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Abstract: Few studies have properly compared
predictive performance of different models using the
same medical data set. We developed and compared
3 models (logistic regression, neural networks, and
rough sets) in the in prediction of ambulation at
hospital discharge following spinal cord injury. We
used the multi-center Spinal Cord Injury Model
System database. All models performed well and had
areas under the receiver operating characteristic
curve in the 0.88-0.91 range. All models had
sensitivity, specificity, and accuracy greater than
80% at ideal thresholds. The performance of neural
network and logistic regression methods was not
statistically different (p = 0.48). The rough sets
classifier performed statistically worse than either
the neural network or logistic regression models (p-
values 0.002 and 0.015 respectively).

INTRODUCTION

One of the most common questions asked by patients
following acute spinal cord injury is: "Will I be able
to walk?" One of the ways our society defines
outcome following spinal cord injury is one's ability
to walk. Numerous studies have evaluated this issue.
Most commonly studies have segmented patients by
type of injury, and American Spinal Injury
Association' (ASIA) or Frankel impairment scores?
prior to evaluation of ambulation potential. Predictors
for ambulation include: ASIA score D or E at
admission, age 34, ASIA motor scores for LEMS
(Lower Extremity Motor Score, ASIA ) greater than
or equal to 10 by one month**’, greater than 2/5
MMT (Manual Motor Testing) quadriceps®, pin
sensation below level of injury®*, SEPs", Yale Score®,
Modified Barthel Index". Patients with motor and
sensory complete injuries at the time of admission
rarely ambulate independently.

Information from these studies is useful for clinicians
to estimate ambulation potential, however, no
previous studies have attempted to build a predictive
model which can be used for all types of spinal cord
injury patients using information available at the time
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of admission. A number of studies have used neural
networks to model medical and functional outcomes
following catastrophic injury>*!, These studies
did not compare model performance with other
methods such as logistic regression. The purpose of
this project was to compare various outcome models
that predict ambulation at discharge from
rehabilitation for all individuals with acute spinal
cord injury.

Outcome events are often related to multiple factors
that are difficult to adequately model using linear
discriminant analysis or other linear models. Logistic
regression is a commonly used modeling technique;
however, there are alternative methods that may
result in better classification performance or simpler
implementation in clinical settings. It is unclear
which techniques are most valuable for a given
problem. Experimental comparison using rigorous
evaluation methods is necessary. We created models
using logistic regression, backpropagation neural
networks, and rough sets to predict ambulation
following spinal cord injury.

METHODS AND MATERIALS

Methods

The study population consisted of 17,861 patients
who sustained a spinal cord injury between 1973 and
1997, who survived at least 24 hours after injury, and
were admitted to one of 24 federally funded
designated regional SCI care systems. The data was
collected at the time of admission to these centers and
was aggregated into the Spinal Cord Injury Model
System Database (SCIMS) . The database is
carefully managed for quality control and has a well
defined data dictionary.

Materials/Model Design
The SCIMS database contains many medical,
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neurologic, functional, and demographic variables.
In this study, items which would be available at the
time of admission to the hospital were used to
construct the outcome prediction models. Input
variables included those shown to be predictive of
functional outcome in prior studies and items chosen
by spinal cord injury experts involved with the
project. These items included system days (days from
date of admission minus start of database 1/1/73) ),
injury to system admission, age, gender, racial/ethnic
group, traumatic etiology, marital status, level of
education, primary occupation, category of
neurologic impairment (e.g. complete tetraplegia),
level of preserved neurologic function, ASIA
impairment scale score, presence of fractures,
presence of hemo/pneumothorax, use of mechanical
ventilation. A data set which excluded records from
the original study population with missing or
unknown data was created. This data set contained
5626 records and was used to construct the models.
Before building models we randomly divided the data
into two sets; one set (n= 3772) was used as a
training set and the other data set (n=1854) was used
as a test set. Table 1 shows that there were not
significant differences between training and test sets.
All models used identical randomized test and
training sets.
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m System days was included to provide a measure of how recently
a patient was admitted to the system, i.e. how "modem" was the
care provided. This is important because there have been numerous
improvements in critical and trauma care during the period 1973-
1997.
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Neural networks and logistic regression models
require either continuous or binary data; therefore,
variables which contained categorical data types were
converted to dummy binary variables. For example,
if a database field contained 3 different categories
(e.g. the race database field might contain white,
black, or asian categories) it was converted to 3
binary fields of the form l=true and O=false (e.g.
black =1 means black is true.).

We built a 3-layered feedforward neural network
with 60 input units, 20 hidden units, and 1 binary
output unit which indicated ambulation at discharge
from the hospital using NevProp3 neural network
software”. The network was trained by
backpropagation®, with the goal of minimizing an
error function that corresponded to the cross-entropy
(or maximizing the log likelihood). We further
divided the training set into 2, and used the first set
for the actual training (n=1386) and the second
(holdout set n=1386) for monitoring overfitting.
Initial weights were randomly assigned in each of 10
runs of the same network. Areas under the Receiver
Operator Characteristic (ROC) curve were measured
and averaged for the 10 runs.

The logistic regression model was developed using
SAS software with the same data sets. No automated
variable selection method was chosen. A SAS macro
was created to apply the logistic equation resulting
from the training set to the test set.

