
Use of the Extensible Stylesheet Language (XSL) for Medical Data
Transformation

Yoon-Ho Seol, MS*, Stephen B. Johnson, PhD* and Justin Starren, MD, PhD*t

Departments of Medical Informatics* and Radiologyt,
Columbia University College of Physicians and Surgeons, New York, New York

Recently, the Extensible Markup Language (XML)
has received growing attention as a simple but
flexible mechanism to represent medical data. As
XML-based markups become more common there
will be an increasing need to transform data stored in
one XML markup into another markup. The
Extensible Stylesheet Language (XSL) is a stylesheet
language for XML. Development of a new
mammography reporting system created a need to
convert XML output from the MEDLee natural
language processing system into aformat suitablefor
cross-patient reporting. This paper examines the
capability ofXSL as a rule specification language
that supports the medical XML data transformation.
A set ofnine relevant transformations was identified:
Filtering, Substitution, Specification, Aggregation,
Merging, Splitting, Transposition, Push-down and
Pull-up. XSL-based methods for implementing these
transformations are presented The strengths and
limitations of XSL are discussed in the context of
XML medical data transformation.

INTRODUCTION

Recently, the Extensible Markup Language (XML)'
has received growing attention as a simple but
flexible mechanism to represent medical data that
facilitates data exchange.2345 XML is a simplified
version of the standard general markup language
(SGML). XML allows the user to define tags for
data description while maintaining computational
simplicity by restricting many of complexities in
SGML. The combination of these merits is being
welcomed as a data representation and exchange
format in health care environment.

It is critical to remember that XML is not, itself, a
health data markup language. XML is a standard' that
allows users to create new markup languages for
specific uses.25 Just as different database schemas are
designed to meet different needs,6'7 different XML-
based markups will be optimal for different uses. As
XML-based markups become more common there
will be an increasing need to transform data stored in
one XML markup into another markup.

The Extensible Stylesheet Language (XSL)8 is a
stylesheet language for XML. It is a simplified
variant of the document style semantics and
specification language (DSSSL), the primary
stylesheet language for SGML. Although the most
common use of XSL is to transform data from a
XML markup into HTML for display by a browser, it
is also capable of transforming data among various
XML markups.

We have examined the usefulness of XSL for the
transformation of healthcare data. A number ofXML
data transformations have been identified and the
XSL implementation of each transformation has been
studied. The experimental context is the
transformation of raw Natural Language Processing
(NLP) data into a form suitable for cross patient
reporting.

CONTEXT

As part of a new mammography reporting system,9
there was a need to convert XML output from the
MEDLee natural language processing systems into a
format suitable for cross-patient reporting. The XML
output of MEDLee is deeply nested and reflects the
source document syntax. In its raw form, MEDLee
output is difficult to store in a conventional relational
database. While a generic data modeling approach
could have been used,6 querying such a repository
requires a non-trivial effort to insulate complexity of
data organization from the user.7 Instead, we chose
to translate the MEDLee output in a conventional
relational schema before storage in the database. To
separate the functions of data transformation from
data storage, a two step process was chosen. First,
data would be converted from the MEDLee XML
format into a new XML format that represented the
relational schema. Second, the data in the new XML
format would be stored in the database. In this way,
all data transformations could be performed in the
XML domain utilizing XSL. This paper examines
capabilities of XSL in the context of an automated
mammography data transformation.

Figure 1 shows a simplified example of XML output
generated by MEDLee. For the sake of brevity, tags

1091-8280/99/$5.00 © 1999 AMIA, Inc. 142

have been shortened to single characters and some
tags are omitted. Data transformations in XML are
often easier to visualize when the document is
represented as a graph. The document in Figure 1
can also be represented by the tree data structure in
Figure 2.

Input:
"suspicious microcalcification in the left
breast for which biopsy is recommended."

Output:
<S form = "xml">

<P v = "suspicious microcalcification">
<B v ="breast">

<R v = left"'>

<Pm v ="model"/>

<IP>
<Rx v = "biopsy">

</S>

S: structured
B: body location
Pm: parse mode

P: problem
R: region
Rx: recommendation

Figure 1. Simplitied example of MEDLee XML
output.

Figure 2. MEDLee output represented as tree
diagram.

