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ABSTRACT

Statistical natural languageprocessors have been the
focus ofmuch research during the past decade. The
main advantage ofsuch an approach over grammati-
cal rule-based approaches is its scalability to new
domains. We present a statistical NLP for the do-
main of radiology and report on methods of knowl-
edge acquisition, parsing, semantic interpretation,
and evaluation. Preliminary performance data are
given. A discussion of the perceived benefit, limita-
tions andfuture work is presented.

INTRODUCTION

To date, most medical natural language processors
(NLPs) have been implemented using symbolic
methods based on a combination of syntactic and
semantic grammars [1-6]. The reported accuracy of
these systems has been reasonable within focused
domains [7]. However, the effort and adaptability of
to new medical domains have yet to be fully investi-
gated [8]. Deployment of NLP systems into clinical
environments has been sparse although several pre-
clinical evaluations have been reported [2-8].

Statistical natural language processors (NLPs) [9-15]
have recently gained much attention because of some
fundamental deficiencies in symbolic methods.
Firstly, it is unlikely that one can model language
using solely a rule-based system. The rules will never
be exhaustive. Most are not absolute, nor independ-
ent hence multiple rules can interact poorly. Sec-
ondly, the goal of maximizing coverage while mini-
mizing resultant ambiguity is fundamentally incon-
sistent with symbolic NLP systems [9]. Extending
the coverage of the grammar to obscure constructions
often leads to an increase in the number of undesired
parses. Thirdly, it is time-consuming and difficult to
manage the rule base in symbolic systems. In gen-
eral, rule-based systems do not scale well. Finally,

rule based system do not adapt well to unseen pat-
terns or changes in language.

Statistical NLP methods are logical to apply since
most tasks in NLP are classification problems [15].
For example, the classification of:

- A period as an end of sentence marker or not,
- A word into its part of speech class
- A link between words as a true dependency or not.

In this paper, we present our initial experience with
building a statistical NLP system for radiology re-
ports. We focus on the specific sub-problems of
sentence parsing and semantic interpretation.

METHODS

The architecture of our system is similar to many
NLP designs and consists of the following modules.

1. Structural Analyzer: Isolates sections of medical
reports (e.g., "Procedure Description", "History",
"Findings", "Impressions") and individual sen-
tences within sections.

2. Lexical Analyzer: Looks up semantic and syn-
tactic features of words in a medical lexicon
[16], normalizes dates and numerical expres-
sions, and tokenizes punctuation.

3. Parser: Determines the dependencies between
words. The parser adds arcs that indicate a
modifier relationship between pairs ofwords.

4. Semantic Interpreter: Interprets the links of the
parser's dependency diagram and outputs a set of
logical relations that form a semantic network for
the sentence.

5. Discourse Processor: Determines whether a
finding from a sentence is new or a referent to a
finding from previous sentences.
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The large mass within the posterior segments of the right upper lobe has increased
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Fig. 1 - Example sentence with arcs showing dependencies between words.

The parser and semantic interpreter stages are based
on statistical methods and are the focus of this paper.
The lexical analyzer currently does not use statistical
methods although future plans include implementa-
tion of a statistical word-sense disambiguation algo-
rithm [9]. The structural analyzer was recently con-
verted from a rule-based system to one that uses a

maximum entropy classifier [15] that uses 40 over-
lapping features and trained on 6500 sentences.

Parser
The goal of our parser is to create a dependency dia-
gram between words in an input sentence (Fig. 1).
An arc from word A to word B indicates A modifies
B. We conceptualize the mechanism of parsing as a

dynamics problem similar to how atoms aggregate to
form complex molecules. This paradigm conceptu-
alizes the process as follows:

- Words initially have no dependencies with other
words. They each exist in a free state. The free
state of a word however, is often not its ideal
steady-state. For example, an adjective is unstable
without an attachment to an appropriate head noun.

- As the parsing step proceeds, each word attempts
to configure itself into a more favorable steady
state of existence. We conceptualize forces exist-
ing between words indicating word affinities.

- The final state of the parse reflects the configura-
tion of the words that minimizes the overall energy
of the system.

To fit our implementation with this paradigm, we

designed the system with the following requirements:

- Words must have a mechanism for communicating
their identity to other words within the sentence.

- The affinity of a word for other words within the
context of the sentence needs to be estimated. For
example, which kinds of words can be attached to
the word "large" in the example in Figure 1.

- A word must be an active entity since in exists
within an evolving environment corresponding to
different stages of the parse. Words are in constant
search for a steady state of existence.

Processor Modelfor Words
The first two requirements for a word suggest a sig-
nal processor model is appropriate. Words then are
active entities characterized by their signal process-
ing behavior. This includes its emission spectrum, its
absorption spectrum, and its response function to
resonance conditions. Indistinguishable words are
characterized by their identical signal processing be-
havior and hence dynamic behavior.

