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The American Board of Family Practice is
developing a computer-based recertification
process to generate patient simulations from a
knowledge base. Simulated patients require a
stochastically generated history and response to
treatment, suggesting a Monte Carlo-like patient
generation process. Knowledge acquisition
experiments revealed that description of a patient's
overall health as a node in a Monte Carlo model was
difficult for domain experts to use, severely limited
knowledge reusability, and created a plethora of
awkwardly defined health states. We explored a
model in which patients traverse several parallel
health state networks simultaneously, so that overall
health is a vector describing the current nodes from
every Parallel Network. This model has a
reasonable biological basis, more easily defined
data, and greatly improved reuse potential, at the
cost of more complex simulation algorithms.
Experiments using osteoarthritis stages, weight
classification, and absence or presence of gastric
ulcers as three Parallel Networks demonstrate the
feasibility of this approach to simulating patients.

INTRODUCTION

Computer-based testing holds promise as a
technology that could add educational content to the
testing process! while yielding different, and perhaps
more important, information about examinees than
paper-based tests.2-6 Some computer-based tests use
traditional multiple choice item formats. Other tests
simulate patient care experiences. 7-9 Some elegant
simulation programs generate patient data from
systems of equations,10 but most outpatient medical
problems still require empiric description. Some
programs embed the logic of the simulation in

code,2:3,7 although reuse and knowledge maintenance
may be difficult.

The American Board of Family Practice (ABFP) is
developing a computer-based recertification process
based on an editable knowledge base. 11-13 This
empiric simulation project (ESP) could yield
practically endless numbers of high quality cases at an
affordable cost per case. Variability in case
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presentations should help the ABFP maintain a secure
test. Conversely, modeling decisions which restrict
the details of case histories may reduce security.

The ESP development team designed an entity-
relationship model of medical concepts and
algorithms to create patient simulations from the data
model. These algorithms create patient histories and
evolve patients during simulated medical care. The
central concept in the history generation algorithm is
that patients with some health states evolve to
experience other health states.

The assumptions underlying early ESP algorithms
and data models were similar to those of a Monte
Carlo process. A simulated patient would have
partially completed a path through a Monte Carlo
network. A physician's management decisions would
influence the remainder of the path. Nodes along this
path represented the patient's overall health during a
period of time, that is, all simultaneous medical
problems are represented in a single Monte Carlo
node. Arcs between nodes represent the patient's
transitions between conglomerate health states. Other
common decision modeling techniques, such as
Markov processes and decision trees, employ similar
models of health states.

The Department of Family Medicine at Duke
University and the affiliated Cabarrus Family
Medicine Program conducted knowledge acquisition
experiments for a variety of problems common in
family practice. These included alcohol abuse, ankle
sprains, diabetes mellitus, hypertension,
osteoporosis, otitis media, peptic ulcer disease,
pregnancy, reactive airway disease, and smoking.
These domains involve addictions and behavioral
problems; acute illness; acute illness superimposed
on chronic predisposing illness; and non-systemic
illnesses. The ESP development team advised the
domain experts, and simultaneously modeled
osteoarthritis of the knee and normal health.

These experiments demonstrated many serious
difficulties with the conceptual model. First, to



obtain variable histories required modeling many
nodes in a Monte Carlo simulation. In several
domains a chronic progressive systemic illness (e.g.
osteoporosis) combined with recurrent acute site-
specific exacerbations or complications (e.g. fractures
of various bones). The original model implied the
need for a large number of conglomerate health states,
for instance to define multiple paths from "Normal
health" to "Ex-smoker with Severe osteoporosis and
healed second left hip fracture." The number of
conglomerate health states can expand quickly, and
data required to define these conglomerate health states
(e.g. age specific incidence) is often speculative and
redundant.

Second, identical information may be collected in
several testing domains. For instance, highly
redundant obesity descriptions would appear in tests
of osteoarthritis, diabetes, and hypertension.

Third, relations between health problems are unclear.
Conglomerate health states do not compartmentalize
disease processes, obscuring whether domain experts
consider hyperthyroidism or nicotine addiction as
direct precursors of osteoporosis, or risk factors, or
distracters.

Fourth, modeling one therapeutic complication adds
many nodes and arcs. Therapeutic complications are
typically new illnesses superimposed on any of
several antecedent conglomerate health states. For
instance, a patient in any of the osteoporosis nodes
might develop uterine cancer while taking unopposed
estrogen. The number of nodes required in the Monte
Carlo model may double, with an equal number of
new arcs. Historical distracters, such as randomly
appearing colds or a history of appendicitis might
require still more conglomerate states.

Finally, a computer-based test needs to specify the
anatomy of disease, so that it can correctly present
findings to the examinee. In some diseases the
anatomy is erratic. A typical osteoarthritis patient
will have joints afflicted to different degrees.

