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Abstract

Diagnosis of a disease and its treatment are not separate,
one-shot activities. Instead they are very often dependent
and interleaved over time, mostly due to uncertainty about
the underlying disease, uncertainty associated with the re-
sponse of a patient to the treatment and varying cost of dif-
ferent diagnostic (investigative) and treatment procedures.
The framework of Partially observable Markov decision
processes (POMDPs) developed and used in operations re-
search, control theory and artificial intelligence communities
is particularly suitable for modeling such a complex decision
process. In the paper, we show how the POMDP framework
could be used to model and solve the problem of the manage-
ment of patients with ischemic heart disease, and point out
modeling advantages of the framework over standard deci-
sion formalisms.

INTRODUCTION
The diagnosis of a disease and its treatment are not separate
processes. Although the correct diagnosis helps to narrow
the appropropriate treatment choices it is often the case that
the treatment must be pursued without knowing the under-
lying patient state with certainty. The reason for this is that
the diagnostic process is not a one shot activity and it usu-
ally neccessary to collect additional information about the
underlying disease, which in turn may delay the treatment
and make the patients' outcome worse. This process is of-
ten even more complex, when uncertainty associated with
the reaction of a patient to different treatment choices and
costs associated with various diagnostic (investigative) ac-
tions need to be considered. Thus in a course of patient
management one needs to carefully evaluate the benefit of
possible diagnostic (investigative) and treatment steps and
their ordering with regard to the overall global objective, the
well being of a patient. The management of patients with
ischemic heart disease (IHD) (see e.g. [1]) is an example of
such a problem and we will focus on it in our work.
To model accurately the complex sequential decision

process that combines diagnostic and treatment steps we
need a framework that is expressive enough to capture all
relevant features of the problem. The tools typically used to
model and analyze decision processes are (stochastic) deci-
sion trees (see e.g. [2]), Markov decision processes (MDPs)
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[3; 4] or semi-MDPs [5]. Although all of these allow us to
model the uncertainty associated with the outcome of the
treatment, they fail to capture processes in which a state
describing the underlying disease is hidden (unknown) and
is observed only indirectly via a collection of incomplete
or imperfect observations. This feature is crucial for many
therapy problems, in which an underlying disease cannot be
identified with certainty and thus more options need to be
considered.
A framework more suitable for modeling the outlined

therapy problem is Partially observable Markov decision
process (POMDP) [6] [7]. POMDP represents a controlled
Markov process, similar to Markov decision process [3;
4], and it explicitly represents two sources of uncertainty:
stochasticity related to the dynamics of the control process
(outcome of the treatment or diagnostic procedure is not de-
terministic), and uncertainty associated with the partial ob-
servability of the disease process by a decision-maker (the
underlying disease state is observed indirectly via incom-
plete or imperfect observations). The objectives of the con-
trol (treatment) are modeled by means of a reward or cost
model, that represents payoffs associated with different sit-
uations, and temporal objective function that combines re-
wards obtained over multiple steps. A POMDP model is
usually easier to build and modify (compared to the deci-
sion tree) and it can be used also for other tasks, such as
prediction and explanation.

PARTIALLY OBSERVABLE MARKOY
DECISION PROCESS

A partially observable Markov decision process (POMDP)
describes a stochastic control process with partially ob-
servable states and formally corresponds to a 6-tuple
(S. A, e, T, 0, R), where S is a finite set of process states
(disease states); A is a finite set of actions (diagnostic and
treatment procedures); G is a finite set of observations
(findings, results of diagnostic tests); T: S xA x S -+ [0, 1]
is a set of transition probabilities between states that de-
scribe the dynamics of the modeled system; 0: S x A x
e -+ [0, 1] stand for a set of observation probabilities that
describe the relationship among observations, states and ac-
tions; and R: S x A x S -+ 1Z denotes a reward (cost)
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model that assigns rewards to state transitions and models
payoffs associated with such transitions.

Given a POMDP model, the objective is to construct a
policy that prescribes how a decision-maker should act in
order to maximize expected cumulative reward over some
horizon of interest. Two types of decision models are typi-
cal: finite horizon where we adopt a policy that maximizes
E(Z:TL0 rt), such that rt is a reward obtained at time t,
and infinite horizon, discounted problem, where a policy
that maximizes E(ZO0 ytrt), with 0 < oy < 1 being a
discount factor, is sought. We will focus our attention on
the infinite horizon discounted model.