The emission spectrum of a word is represented by
features that encode syntactic and semantic informa-
tion. For example, the word " mass" in Figure 1 has
syntactic features noun, singular and has semantic
features abnormal, physical object, finding, and le-
sion. The word "increased" has syntactic feature
past participle and semantic features temporal,
change, and increase.

word syntax semantics
the det definart
mass noun.sing abnorm.physobjfinding.lesion
lobe noun.sing anat.physobj.struct
increased pastp temporal.change.increase

Word-Word Interactions
Given a model for a word, we now need to describe
word-word interactions. We again take a signal
processor approach describe word-word interactions,
conceptualizing this process as a pair of sending and
receiving antennas.

First, let's look at the possible interactions that can
occur within a simple isolated two-word system. In
the discussion that follows, word 'A' has the role of a
"signal sender" and word 'B' has the role of a "signal
receiver". Word A transmits its characteristic signal
(i.e., its emission spectra) towards the receiving tar-
get word B. Word B has an inherent absorption
spectrum "tuned" to receive only certain types of
signals. For example, the word " mass" may be tuned
to receive signals for words that emit "size" or

"shape" information.
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The probability of an absorption event occurring
between words A and B (i.e., a resonance condition)
is determined empirically through supervised learn-
ing methods. The methodology is as follows:

- Collect a large sample of documents from the do-
main of interest (thoracic radiology).

- Create training data by manually indicating the
dependency diagram for each sentence to reflect
the output from an ideal parser.

- For every pair of words in each sentence, collect
statistics on how often a resonance condition oc-
curred vs. not occurred. This is equivalent to an
arc existing between words in the training data.

The result of the training set is a table containing
statistics for each pair of words (A, B) over all en-
countered contexts. The statistical distribution may
be heavily biased towards resonance or non-
resonance.

Take the word "increased" in Figure 1 as particle A
and consider two possible B particles, " mass" or
"lobe". There is high resonance between " increased"
and "mass", since lesions are frequently described as
increasing (in size). The probability of an attachment
to "lobe", on the other hand, is low. Lobes and other
anatomical structures are less frequently described as
increasing in thoracic radiology reports.

Estimating resonance statistics from a finite set of
training data leads to the problem of sparse data. The
number of combinations of all possible words A and
B that could co-occur in a sentence is extremely
large. A new sentence is likely to have pairs of
words that have never been seen in a training set.
Two methods of smoothing the statistics are used:

1. Use the semantic and syntactic features of the
words instead of the words themselves. The num-
ber of unique semantic classes is on the order of
500, the number of syntactic classes about 15.

2. The features themselves are often hierarchically
organized and can be generalized by dropping the
most specific features. For example, the word
"mass" has abnorm.physobjfinding.lesion as its
semantic features. The more general semantic
class, abnorm.physobjfinding covers more words
and abnorm.physobj covers an even larger set of
words.

Word Valence
In addition to resonance between pairs of words, our
linguistic model considers the valence of individual
words. This is the preference of words for certain
types of complements. A verb prefers to have one

direct object and not two. A noun that is the object of
a preposition prefers not to have a verbal comple-
ment.

We model the valence probability of a word in a
given parse structure by the number and type of arcs
into the word and from the word. Valence statistics
are tabulated from the same set of annotated training
sentences that are used for resonance statistics.

Parser Algorithm
The parser uses dynamic programming to calculate
the highest probability dependency structure for a
sentence. The probability of a given structure is the
product of the resonance probability of each arc in
the dependency graph, and of the valence probability
of each word in the sentence. This is summarized in
the following formula:

Pr (dependency structure sentence) =
D Pr (A OB A, B, direction, distance)-
O Pr (valence A arcs into A, arcsfrom A)

The first term in this formula is the product of the
probability of each arc from A to B. This is condi-
tioned on the features of A and of B, the direction of
the arc (right or left) and the relative distance be-
tween A and B. The second term is the product of
the valence of each word, conditioned on the combi-
nation of arcs into that word and arc from the word.

Semantic Interpreter
The syntactic parser plays an important role in nor-
malizing a wide variation in sentence structure found
in free text narrative. It is the following step, the
semantic interpreter, that creates the structured record
from the parser output. The dependency graph that
the parser produces has unlabeled arcs between
words to show modifier relations. The semantic in-
terpreter applies rules based on semantic features to
translate these arcs into the logical relations.

For example, the arc from " large" to "mass" in Figure
1 in interpreted as size of a finding, while the arc
from "increased" to "mass" is interpreted as a clinical
trend. These interpretations are based on the seman-
tic features of the words and the direction of the arc
between them in the surface structure parse. Some-
times a semantic interpreter rule must traverse more
than one arc to identify a logical relation. The arcs
between "mass" and "within" and between "within"
and "segments" are interpreted as the location of a
finding. Figure 2 lists the logical relations created
from the dependency graph of Figure 1.
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Fig. 2 - Logical relations that interpret arcs in the parsefor
the sentence in Fig. 1.

The semantic interpreter bundles logical relations
together into output frames that list attributes of a

finding, of a therapeutic or diagnostic procedure, or

of an anatomic structure. Figure 3 shows a frame
rooted on the finding "mass" from the logical rela-
tions in Figure 3. Each line in this frame either is an

attribute of the finding or is a refinement of the pre-

vious line in the frame (shown here by indentation).

