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Abstract

Background: Nowadays modern biology aims at unravelling the strands of complex biological
structures such as the protein-protein interaction (PPl) networks. A key concept in the
organization of PPl networks is the existence of dense subnetworks (functional modules) in them.
In recent approaches clustering algorithms were applied at these networks and the resulting
subnetworks were evaluated by estimating the coverage of well-established protein complexes
they contained. However, most of these algorithms elaborate on an unweighted graph structure
which in turn fails to elevate those interactions that would contribute to the construction of
biologically more valid and coherent functional modules.

Results: In the current study, we present a method that corroborates the integration of protein
interaction and microarray data via the discovery of biologically valid functional modules. Initially
the gene expression information is overlaid as weights onto the PPl network and the enriched PPI
graph allows us to exploit its topological aspects, while simultaneously highlights enhanced
functional association in specific pairs of proteins. Then we present an algorithm that unveils the
functional modules of the weighted graph by expanding a kernel protein set, which originates from
a given 'seed' protein used as starting-point.

Conclusion: The integrated data and the concept of our approach provide reliable functional
modules. We give proofs based on yeast data that our method manages to give accurate results in
terms both of structural coherency, as well as functional consistency.

Background

In the post genomic era one of the most challenging tasks
is to reveal modular structures in biological networks, in
order to comprehend the function and the dynamics of a
living cell [1,2]. The vast amount of genes and proteins
that participate in biological networks imposes the need
for determination of functional modules within the net-

work in order to reduce the complexity, while these mod-
ules will be the first step in deciphering the composite
genetic or cellular interactions of the overall network.

The functional module is defined [1] as a group of genes
or their products, whose function is separable from those
of other modules. The members of the group share genetic
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or cellular interactions e.g. co-expression, members of the
same protein complex, or of the same metabolic or signal-
ling pathway, or of the same cellular aggregate. A very
important property of the module is that its members
share more interactions among themselves than with the
members of other modules, which is obvious in the net-
work topology [1].

The determination of small-scale functional modules, in
the form of protein complexes [3] included in them, from
large-scale interaction networks is therefore crucial in
understanding the relation between the function and
organization of a network. Towards this goal, several algo-
rithms, ranging from hierarchical clustering [4] to meth-
ods considering local topology-based concepts [5] and
graph alignment for determining probabilistic motifs [6],
have recently been applied for detecting modules in pro-
tein interaction networks. In these approaches the protein
network is considered as an unweighted graph, where
nodes correspond to proteins and edges to interactions
among them. Algorithms based solely on topological
aspects manage to capture several features of complex net-
works. Nevertheless they might prove to be insufficient
when applied at protein interaction networks that include
special characteristics like inter-module crosstalk.

In this direction recent studies perform clustering after
transforming the graph to its weighted correspondent.
Various methods have been applied for weighting a graph.
Pereira et al. [7] weighted an interaction based on the
number of experiments that support it. Rives and Galitski
[4] and Arnau et al. [8] weighted the distance between two
proteins with the minimum shortest path between them.
Even though these approaches assign some kind of confi-
dence score in a certain interaction, still they fail to allo-
cate a possible functional association in a pair of proteins.

The development of high throughput techniques, such as
yeast two-hybrid system [9], protein complex identifica-
tion by mass spectrometry [10,11] and microarray gene
expression profiles [12,13], have generated a vast amount
of data concerning gene/protein function but the chal-
lenging task is to integrate different data sources, in order
to find more reliable functional modules in the network
topology. Clustering in gene expression, showed that sim-
ilarity in biological role often corresponds to expression
similarity [14] but there are cases where functionally
related genes show dissimilar expression profiles or are
inversely co-regulated [15].

