeds
the dimension of physical space.)

Let b1, . . . , bn be a basis for a rank n module L. Because Lg
is a submodule, it also has a basis c1, . . . , cm and a rank m #

n, (see for example theorem 7.8 of Hartley and Hawkes, ref.
11). Because b1, . . . , bn is a basis for the whole module we have

c1 5 a11b1 1 · · · 1 a1nbn···
cm 5 am1b1 1 · · · 1 amnbn

, [27]

where a is an m 3 n matrix of integers.
Because both the c and the b are linearly independent over

the rationals, it follows that the m n-dimensional row vectors
of a are linearly independent over the rationals. Because the
column rank of any matrix over a field is equal to its row rank,
it follows that the n m-dimensional column vectors of a span
a space of dimension m.

To extend the function x linear on Lg to one linear on all of
L, it suffices to specify values x(b1), . . . , x(bn) satisfying

x~c1! 5 a11x~b1! 1 · · · 1 a1nx~bn!
···

x~cm! 5 am1x~b1! 1 · · · 1 amnx~bn!
. [28]

The existence of the x(bi) is ensured by the fact that the n
m-dimensional column vectors of a span an m-dimensional
space over the rationals.
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