In POMDPs process states are hidden and decisions
could be based only on observations seen and past actions
performed. This makes a large difference when the opti-
mal policy for all possible situations a decision-maker may
encounter should be found. While in perfectly observable
Markov processes [3], [4] one works with a finite number of
states that are always known, in POMDPs underlying states
are not known with certainty and one has to work with and
base all decisions on belief states. A belief state assigns a
probability to every possible state s E S, and there is an
infinite number of possible belief states one may encounter.
Value (expected discounted reward) of the optimal policy
for a belief state b satisfies the Bellman's equation [3]:

V* (b) = max R(b, a) + -y E P(slb, a)V* (r(b, a, o)),

(1)
where b stands for the belief state, R(b, a) denotes an ex-
pected one step reward for a belief state b and an action a
and equals:

R(b, a) = E ZR(s, a, s')P(s'Is, a)b(s),
s'ESsES

and r is an update function that computes a new belief state
given a previous step belief, action and observation:

r(b, a, o)(s) = 3P(oIs, a) E P(sls', a)b(s'),
AcES

with ,3 being a normalizing constant. The optimal action
for a belief state is then obtained as:

p* (b) = arg maxR(b, a) +± E P(slb, a)V* (r(b, a, o))aEA oes

In general equation 1 for V* could be divided into two
parts: an expected immediate reward for performing action
a in a belief state b- R(b, a) and an expected reward for
following the optimal policy afterwards. V* can be approx-
imated using value iteration strategy [3]. In this strategy, we
define an i-th step approximation as:

Vi (b) = max R(b, a) + yZ P(slb, a)V,. l (r(b, a, o)).
aEA o0e

The sequence of value function approximations is guaran-
teed to converge to the optimal solution. Note that unfold-
ing of the formula for some initial b could be represented
also by a decision tree [8]. In this case, belief states and
not observations must be used and expected rewards from
multiple steps should be combined and considered.
The important property of the approximation sequence is

that value functions Vi are piecewise linear and convex [7],
which allows us to compute the update in finite time for the
complete belief space. Although computable, the compu-
tational cost for doing so is high and only smaller belief-
state MDPs could be solved exactly or to arbitrary small
precision. In practice, this leads to various approximation
methods that allow us to compute good solutions fast [8;
9].

APPLYING POMDPS TO MEDICAL THERAPY
PLANNING

The expressivness of the POMDP framework makes it suit-
able for therapy planning problems with hidden disease
states and with both diagnostic and treatment steps. An
example of such a problem, with complex temporal depen-
dencies, is the problem of management of patients with is-
chemic heart disease (IHD) [1].

Management of ischemic heart disease
Ischemic heart disease is caused by an imbalance between
the supply and demand of oxygen to the heart. The con-
dition is most often caused by the narrowing of coronary
arteries (coronary artery disease) and an associated reduc-
tion in the oxygenated blood flow. The coronary artery dis-
ease tends to progress over time. The pace of the disease
progress is stochastic and contigent on multiple factors.

At any point in time the physician has different options
to intervene: do nothing, treat the patient with medication,
perform surgical procedures (angioplasty - PTCA, coro-
nary artery bypass surgery - CABG), or one of the in-
vestigative procedures (angiogram, stress test) that tend to
reveal more about the underlying status of the coronary dis-
ease. Some of the interventions have a low cost, but some
carry a significant cost associated with the invasiveness of
the procedure.
The objective of the therapy planning is to develop a

strategy that would minimize the expected cummulative
cost of the treatment, where the cost is defined in terms
of the dead-alive tradeoff, quality of life, invasiveness of
procedures and their economic cost. The optimal strategy
depends not only on the immediate action choice, but also
on future choices, thus reflecting complex temporal trade-
offs.

POMDP for IHD
Although standard POMDP formalism matches well the
characteristics and needs of many therapy planning prob-
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Figure 1: Model of the dynamics for the ischemic heart disease. State variables are represented by circles, an action choice as
a rectangle. Patterned circles are used for observables. For time t, only process state variables are shown.

lems, it is often hard to apply it directly to these prob-
lems, due to the size and complexity of models one has to
face. This complicates the task of model definition (param-
eter acquisition) and it is often also beyond current limits
of exact POMDP problem-solving methods. To overcome
these problems for the IHD domain we built a more com-
pact version of POMDP and focused on various approxi-
mate problem-solving methods.