Thus, Monte Carlo modeling techniques have an
appealing ability to generate multiple temporal
sequences of events. However, the ABFP's need for
finer anatomic detail, reusable information, and
manageable knowledge acquisition and maintenance
required some revision of the Monte Carlo approach.
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METHODS

The ESP model was revised to define Parallel
Networks of Health States, while discarding
conglomerate health states. A Parallel Network
includes a sequence of distinguishable, mutually
exclusive Health States. These typically reflect the
medical literature's descriptions of stages of
progression or severity of a disease. If the literature
does not provide a staging definition for a disease,
Health States can usually be defined as absent, mild,
moderate, and severe.

A parallel health state network connects these health
states with "Leads To" objects, e.g. mild disease leads
to moderate disease. A Leads To object associates
specific collections of risk factors and treatments with
a fuzzy rate of progression from the preceding to
succeeding Health States. The risk factors may be
Health States from other Parallel Networks, activities
(e.g. work, play, and habits), and family history.
Treatments may be interventions prescribed by the
examinee, or some simulated previous provider.

Separate collections of Leads To objects manage
history generation and evolution. In history
generation, the ESP creates a life history and context
for the examinee's encounter with the simulated
patient. The examiner may want an unremarkable
story compatible with many simulated medical
problems, or a story that is virtually pathognomonic.
In evolution, an efficient test might routinely
simulate rapid progression of disease or complications
of the examinee's treatments, regardless of the
likelihood of these events in practice.

Each Parallel Network defined in a simulation
imposes its Health States on one or more anatomic
sites, which evolve simultaneously. For instance, a
rheumatoid arthritis simulation could name a single
Parallel Network and all of the joints affected. An
osteoarthritis simulation might use two copies of a
knee osteoarthritis Parallel Network, applying one to
each knee. Different presenting Health States at each
knee and independent evolution of the knees would be
typical of osteoarthritis. Systemic diseases involve
the entire body of a simulated person.

Health States may recursively contain Parallel
Networks representing more acute exacerbations of
the parent Health State. For instance, moderate
osteoarthritis may include a Parallel Network



describing transitions between baseline and flare
Health States. A simulated patient cycling
between these Health States will display or
recount episodes of worsening arthritis
symptoms.

The algorithms for history generation and
evolution were adapted from Monte Carlo
techniques. A request for a simulation identifies
the presenting Health State in each Parallel
Network. Using incidence and prevalence
information, the age, sex and race of the
simulated patient are selected. The time of the
next (or, in history generation, the preceding)
event in each Parallel Network is predicted. In
history generation, this may require assertions
regarding the activities of the simulated patient.
The temporally closest event from all of the
Parallel Networks is instantiated. In history
generation, the process of predicting the most
recent preceding Health State change proceeds
backward through time until no further
transitions are defined by the Parallel Networks.
In evolution, this process of predicting the next
event continues until one of the events initiates
another encounter with the physician.

The revised ESP model was tested by additional
knowledge acquisition experiments,
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implementation of a Poet™ object oriented
database and supporting algorithms, and
generation of simulated osteoarthritis cases. The
database was used to generate cases of osteoarthritis of
the knee with obesity as a risk factor, and gastric
ulcers induced by non-steroidal anti-inflammatory
drugs prescribed without misoprostel.

RESULTS

Knowledge acquisition

Simple illustrations of their medical domains helped
content experts understand the scope of their
knowledge acquisition tasks. Initially intricate
domain models were decomposed into much less
threatening Parallel Networks. Figure 1 illustrates
common Parallel Network structures. The simplest
network is a collection of one or more static states,
typical of genetic (Downs syndrome) and some
congenital conditions (anencephaly). The progressive
network is a series of states with no cycles, typical of
degenerative illnesses such as osteoarthritis. The
reversible network illustrates chronic but reversible
conditions, such as essential hypertension and weight
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disorders. In the injury network an acute insult
evolves to either recovery or a chronic condition with
a later recovery. Injury networks describe many
infectious diseases and trauma. The addiction network
illustrates that a person may abstain from, use, abuse,
or become addicted to a substance. In the scheme
shown here, a previously addicted person can only be
addicted or recovering, but can not return to
abstinence, use or abuse. The surgical intervention
overlay illustrates that new states can be added to the
above networks using irreversible therapies such as
radiation or surgery. Domain experts adapted these
networks to their needs by eliminating unwanted
nodes and arcs, or replacing nodes with another
network.

Domain experts began with a primary Parallel
Network to sketch the diseases defining their domain,
such as stages of diabetes mellitus. Parallel
Networks of comorbid conditions were identified in
most domains, typically including risk factors for



progression through the primary network, such as
obesity. Most domains included one recursive layer
of Parallel Networks representing exacerbations of the
Health States in the primary Parallel Network. Most
domains also identified one or more Parallel Networks
representing complications of Health States in the
primary network, such as retinopathy, or of treatment
of primary Health States, such as gastric ulcers.

