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As computer based clinical case simulations become
increasingly popular for training and evaluating
clinicians, approaches are needed to evaluate a
trainee's or examinee's solution of the simulated
cases. We developed a decision analytic approach to
scoring performance on computerized patient case
simulations.
We developed decision models for computerized
patient case simulations in four specific domains in
the field of infectious disease. The decision models
were represented as influence diagrams. A single
decision node represents the possible diagnoses the
user may make. One chance node represents a
probability distribution over the set of competing
diagnoses in the simulations. The value node
contains the utilities associated with all possible
combinations ofdiagnosis and disease. All relevant
data that the user may request from the simulation
are represented as chance nodes with arcs to orfrom
the diagnosis node and/or each other. Probabilities
in the decision model were derived from the
literature, where available, or expert opinion.
Utilities were assessed by standard gamble from
clinical experts.
The process of solving computer based patient
simulations involves repeated cycles of requesting
data (history, physical examination or laboratory)
and receiving these datafrom the simulations. Each
time the user requests clinical data from the
simulation, the influence diagram is evaluated with
and without an arc from the corresponding chance
node to the decision node. The difference in expected
utility between the two solutions of the influence
diagram represents the expected value of information
(VOI)from the requested clinical datum. The ratio of
the expected VOI from the data requested and the
expected value of perfect information about the
diagnosis is a normative measure of the quality of
each of the user's data requests.
This approach provides a continuous measure of the
quality of the user's data requests in a way that is
sensitive to the previous data collected. The score
distinguishes serious from minor misdiagnoses. And
the same influence diagram can be used to evaluate
performance on multiple simulations in the same
clinical domain.

INTRODUCTION
Interest in the use of computer based patient
simulations in the training and evaluation of
clinicians has grown in recent years because
computer simulations offer interactivity and evolution
of clinical problems over time in a way that is
impossible with a paper based test. However, the
field is only now developing rigorous methods for
measuring a clinician's solution of a computer based
case. [1, 2]
If clinical simulations are going to realize their
potential for performance assessment, clinicians
completing a lengthy simulated case must receive
more than a single binary score based on whether the
diagnosis was correct. A more sensitive scoring
approach would measure the quality of the clinician's
judgment tbroughout the evolution of the case.
This is difficult because evaluation of a clinician's
judgment is context sensitive. Even in the same
simulated case, an invasive test may be justified when
certain information has been discovered earlier in the
case, but inappropriate before that information is
known. Approaches that do not take context into
account also tend to reward novices for being
thorough while penalizing experts for their
efficiency.[3]
Scoring simulated cases as right or wrong based on
the diagnosis also neglects that some misdiagnoses
are worse than others. For example, when a treatable
infection or an untreatable malignancy are both
possibilities, it may make sense to treat the possibility
of an infection even when malignancy is more likely.
Meaningful performance assessments should take
into account the information previously gathered
from the case, the relative seriousness of possible
misdiagnoses, and the potential ability of each
information request to improve the diagnosis. We
have developed a system that utilizes the principles of
decision analysis to measure these facets of a
clinician's reasoning throughout a simulated case.
This paper describes the use of decision models,
represented as influence diagrams, to evaluate
clinicians' solutions of simulated patient cases. We
present the results of a pilot study which exemplifies
the type of information this approach can yield.

METHODS
In the process of completing a patient simulation, the
clinician is presented with a set of presenting
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symptoms. The clinician evaluates the case by
requesting information from the simulation, receiving
this information, evaluating it, and requesting
additional information. This cycle is repeated until a
diagnosis is made. Each turn of the cycle is used as
an opportunity to evaluate the clinicians information
request.
Decision Analytic Approach
To score each information request, we utilize the
decision analytic concept of expected value of
information (VOI). Decision analysis is a method for
comparing the relative merits of alternative actions
based on the expected value of the possible outcomes
of those actions.[4] Decision analytic models
represent the alternative courses of action the
decision maker may take, the probabilistic
relationships between those actions and the possible
resulting outcomes, and a quantitative representation
of the relative desirability, or utility, of each outcome.
The product of the probability and the utility of each
outcome, summed over all the possible outcomes, is
the basis for comparing alternative actions. The
value of any course of action is measured by this
expected utility.
Prior to choosing a course of action, a decision maker
may collect additional information relevant to the
decision. This information may alter the probabilities
of certain outcomes and, thereby, change which
course of action he will choose. For example, a
blood test may suggest or exclude a particular
diagnosis depending of whether the test is positive or
negative. Any information that can potentially
change which course of action is best has some
potential value that can be measured by the change in
the expected value of the decision. We call this
change the expected VOI (Chap 5 in [4]), and it is the
basis on which we score information requests from
the clinician using the case simulation. To calculate
the expected VOI, we have developed decision
models using influence diagrams[5].
Developing the Influence Diagrams
An influence diagram is an directed, acyclic graph,
i.e., a set of nodes incompletely connected by
directed arcs.[5, 6] The nodes represent three types
of variables in the decision model: chance nodes,
decision nodes, and a value node. Each chance node
represents a random variable and the probability
distribution over its sample space. Arcs entering a
chance node represent conditioning variables.
A decision node represents the set of alternative
actions that may be taken at a given time. Arcs
entering a decision node represent information that
will be available at the time the decision is made.
The value node represents the quantitative value, or
utility, placed on the outcome of the decision. Arcs
entering a value node come from those variables