Throughout the paper, the XSL transformation
examples will be based on the tree in Figure 2 if not
specified otherwise. Space does not allow a full
discussion of the details of the XSL syntax but the
general flow of a XSL processing will be discussed.

DATA TRANSFORMATIONS

We have identified a set of nine transformations for
use in a mammography data transformation. These
are supported by XSL to varying degrees. Figure 3
summarizes these transformations. Examples of each
transformation will be described in more detail, along
with XSL implementation issues.

F ilte rin g

S [m

S peecific a tie A

Subs titution

M e rg in g:1I

L..-i IL ...-I P.U11-up R
Figure 3 Summary ofXSL transformations

Filtering
Filtering is useful when the MEDLee output contains
data that does not need to capture in the repository.
For example, the parse mode <Pm> is system
information for MEDLee that will not be stored in
our database. XSL supports this transformation by
allowing us to extract only the data of our interest.
Figure 4. is a complete XSL stylesheet. Each
template rule in the stylesheet corresponds to a node
in the source tree and performs a specified action in
the rule. In our example, the template rule prints the
data in the node. The lack of a <Pm> rule means that
parse mode information is ignored.

Substitution
Substitution is necessary to map multiple concepts in
source documents into a single canonical concept.
For example, multiple clinical problems detected in
mammography could be mapped to a single term that
represent those concepts collectively. Figure 5 shows
a template rule that maps two terms, 'suspicious
microcalcification' and 'calcification,' into a
canonical term, 'calcification.' Although massive
XSL documents could, in theory, be used for large-
scale vocabulary mapping, this would create a
maintenance nightmare. A more likely scenario is
that XSL would be reserved for relatively simple
translations and table-driven systems would be used
for large-scale applications.

Such mapping may result in some information loss
due to different levels of granularity in multiple
similar concepts needs to be mapped to a canonical
concept. In this example, we lost information such as
a grade of the problem 'suspicious' as a result of the
canonical mapping. This can be addressed through
specification.

143

|r

.......<"'... ;..

-sum: suspicious microalcification

=

Figure 4 XML Stylesheet showing filtering.

<xsl:template match="P[@lv='suspicious
microcalcification' or @v='calcification'r>

<P v=calcification >

<xsl:apply-templates I>

</xsl:template> -

Figure 5 Substitution.

<xsl:template match="P[@v='suspidous
microcaldfication'5>

<P vWcalcfficatlon"> Ot.....p.u...
<GWv usplcdous> a.....a...
<xsltapply-templates I>

<IP>......
<-/xsl:template>

Figure 6 Specification.

Specification vs. Aggregation
To retain the information that was in the of data
substitution example, we need to provide a template
rule that captures the severity or grade information of

the problem. This type of transformation we have
termed data specification. In Figure 6, not only the
problem is substituted with a term 'calcification' but
also the problem is specified with the tag <G> in
order to preserve the grading information of the
calcification.

In other cases, deeply nested information needs to be
aggregated in to a single tag. MEDLee output for
location is typically nested. In the example, body
location is modified by region <R>. It is
possible for regions to be nested several levels deep.
This involves aggregating a set of nodes in a linear
hierarchy and collecting contents of those nodes.
This is similar to the process of concept clustering.1
In the example in Figure 7, the body location
and its region <R> are aggregated in order to produce
a single location 'left breast' in the output XML
document.

Merging vs. Splitting
Data merging is needed to remove duplicate data
structures in the MEDLee output. Because MEDLee
output reflects the source document, two sentences
that refer to the same structure can appear as two
parallel branches of the tree. The sentences "The
breast is dense" and "The breast is enlarged" could be
represented in a form shown in Figure 8. The
'breast' is duplicated and needs to be merged into a
single instance. The template rules that accomplish
this transformation are shown in Figure 8.

Data splitting is the reverse of the data merging. A
single instance is split, with different children staying
with each new parent. The template rules in Figure 9
perform the data splitting on the example in Figure 8.: ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~. .. .:., : - : . ..w,:-

1l;~~~~~~~~~~~~~~~~.R

P: problem B: breast
D: dense E: enlarged

Figure 8 Example of data merging.