Experts were asked to estimate 1) how long a risk
factor should exist before it could influence a
transition between states in a primary network, 2) the
time required for transitions in the primary network,
given different combinations of risk factors, and 3)
the number of passes an individual patient should be
allowed to make through a cycle (e.g. from acute
injury to recovery and back). Although these data
were often non-existent in the literature, domain
experts could comfortably estimate a range of values
from clinical experience. Although the data to gather
remained imposing in volume and dauntingly
quantitative, Parallel Networks in the revised ESP
model appeared to successfully guide segmentation of
data into intellectually plausible sets.

Data model and algorithm implementation

The osteoarthritis experiment continued with
development of an object oriented database structured
after the ESP model. The database was populated
with information about four stages of osteoarthritis,
three weight conditions, and 2 ulcer states.

The algorithms mentioned above were implemented,
but without support for acute exacerbations or
multiple Parallel Network copies afflicting different
anatomic sites. Conditional probabilities were
managed with a simple scripting language. The
scripting language has since been replaced by
Bayesian networks.

Instantiation of the model confirmed the expected
difficulty in authoring a family of cases with the
same underlying disease process, but different details
in presentation. In particular, giving attention to
conditional probabilities slows knowledge acquisition
considerably. Memories of individual clinical cases
were helpful in authoring a narrowly defined
simulation, but much more attention was required to
produce Health States generation methods and Leads
To objects that were robust to changing assumptions
about sex, race, and obesity. In spite of these
difficulties, data entry in a data base founded on
Parallel Networks was accomplished.
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Experimental Verification

The prototype ESP simulator generated a series of
patients for demonstration at the American Board of
Medical Specialties meeting on computer-based
testing in Chicago, March 21-22, 1996.
Approximately 30 patients were generated and stored
over a four day period, including several during the
meeting. Each patient generation required about 10
minutes. After generating a variety of male and
female patients, data in the knowledge base were
skewed to generate middle aged overweight white
females. These patients were typically 55 to 65 years
old and complained of recently worsening pain in one
or both knees. Patients had been morbidly obese for
1 to 3 years prior to presentation, and had at least a 5
year history of mild arthritis in the affected knees.
Their health problems began with either obesity or
mild osteoarthritis 10 to 30 years prior to
presentation.

During the demonstration, most history and
laboratory requests returned graphs of values over the
simulated patient's lifetime, enabling viewers to see
how variables such as weight, uric acid, or osteophyte
numbers had changed since birth. These graphs
demonstrated concurrent histories of worsening
osteoarthritis and obesity.

Demonstration patients were managed interactively.
Patients managed with high doses of non-steroidal
antiinflammatory drugs without misoprostel would
develop ulcers sometime during a 2 year follow up
period. Weight loss was also possible. Optimal
management of weight and prescription of
strengthening exercises would slow the inexorable
progression of knee osteoarthritis, but progression
from moderate to severe knee arthritis would
inevitably occur within 10 years.

DISCUSSION

The simulations demonstrated that the prototype
system could generate patients with plausible medical
histories; appropriate symptoms, signs, and
laboratory values; and could evolve patients over
time. The separation of data controlling
osteoarthritis, obesity, and ulcer histories and
presentations suggests that these components would
be reusable with modest modification, if any, in new
disease domains. Substantially different osteoarthritis
simulations could be produced by replacing a few
history controlling Lead To objects.



Limitations

We are currently developing a simulator with acute
exacerbations, past medical interventions, and use of
multiple copies of one Parallel Network's data. The
new model and algorithms replace simple scripts with
Bayesian networks. Although the next generation
simulator is not yet functional, no fatal conceptual
difficulty is evident.

The knowledge acquisition problem for the ESP
model remains daunting. One vexing problem is that
the history generation algorithms require solutions to
multiple temporal constraints. These constraints may
not always have a solution, and it is not yet clear
how to react if a history generating step fails, or how
to guarantee temporal solutions while reusing data.

The cartesian product of N parallel networks creates
an N dimensional grid whose nodes represent
conglomerate health states. This grid is a complex
Monte Carlo model with many low probability paths
that would never have been considered in an explicit
Monte Carlo model. Conditional probabilities within
Parallel Network's Leads To objects could provide a
means of pruning the N-dimensional space. This
mechanism may not work, as it places further burdens
on knowledge acquisition and reusable object design.

These limitations must be considered in context. In
the absence of mathematical models of the diseases of
interest, the ABFP requirements for secure tests,
realistic temporal and clinical features, and defensible
credentialling decisions, complex data is an inevitable
feature of a computerized problem generation process.

CONCLUSION

Parallel Networks facilitate some aspects of
knowledge acquisition for a patient simulation
knowledge base, and appropriate algorithms support
generation of patients. The data required are relatively
reusable, in contrast to data explicitly describing
global health. Further experimentation is required to
demonstrate that this approach remains tractable with
more complex scenarios. Parallel Networks may
have application in other endeavors that traditionally
describe global health, such as decision analysis.
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