whose value affects the overall value or utility of the
outcome.
We developed an influence diagram, for each of four
clinical presentations (domains): fever and mental
status changes, fever and rash, fever and cough, male
urethral discharge. Each influence diagram contains
between 21 and 27 chance nodes, one decision node,
and one value node. The differential diagnosis for
each included between 8 and 11 disease hypotheses.
One chance node, called the disease node, represents
a set of competing diagnostic hypotheses. Other
chance nodes represent findings the clinician may
request. Some "state" nodes represent states that may
be present but are not directly observable. The
probabilistic relationships between these nodes is
shown by directed arcs between them. The
differential diagnoses and relevant findings for each
clinical presentation were obtained by review of the
medical literature and expert opinion.
Figure 1 shows a simplified influence diagram
representing the evaluation of a patient with fever and
cough. The DISEASE node represents two
competing possibilities, Bacterial Pneumonia or Viral
Infection. Each is associated with a prior probability.
Other chance nodes include the NEUTROPHILS
node which may be Elevated or Normal. The
probability that the neutrophils are elevated depends
on whether the disease is bacterial or viral. Thus,
there is a different probability of elevated neutrophils
for each value of the D I S EA S E node. In
epidemiological terms, this is the sensitivity of
elevated neutrophils for bacterial disease. This
relationship is depicted by the arc between DISEASE
and NEUTROPHILS.

Figure 1. A simplified influence diagram.
Figure 1 also illustrates that some nodes representing
findings may be derived from other nodes. In this
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case, the WB(L, or white blood cell count, depends on
both the neutrophil and the lymphocyte count. If the
clinician requests a WBC without a differential count,
the probability that the count will be elevated
depends on the probabilities that the neutrophil and
the lymphocyte counts are elevated.
Figure 1 also shows how the interdepencies between
findings can be represented with hidden "state"
variables. The patient may have a LOBAR
INFILIRATE in the lung, and this probability
depends on the underlying disease. However, the
clinician cannot directly observe the presence of a
lobar infiltrate. Instead, she can observe the presence
of crackles on chest exam or consolidation on chest
x-ray. These are indirect measures of lobar infiltrate.
Because they both measure the same underlying
process, albeit imperfectly, they provide partially
redundant information. So the VOI from a chest x-
ray may be substantially less after the presence of
crackles has been detected on clinical exam.
In general, risk factors such as immune compromise,
foreign travel, underlying diseases or other exposures
were represented as chance nodes with arcs directed
into the DISEASE node (figure 1).
Estimating Probabilities. Once the structure of the
influence diagram was developed, the probabilistic
relationships between variables were obtained by
review of textbooks and literature identified by
searching the Medline database. Data on prevalence
of diseases and sensitivity and specificity of findings
were used to estimate model parameters. Where
these were not available, subjective estimates of
internists, pediatricians and infectious disease
specialists were used.
Assessing Utilities. The value placed on the outcome
of the simulation depends on the diagnosis the
clinician makes and the disease the simulated patient
has. For every combination of diagnosis and disease,
the value node stores a utility. By convention, the
utility is a number between 0 and 1, where 0 is
assigned to the worst outcome and 1 to the best. In
our simplified example (figure 1), the highest utility
(1) is associated with viral infection correctly
diagnosed because this is the milder condition and the
patient would receive no unnecessary treatment. The
lowest utility is associated with bacterial pneumonia
misdiagnosed as viral infection. In this case, a
potentially fatal disease with an effective treatment
would be left untreated. Intermediate values go to the
correct diagnosis of bacterial pneumonia, which is
still more serious than viral infection even with
treatment, and viral infection misdiagnosed as
bacterial pneumonia, leading to unnecessary
treatment.
Utilities were assessed by interview of practicing
internists, using the standard gamble method.[7]