The rough set model was implemented using the
knowledge discovery tool ROSETTA. Details of this
modeling tool can be found in Ohrn et al 1998,
Rough set theory is a soft-computing technique that
uses Boolean reasoning to classify imprecise,
uncertain or incomplete data. For each possible
subset of variables the data set gives rise to an
equivalence relation called an indiscernibility
relation, where two objects are in this relation (i.e.
are members of the same equivalence class) if and
only if they cannot be discerned from each other on
the basis of the attribute subset. This relation can be
used to approximate sets. Subsets of interest to
approximate in a supervised learning setting would
typically be the sets of objects with the same values
for the outcome variable (the decision classes). For a
detailed discussion of rough set theory, see Pawlak
1991*.



RESULTS

Each model had variable sensitivity, specificity, and
accuracy over a range of thresholds from 0 to 1.
Depending on the utilities assigned to (1) missing
patients who will ambulate (false negatives) and (2)
falsely predicting ambulation (false positives), a
threshold to optimize model performance can be
chosen. Table 2 summarizes the sensitivity,
specificity, negative predictive value (NPV), positive
predictive value (PPV), and accuracy using a
threshold which minimizes the sum of (1-sensitivity)
and (1-specificity)’. This threshold determines the
point in the receiver operating characteristic (ROC)
curve that is closest to (0,1). The logistic regression,
neural network, and rough set models had an area
under the ROC curve in the 0.88-0.91 range, (see
Table 3 and Figure 1). The performance of neural
network and logistic regression methods was not
statistically different, p = 0.48 (using the method
proposed by Hanley & McNeil)*. The rough sets
method performed statistically worse than the neural
network and logistic regression models (p = 0.002
and 0.015 respectively).

Table 2: Model Performance at Optimal Threshold*

Logistic Neural Rough Sets
Regression Networks

Sensitivity | 0.849 0.861 0.816

Specificity | 0.849 0.352 0.829
NPV 0.954 0.958 0.943
PPV 0.606 0.614 0.566

Accuracy | 0.849 0.854 0.827

* threshold that corresponds to point in ROC curve closest to (0,1)

Table 3:

Model ROC Curve Area Standard Error

Logistic Regression | 0.909 008

Neural Network 0.909 .008

Rough Set 0.889 .008

Figure 1
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All of the models produce a prediction in the interval
0 and 1 for each case. Calibration curves were
generated by comparing weighted average values of
predicted versus actual outcome values, sorted by
predicted values, and are shown in Figure 2. In a
well calibrated model, the predicted value is
equivalent to the probability of the outcome for each
patient. The neural network and logistic regression
models were relatively well calibrated, in contrast to
the rough sets model.
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DISCUSSION

All of the models performed well at predicting
ambulation at discharge for spinal cord injured
individuals (ROC curve areas ranging from 0.88-
0.91). The logistic regression and neural network
models performed statistically better than rough sets
and provided well calibrated models. For well
calibrated models, the raw predicted outcome is the
"probability” of walking for a particular patient of
interest. All models had sensitivity, specificity, and
accuracy greater than 80% at ideal thresholds.

It is important, however, to note that this study has
several limitations. ASIA scoring was modified
slightly in 1992. Some patients injured prior to 1992
and categorized as an ASIA D (incomplete injury,
motor strength useful) would now be categorized as
ASIA C (incomplete injury, motor strength non-
useful) using the revised ASIA system. Using
patients injured after 1992 would eliminate this
potential problem, but would also eliminate over
3000 patients from the models. We minimized this
problem by including the system days variable, which
adjusts for changes to the model systems over time.
The SCIMS database evolved over several years and
included more data fields in recent years. One
variable of particular value for predicting ambulation
is the ASIA motor index score**’ at admission. This
variable was included starting in 1986 and is
available for 5855 of 17861 patient records in the
database. We excluded records with missing or
unknown data. Other methods, such as substitution
of the mean or mode values, could have been used to
prepare data sets for modeling; however, we chose a
more conservative data exclusion method, given the
uncertainties involved in substitution methods. We
acknowledge that this elimination may have
introduced certain biases and that a prospective study
should be performed to validate our results.

In addition to prediction of outcome, the logistic
regression and rough sets models provide methods to
help explain the prediction. Logistic regression
yields a regression equation with coefficients for each
significantly associated covariate. This regression
equation allows one to make inferences regarding
variable contribution to the model. Rough sets
provides a set of conditional rules or statements
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which provide some explanation of the models
prediction. Neural networks do not provide methods
to help explain the prediction.

Prior studies that predicted ambulation selected
subsets of spinal cord injured individuals by
neurologic  categories, such as incomplete
quadriplegia, incomplete paraplegia, or ASIA score.
These studies included a smaller number of variables
than our analysis and may have excluded important
input variables. To our knowledge, this is the first
study that included all neurologic categories of spinal
cord injury for prediction of ambulation. We feel
that this approach yields models that may be more
useful to clinicians, since a single prediction model
can be used for all spinal cord injured individuals,
rather than multiple neurologic category subset
models. Well calibrated models provide predictions
which are analogous to probabilities.

CONCLUSIONS

The intent of this study was to demonstrate a
comparison of model performance and not to provide
a detailed analysis of each model. All models
performed well at prediction of ambulation at
hospital discharge for spinal cord injured individuals;
however, the logistic regression and neural network
models performed significantly better than the rough
sets model. We concluded that the logistic regression
model is the method of choice to predict ambulation
in this data set, given its good classificatory
performance, calibration, and potential insight into
variable relevance. Its popularity among health care
researchers is also a major advantage. This study is
the first to provide and compare models which
predict ambulation across all neurologic categories of
spinal cord injury. For such models to be useful to
clinicians, it is still necessary to minimize the number
of input variables. We are currently investigating
whether such models can be constructed.
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