Model of dynamics
To model the dynamics of the IHD disease process more
compactly we used a hierarchical refinement of the dy-
namic belief network [10] in figure 1. In this model a state
of the patient is described using a set of state variables and
their associated values, e.g. moderate coronary artery dis-
ease, severe chest pain, positive rest EKG result, etc. State
variables can be either hidden or observable, e.g., variables
representing status of the coronary artery disease, and is-
chemia level are hidden (not observable directly), while
other state variables like chest pain, rest EKG result, or
stress test result are perfectly observable. 1 Some of the
observations are unconditional and assumed to be available
at any point in time (e.g. chest pain), while others are con-
ditioned on an appropriate action (e.g. stress test result is
available only when stress test procedure was chosen and
performed in the previous step). A novel feature of our IHD
model is that its state variable set is not flat, but hierarchi-

1 Chest pain can be classified as none, mild-moderate, and se-
vere and it is assumed to be always observable by a physician.

cally structured. More specifically, state variable patient
status, with two values (dead or alive) enables (activates)
state variables providing more detailed description of the
patient state (as e.g. chest pain) only when patient is known
to be alive.

In a belief network model transitions between two con-
secutive states can be described more compactly by taking
advantage of the independence structure, which reduces the
number of parameters one has to define. The parameters
(probabilities) of our current model are based mostly on the
model published in [1], the remaining parameters were ex-
trapolated from the available results or estimated using clin-
ical experience. 2

Cost model
The cost model we use for the IHD domain is represented
more compactly as well. The model consists of two com-
ponents:

R(s, a, s') = R(s') + R(a),

where R(s') is a cost associated with a patient state only
and R(a) stands for a cost associated with an action (e.g.
cost of performing coronary bypass surgery that includes
the economic cost, patient's discomfort, and so forth). The
cost associated with a patient state, R(s'), can be further
broken down into state variable costs. That is, a cost for a
patient state can be decomposed to costs associated with an

2Note, that methods for learning probabilities [I l) could be
applied to acquire or refine estimates directly from data.
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amount of chest pain the patient suffers at given time, oc-
curence of myocardial infarction, etc. In such a case R(s')
can be expressed as:

R(s') = ZR(s).

where s' represents a value assigned to variable i. The
above decomposition of the cost model reduced the number
of parameters we had to estimate, which greatly simplified
the model building process. The cost values were defined
subjectively and represent a combined measure of the dead-
alive trade-off, quality of life and economic cost.

Decision problem
The goal in the IHD therapy problem is to find the sequence
of actions that minimizes expected discounted cost over in-
finite horizon: min E(ZE' yt rt). 3 This allows us to ex-
press longer term goals and not restrict the decision horizon
to a finite number of steps. An interesting feature of our
model is that we use transitions of different durations for
different actions- transitions associated with surgical and
investigative procedures occur within a day, and transitions
associated with non-invasive actions (no-action and medi-
cation) are assumed in 3 month periods. To account for this
difference, we use discounting (-y = 0.95) for long-term
actions (no-action and medication); all other short-term ac-
tions are undiscounted and their costs are added fully within
the model.

SOLVING THE IHD PROBLEM
The POMDP, once defined, could be converted into the
belief-state MDP, in which beliefs over all possible state
variable value combinations are assumed. Then Bellman's
equation 1 holds and either exact [7; 81 or approximate
value iteration techniques [9; 8] developed for the standard
POMDPs could be applied. However, we can also take
advantage of the additional structure present in the prob-
lem. We considered three improvements that help to reduce
the complexity of problem-solving procedures for IHD and
similar medical problems [8].
The first improvement stems from the fact that not all

state variables are neccessary to define the belief state. For
example, in the IHD problem, it is sufficient to use a be-
lief state defined only over state variables that directly me-
diate transitions: patient status, coronary artery disease,
ischemia level, acute MI, decreased ventricular function,
history of CABG and history ofPTCA. We call these vari-
ables process (or information) state variables. The second
improvement is that when some of the process variables are
observable, they should be treated that way and their exact
values instead of beliefs over their values should be used. In

3 Note that costs can be be represented as negative rewards and
formulas for maximizations apply.

the IHD problem state variables (acute MI, decreased ven-
tricular function, history of CABG and history of PTCA)
are perfectly observable, thus the state is better modeled as
a hybrid state with two components: a vector of observable
process variable values; and a belief over all possible com-
binations of values of hidden process variables. The third
improvement, takes advantage of the hierarchically struc-
tured set of variables, which restricts certain state variable
combinations. For example, when the patient is dead, val-
ues of other state variables are not relevant and belief over
possible combinations of their values should not be consid-
ered.