Simulation Authoring and Delivery
A computer based patient simulation authoring and
delivery program was developed using Hypercard.
Eight cases, two from each of the four influence
diagrams, were developed. The cases were authored
by an infectious disease specialist and were based on
clinical cases in his experience.
In each simulated case, clinicians are provided a case
presentation, containing name, age, sex, and chief
complaint of the patient. The clinician then has the
opportunity to request information from a
hierarchical menu of history, physical examination,
and laboratory items. For each request, a log file
records the item requested and the value returned by
the simulation program to the clinician.
Solving the Influence Diagrams
A scoring program was developed which uses
influence diagrams to score the clinician's interaction
with the patient simulation by determining the
expected VOI from each finding the clinician
requests. The influence diagrams were evaluated
using the algorithms described by Shachter.[6] The
algorithms were implemented in C on a Macintosh
Quadra 650. For each finding the clinician requests,
the algorithm calculates the expected VOI as
described below. The result provided by the
simulation is used to instantiate the corresponding
variables, updating the influence diagram.
Before the clinician requests any findings, the scoring
program calculates the expected value for each
diagnosis in the decision node of the influence
diagram. The highest expected value among the
diseases becomes the expected value of the
simulation at that point. The program then reads the
log files from the simulation program.
A finding in the simulation may correspond to none,
one, or many of the nodes in the influence diagram.
For each finding the clinician selects, an arc is
introduced into the influence diagram going from the
node(s) corresponding to the finding to the diagnosis
decision node. The expected value of the influence
diagram is then recalculated. The difference between
the expected value of the influence diagram before
and after the arc is introduced is the expected VOI for
the finding.
Next the value of the finding given by the simulation
is used to update the probability distribution over the
diseases in the disease node, using Bayes' theorem,
and the node(s) corresponding to the finding is
eliminated.
Pilot Test
In a small demonstration study, a convenience sample
of fourth year students at the University of North
Carolina at Chapel Hill and the University of
Pittsburgh was recruited to solve the computer based
patient simulations. Trace files were obtained and
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analyzed by the scoring program. The results of nine
students who completed a case of cough and fever
were analyzed.

RESULTS
Pilot Test
Table 1 illustrates a small portion of the tabular
output of the scoring program. Each row in the table
corresponds to an information request by the
clinician. The first column, Simulation Item, is the
finding requested from the simulation. The second
column, Influence Diagram Node, is the name of the
node(s) corresponding to the finding. An entry of
"NullNode" means the finding requested has no
corresponding node in the influence diagram. The
third column, Expected VOI, is the expected value of
the finding before the result of the information
request is known. The Result column shows the
value of the finding returned by the simulation
program, and the Optimal Diagnosis, is the diagnosis
with the highest expected value after the value of the
finding is known.
Only findings that, depending on their value, can
potentially change the optimal diagnosis have a non-
zero VOI. The expected VOI for any finding varies,
depending on the items requested before it and the
information returned by the simulation. For example,
if a chest exam revealed findings consistent with
pneumonia, the expected value of a chest x-ray may
go down because the information is redundant. A
finding that has no relevance to the clinical situation
will have no corresponding node in the influence
diagram no VOI.
Simulation Influence Expected Result Optimal

Item diagram Value of Diagnosis
node Info.

Chest CXR- 0.0038 Focal Chlamydia
x-ray finding Densities

CBC WBC 0.032 Decreased TB

Differen- Polys, 0.000845 Normal, TB
tial Cell Lymphs Decreased
Count __________ _____

Hemo- NullNode 0 nil TB
globin

Table 1: Tabular output of the scoring program
Among nine students completing one simulated case
of fever and cough, the average number of findings
requested per student was 64 (range 41-116). Of the
findings requested, on average 5 findings (95% CI: 4,
6) had a non-zero VOI, i.e., had the potential to
change the leading diagnosis.
One summary score for the solution of a simulation is
the average VOI over all the findings requested. This
statistic reflects efficiency because it increases in
value as high information items are requested and
decreases as low information items are requested.