Finding "1mass"
Size "large"
Number of =

Location "within" "segments"
Direction = "posterior"
Part of _ "lobe"

Direction = "right"
Direction "oupper"

Trend "increased'
Property II "size"

Fig. 3 - Structured representation as aframe

The semantic interpreter rules are derived from a set
of hand-tagged training sentences. The system de-
veloper uses a graphical interface to indicate the logi-
cal relations associated with a training sentence. The
system builds rules by comparing the parse graph for
a training sentence with a target logical relation to
find a proposed rule that creates that logical relation.
Some semantic features of the training example may

not be essential to the rule. If the training sentence
has "mass", the rule does not necessarily need to re-

quire the semantic feature "lesion", but might gener-

alize to cover all words with the feature "finding".
Generalizations of a proposed rule are tested on all
other training sentences and the generalization is se-

lected that covers as many training sentences as pos-

sible without making errors. Before a rule is finally
accepted, the human system developer is given a

chance to edit it.

Two processing steps remain before a frame is turned
into the final output of the system, structured data-
base entries. Information about a finding is often
spread across multiple sentences. The system needs

to merge together frames that relate to the same ob-
ject. In addition, the terms in a frame must be
mapped into a controlled vocabulary. These steps in
our system have not yet been implemented.

RESULTS

A prototype system has been developed and trained
on a corpus of thoracic radiology reports. Current
evaluation efforts have focused on software valida-
tion and determining whether system specifications
are appropriate (proof of concept). End-user testing
has yet to proceed.

A preliminary evaluation of our parser algorithm was
performed following the methodology used in the
DARPA-sponsored Message Understanding Confer-
ences [17]. The parser was evaluated using a ten-
fold cross-validation study design. Given the pre-
liminary state of the parser design, we did not per-

form a formal evaluation using an independent (i.e.,
unbiased) set of investigators. The evaluation de-
scribed here was used to get a rough estimate on the
amount of training required and accuracy that could
be achieved by our design. The evaluation procedure
is summarized as follows:

1. Ninety-two reports comprising I 1 15 sentences
were randomly selected from a large pool of tho-
racic radiology reports. Each report was assigned
to one of ten partitions.

2. For each sentence, one of the system developers
hand-tagged all the attachments that an ideal parser

would make. This served as the gold standard. A
system developer performed this task because there
are no universal specifications for how a parser

should behave. (Note that the parser output is not
an end-user result. A more formal evaluation us-

ing an independent set of investigators is planned
after the current proof-of-concept evaluation).

3. The ten-fold cross validation study was performed.
Each partition was used for testing. When the
system was tested on sentences from one partition,
the other nine partitions were used to train the sys-

tem. Training involved learning resonance condi-
tions between words. Evaluation of the test parti-
tion involved one of the developers scoring
whether an arc in the output parse was: a) correct
(i.e., agreed with the gold standard), b) missing, c)
incorrect (connecting wrong set of words).

4. The performance of the parser is summarized ac-

cording to the measures recall and precision. Re-
call is the percentage of correct arcs the parser

identifies. Precision is the percentage of arcs re-

ported that are correct. Table 1 shows the results
as a function of resonance threshold value.
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Size (modifies "mass", value = "large")
Number of (modifies "mass", computed value)
Location (modifies "mass", rel="within", value = "segments")
Direction (modifies "segments", value = "posterior")
Part of (modifies "segments", value = "lobe")
Direction (modifies "lobe", value = "right")
Direction (modifies "lobe", value = "upper")
Trend (modifies "mass", value = "increased")
Property (modifies "increased", value = "size")



Resonance Recall Precision
Threshold (%) (%)

0.0 90.0 89.4
0.3 88.4 91.0
0.5 82.5 93.4
0.7 77.7 95.2
0.9 62.7 97.7

Table 1 - Parser performance from ten-fold cross-
verification study using 1100 sentences.

DISCUSSION

We present a statistical natural language processor
based on resonance probabilities between word pairs.
The parser uses no hand-coded rules, but rather gath-
ers word affinity knowledge from training sentences
whose dependency diagrams are manually specified.
This ability to acquire knowledge is important for
adaptability to new domains and writing styles. In
the ten-fold cross validation study, the parser
achieved high performance from a surprisingly small
amount of training data. Recall and precision
reached a percentile in the mid 80's from a little over
one hundred training sentences and reached recall
90% at precision 89% by one thousand training sen-
tences. The statistical models of resonance allow the
system to generalize well, and behave gracefully in
the presence of unseen grammar patterns.

Work is underway to improve the following aspects
of the system: 1) Co-reference resolution, 2) dy-
namic modification of word features, 3) integration
of existing electronic medical lexicons, 4) improved
handling of conjunctive lists and parenthetical
phrases, 5) handling of unknown words, 6) mapping
system output representation to a controlled reference
terminology such as SNOMED-RT.
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