Transposition
Another useful transformation is the one which
exchanges two adjacent (direct parent and child)
nodes in a source tree. For example, MEDLee output
is structured so that body locations are children
of problems <P>, but for certain uses, it may be
preferable to have the problem <P> as a child of
location . This could facilitate the graphical

144

<?xml version"1.0" ?>
<xsl:stylesheet
xmlfns:xsl="http:/twww.w3.orgiTRWD-xsi"'>

<xsl template match=''>
<xs1:apply-tempIatesl>
</xsl:template>
<xsftemplate matchWS">
<S v="{@formY'>
<xsl:apply-templates/>
<Is>

<Ixsl:template>
<xsl:template match="P'>
<P v="{@vy'>

<xsl:apply-templates />

</xsIe:mplate>
<xsl:template match="B">
<B v=!{@vr>

<xsl:apply-templates />

</xsl:template>
<xsl:template match="R">>
<R v="{@v}">
.xsl:apply-emplates />

<IR>
<Iksiftemplate> .._.....-.....-...
<xsl:template match="Rx>
<Rx v='{@tRxy>
<xslapply-templates I>

</Rx>
<IxsI:template>
</xsI:stytesheet>

display of diseases or findings anatomically. An
example of this is shown in Figure 1 1.

<xsl:template match="P[B]">
<!- check if P has child B ->

<P>
<xsl:apply_templates select="BP I/>

</P>
</xsl:template>
<xsl:template match="E">
<E> <xsl:apply_templates/> </E>

</xsl:template>
<xsl:template match="C">
<C> <xsl:applyjemplates/></C>

</xsl:template>
Figure 9. Merging.

<xsl:template match="B/D">
<D>

<xsl:applIy.tempIates/>
</D>

</xsl:template>
<xsl:template match="B/C">
<C>
<xsl:applyjemplates/>

<IC><IB>
</xsl:template>

Figure 10. Splitting

<xsl:template match="P">
<!--skip-->
<xsl:apply_templates/>

</xsl:template>
<xsl:template match="P/B">
<B v='{@vy'>
<P v="{../@v}">
<xsl:applyjemplates/>

</P>

</xsl:template>
Figure 11. Transposition.

Push-down vs. Pull-up
The push-down and pull-up transformations require
special handling. Push-down transformation is a

process to take one child of the tree and make it a

child of another child as in Figure 3. The pull-up is
the reverse transformation that allows a child to move
up the hierarchy. If we know the structure of the
entire source tree in advance, the push-down
transformation can be viewed as a combination of the
filtering and the specification transformations. The
only difference is that the push-down operation
queries a sibling for the value to use for the
specification operation. The pull-up transformation
would involve breaking the parent and child
relationship as in Figure 12.

Unfortunately, the optional nature of many XML tags
means that the exact structure of most XML
documents is not known in advance. For instance, if

the structure of the node B in Figure 3 is unknown,
we cannot specify in the pull-up template
rule in Figure 12. A more complex approach for both
push-down and pull-up transformations is required.
Working Draft 3 of XSL added an xsl:copy-of
element which allows for the movement of entire
sub-trees from one location to another.
Unfortunately, this does not allow for any processing
of the moved nodes. If processing is required, the
xsl:param-variable element can be used to pass a flag
to the template for node <C> (Figure 13). Testing for
this flag provides a way to insure that node <C> is
only processed once.

<xsl:template match="B">

<xsl:apply-templates/>

</xsl:template>
</xsl:template match="C">
<C>
<xsl:apply-templates/>

</C>
</xsl:template>
Figure 12 Pull-up transformation when document

structure is known in advance.

Figure 13. Use of parameters and conditional
processing to perform Push-down operation when

document structure is variable.

DISCUSSION

Medical data transformation is a complex process.
We have presented a set of data transformations
supported by XSL. The version of XSL evaluated
represents a "working draft." Therefore, it is likely
that the syntax of, at least, some of these
transformations may change.

A characteristic that will likely not change is that
XSL lacks some features usually supported by the
programming languages. This relates to the fact that
XSL favors computational simplicity over extensive
functionality as a stylesheet language. XSL has
recently added the ability to call external functions,
which may circumvent some of these limitations.