The average expected VOI for all items requested
was per simulation in our pilot study was 0.8x10-3
(range 0 - 2.1x10-3). Among findings with a non-
zero VOI, the average expected VOI was 10-2 (range
3.4x10I3 - 3x10 -2). The VOI is interval valued and
has linear properties so the scale may be multiplied
by any positive number or added to any constant
without changing the relative values of the finding.[8,
9] So these values could be scaled up to make them
more readily interpretable This also means that the
values of information from one influence diagram can
be scaled to be comparable to those from any other.
Figure 2 shows a graphical representation of the
progress of one subject through the simulation. The
horizontal axis shows the number of the information
item requested during the simulation, and the vertical
axis shows the item's expected VOI. This graph
shows, at a glance, the points at which the data with
positive VOI are obtained and their relationship to the
type of data gathered (e.g., history, examination, or
laboratory) or points of access to paper or computer-
based information sources. In figure 2, for example,
the laboratory data requested had the highest
expected VOI.

Value of
Information

Hx an bx-av-m-lI 0x and exam
0.035

0.03

0.025

0.02

0.015

0.01

0.005
0 l l

I Lab tests I

Il
-_ _ _e I

Figure 2: Graphical output of the scoring program.
DISCUSSION

We have developed a method for assessing
performance on computer based clinical simulations
using the decision analytic concept of expected VOI.
The use of decision theory to assess performance
offers several advantages. Because the theory uses
probabilistic inference, relationships in the model can
be derived from the scientific literature whenever
such data exist. Fundamental epidemiological
concepts such as prevalence, sensitivity, and
specificity are explicitly represented in the influence
diagrams. Moreover, the decision analytic approach
is quite general. For example, it can be applied to
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simulations in which the clinician is asked to choose
therapy.
The use of utilities can potentially take into account
not only the sensitivity and specificity of a finding,
but also the risks and costs of a test and the risks and
costs of possible misdiagnoses. All of these concepts
are weighed into the expected VOI measure.
This approach also evaluates every step in the
solution of the simulated case, not just the correctness
of the answer. In fact, when a case is very atypical
but evaluated appropriately, the algorithm may
produce a high score even if the answer is wrong. By
scoring each step in the solution of a simulated case,
the VOI provides a metric by which the diagnostic
process can be dissected. It becomes possible to
compare the information seeking behavior of experts
and novices or to examine the effect of external
information sources on data gathering, for example.
The approach can also generate summary scores. For
example, the sum of VOI from all findings requested
will reflect the thoroughness of the clinician, but the
average VOI expresses the efficiency with which the
case was done
The use of influence diagrams has some practical
advantages as well. One influence diagram can be
used to evaluate many simulations of different
diseases. As long as the starting point of the
simulations is essentially the same, any disease in the
differential diagnosis can be represented. Moreover,
using simulation techniques, new simulated cases
can be derived automatically from the probabilistic
relationships in the influence diagrams, a normally
expensive and time consuming process.
Our pilot work suggests some challenges and
unanswered questions. We have found that the
process of generating the influence diagrams is
difficult, and time consuming. Often critical data are
not available in the literature, and subjective
estimates are necessary. This may be offset
somewhat by the relatively low marginal cost of
creating new simulated cases once the influence
diagram has been built.
Our utilities were obtained by standard interview
techniques with medical experts, but utilities reflect
individual preferences.[9] Decision analysis does not
offer a method for obtaining "consensus" utilities.
Measuring how sensitive the expected VOI is to
changes in utilities is one objective of our ongoing
work.
We found that relatively few (<10%) of the findings
requested had a non-zero expected VOI. This may
result from several characteristics of the specific
diagnostic problem. For example, if the probability
of a particular diagnosis is very low, many data
supporting it must be obtained before it becomes the
optimal hypothesis. Similarly, if one diagnostic
possibility is easily and effectively treated, but quite

dangerous if left untreated, it may remain the optimal
diagnosis even when it is not the most likely
diagnosis. The sensitivity of the expected VOI
measure to the underlying probabilities and utilities
more accurately reflects clinical reality. However, it
suggests that selecting the right diagnostic problems
will determine if enough findings have positive VOI.
A decision analytic approach to scoring clinical
simulations appears to have potential applications in
the study of clinical decision making processes as
well a possible role in examinations of testing
agency. While there are several advantages to a
decision theoretic approach, many questions remain
to be answered. We have demonstrated a proof of
concept are conducting studies to explore the validity
and reliability of the approach.
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