Solutions
We have implemented and tested a set value function ap-
proximation methods with additional structural improve-
ments. Table 1 illustrates a sequence of recommendations
for a single patient case with a follow-up obtained for two
of the best-performing methods from [8]. The first method
is the incremental linear vector method with 15 incremental
linear vector update cycles. Using this method, the value
function for all possible belief states was computed off-
line in about 30 minutes on SPARC-10 in Lucid Common
Lisp. The second method tested is the fast informed bound
method and it took about 3 minutes. For every stage, the ta-
ble shows a set of current observations and a list ofpossible
actions, ordered with regard to the obtained cost score. The
top (lowest cost) action is executed at each step. Note that
both methods always suggest the same action choices.

EVALUATION
POMDP problems of large complexity and their solutions
are often hard to evaluate. The main reason for this is that
we usually do not have access to optimal solutions. Thus
results were compared to expert opinions of good manage-
ment strategies.
The IHD model we built is of moderate complexity and

includes many simplifications. Interestingly, despite that
and the need to estimate a large number of parameters, the
model and obtained solutions demonstrated behavior that
was in most instances clinically reasonable and justifiable.
This is very promising for the future work and further re-
finement of the model. The evaluation, and tests on pa-
tient cases also revealed current model deficiencies that re-
quire further improvements. However, these appear to be
caused by the model simplification, and failure to represent
all relevant details of the patient state. For example, we
have found that the current model should include a variable
representing a physical condition of a patient, which influ-
ences the likelihood of reaching a non-diagnostic result for
the stress test procedure. Omitting this variable lead in
some instances to a repeated choice of the stress-test proce-
dure when the patient failed the procedure in the previous
step.
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step current patient status actions score (method 1) score (method 2)
0 chest pain: mild-moderate; stress-test 285.22 248.53

rest EKG ischemia: negative; acute MI: false; no action 285.62 249.82
decreased ventricular function: false; medication 286.75 250.98
coronary artery visual: not available; PTCA 288.75 252.36
stres test result: not available; angiogram 292.92 256.68
history CABG: false; history PTCA: false CABG 491.94 427.77

1 chest pain: mild-moderate; PTCA 298.47 262.54
rest EKG ischemia: negative; acute MI: false stress test 316.39 280.33
decreased ventricular function: false; no action 321.92 288.24
coronary artery visual: not-available; medication 322.72 289.12
stress test result: positive; angiogram 323.79 287.91
history CABG: false; history PTCA: false CABG 503.73 440.77

2 chest pain: no chest pain; no action 259.07 226.23
rest EKG ischemia: negative; acute MI: false; medication 260.62 227.78
decreased ventricular function: false; stress test 264.35 229.87
coronary artery visual: normal; angiogram 273.34 239.16
stress test result: not available; PTCA 276.98 243.24
history CABG: false; history PITCA: true CABG 481.36 417.28

3 chest pain: mild-moderate; medication 451.50 418.07
rest EKG ischemia: negative; acute MI: true no action 452.81 419.47
decreased ventricular function: false PTCA 464.58 429.87
coronary artery visual: not available angiogram 470.62 435.62
stress test result: not available stress-test 479.68 445.22
history CABG: false; history PTCA: true CABG 657.77 608.11

Table 1: Patient case with a follow-up from [8]. Recommendations for each state (in bold) are based on the lowest value
function approximation (cost score) computed by the incremental linear vector method (method 1) and the fast informed
bound method (method 2). Note that both methods suggest the same action choices.

CONCLUSION
The partially observable Markov decision process provides
a framework suitable for modeling medical therapy plan-
ning problems and overcomes some of the modeling defi-
ciencies of standard decision techniques. To investigate this
we applied the framework to the problem ofmanagement of
patients with ischemic heart disease (IHD).

This problem requires the consideration of the hidden
disease state, both investigations and management strate-
gies, and the cost and benefits of actions over multiple time
stages. The solutions obtained for the IHD therapy plan-
ning domain are promising and showed that POMDP could
provide a useful framework for modeling and analyzing the
complex decision process. This justifies further refinement
and extension of the current IHD model as well as the ap-
plication of the framework to other complex decision prob-
lems.
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