145

<xsl:template match="B">
<xsl:apply-templates select="../C">
<xsl:param name="flag"> 1 </xsl:param>
</xsl:apply-templates>
<xsl:apply-templates/>

</xsl:template>
<xsl:template match="C">
<xsl:param-variable name="flag"> 0
<xsl:param-variable>
<xsl:if test="number($flag) = 1">
<C>
<xsl:apply-templates/>

</C>
</xsl:if>

</xsl:template>

An example of a limitation is the handling of
recursively nested structures. In specifying locations
in MEDLee, it is possible for a region <R> to contain
another region <R>. An example would be "medial
portion of the anterior segment of the right middle
lobe of the right lung." Nesting a tag within an
identical tag can create problems during data
aggregation. To handle this situation, two template
rules would be needed: one for the (nested) child
region and the other one is for the (non-nested) parent
region. These rules must be structured so that the
nested rule has precedence over the non-nested rule,
otherwise the non-nested rule will fire repeatedly at
each level of nesting. This is handled in XSL with
rule priorities. Unfortunately, even with priorities
number of rules increases linearly as the degree of the
nesting increases. For instance, if region <R> can be
nested up to 5 levels, then we need different template
rules to handle each possible depth of nesting. There
is no way to specify in a single rule recursive
processing of nested tags.

The independent nature of XSL template rules poses
other limitations. It is easy to envision cases where
there would be the need for the value of a tag in one
portion of the tree to govern the processing of another
portion of the tree. Alternately, the values obtained
from the data aggregation may need to be
manipulated and transformed into an another value in
a different portion of the tree. Although values in one
portion of the tree can be explicitly queried from
another portion of the tree, there is currently no
simple way to set the value of a global variable from
within a deeply nested template.

CONCLUSION

Our experience with XSL suggests that it is a
promising technology for medical data
transformation. Despite its limitations, XSL
supported a variety of data transformations. Our
current efforts involve the implementation of a
prototype system utilizing these transformations. An
open area of research is whether XSL is robust
enough to survive in a high-volume production
environment.

Acknowledgement

The authors thank Dr. Carol Friedman for access to
the MEDLee NLP data. This work was funded by a
grant from the New York State Science and
Technology Foundation.

References

1. XML specification 1.0 from W3 consortium.
URL:http://www.w3.org/TR/1998/REC-xml-
19980210

2. Chueh HC, Raila WF, Berkowicz DA. An XML
Portable Chart Format. Proc. AMIA Annu Fall
Symp. 1998:730-734.

3. Dubey AK, Chueh H. Using the Extensible
Markup Language (XML) in Automated Clinical
Practice Guidelines. Proc. AMIA Annu Fall
Symp. 1998:735-739.

4. Dudeck J. Aspects of implementing and
harmonizing healthcare communication
standards. Int Journal ofMed Inform
48:1998:163-171.

5. Dolin RH, Rishel W, Biron PV. SGML and
XML as Interchange Formats for HL7
Messages. Proc. AMIA Annu Fall Symp.
1998:720-724.

6. Friedman C, Hripcsak G, Johnson SB, CiminoJJ,
Clayton PD. A generalized relational schema for
an integrated clinical patient database. Proc. 14'h
Annu Symp Comp Appl Med Care. 1990:335-
339.

7. Johnson SB, Hripcsak G, Chen J, Clayton P.
Accessing The Columbia Clinical Repository.
Proc. AMIA Annu Fall Symp. 1994:281-285.

8. XSL working draft from W3 consortium.
URL:http://www.w3.org/TR/WD-xslt

9. J. Starren, C. Friedman, and S. B. Johnson. The
Columbia Integrated Speech Interpretation
System (CISIS). Proceedings - the Annual
Symposium on Computer Applications in
Medical Care:985-985, 1995.

10 C. Friedman, G. Hripcsak, W. DuMouchel, S. B.
Johnson, and P. D. Clayton. Natural Language
Processing in an Operational Clinical
Information System. Natural Language
Engineering 1 (1):83-108, 1995.

11. Nadkarni PM, Brandt C. Data Extraction and Ad
Hoc Query of an Entity-Attribute Value
Database. J Am Med Inform Assoc. Vol.5 (6)
1998:511-527.

12. Fisher D. Approaches to conceptual clustering.
Proc. Int Joint Conf on Al. 1985:691-697.

146