On the other side protein-protein interaction data reflects
the collaboration of proteins to achieve a common goal.
Several initial studies [16,17] attempted to investigate
possible relation among mRNA and protein expression
level. These works resulted in the fact that expression lev-
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els and protein abundance are correlated to some degree.
These first concepts were furthered investigated by works
like Jansen et al. [18] and Tornow and Mewes [19] that
revealed a relation between PPI and gene expression, by
associating both data sources. Specifically it was shown
that the subunits of a permanent complex are co-
expressed whereas protein interactions that descend from
transient complexes or from yeast two-hybrid experi-
ments have weak relationship with gene expression. In
addition, recent studies concentrated on inferring gene
function based on both data sources [20-22].

In our study we introduce a new method for integrating
gene expression data and protein-protein interactions
(PPI) in order to determine functional modules. Specifi-
cally, given a graph describing a set of proteins and the
experimentally determined interactions among them, we
assign a non-negative weight to each one of these interac-
tions. This weight descends from clustering the gene
expression profiles of the corresponding proteins, an
approach that to the best of our knowledge has not been
used before in the literature. Our goal is to discover bio-
logically relevant PPI subnetworks, out of a larger net-
work, whose proteins interact significantly. Therefore,
after the creation of the weighted graph we suggest a new
algorithm for the determination of functional modules
within the original PPI graph starting from a kernel pro-
tein group that originates from a 'seed' protein.

We prove based on data of Saccharomyces cerevisiae that the
integrated approach we present manages to adequately
and solely identify coherent modules and at the same
time outperforms other methods in the literature.

Results and discussion

In our approach, we have reinforced the simple graph
structure by integrating gene expression profiles and pro-
tein interactions of Saccharomyces cerevisiae, in order to
detect valid functional modules, in terms of protein com-
plexes they contain. We created a weighted PPI graph, in
which the weight of the interactions originates from clus-
tering the gene expression profiles of the corresponding
proteins. Specifically the weight of a PPI derives from a
metric that takes into account the distance of the corre-
sponding gene expression profiles from the centroids of
their clusters, as well as the distance between the two clus-
ter centroids themselves. Next we applied at the enriched
PPI graph a new algorithm called DMSP (Detect Module
from Seed Protein), whose role was to construct func-
tional modules starting from a 'seed' protein that belongs
to our dataset. All the steps of this procedure are described
in detail at the Methods section.

The derived modules are evaluated in terms of functional

enrichment in GO terms, structural coherency and cover-
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age in protein complexes. Additionally we compare the
modules of our integrated method with the modules
descending from PPI data only (named hereafter PPI
method), after the application of the algorithm described
in the study of Wu and Hu [23] (named hereafter W&H
algorithm) to our PPI dataset.

Case study evaluation

To our knowledge there are no studies similar to ours,
except one presented in [23], whose algorithm builds like-
wise modules from seed proteins based however only on
PPI data. Of course in literature there many available algo-
rithms for partitioning the PPI graph [24,25], nevertheless
they have different theoretical concept and implement an
overall clustering of the graph, whereas DMSP as well as
other similar methods like the W&H algorithm focus on
certain parts of the PPI network. Specifically these algo-
rithms concentrate on specific fractions of the graph struc-
ture in the sense that the determination of the functional
modules is directed by the initial protein seed given as
input to the algorithm. Thus, in order to avoid the proba-
ble false superiority of our algorithm against an overall
clustering approach, we will compare the performance of
our integrated method against a method restricted to pro-
tein-protein interaction data only [23].

In this work we constructed several functional modules
starting from a randomly selected 'seed’ protein. This pro-
tein is part of a known protein complex that we want to

Table I: Statistical/Functional data of determined modules.

http://www.biomedcentral.com/1471-2105/8/408

examine. Our approach manages to prevail over the
method of Wu and Hu [23] in all the cases examined in
this work. An example is the module of the SRB-Srb10p
complexes (Figure 1D) that was built with SRB6 as seed
protein. Srb10p is a cyclin dependent kinase complex (4
members) that phosphorylates RNA polymerase II and
participates in transcription [26]. SRB is a mediator com-
plex that transmits regulatory signals from DNA-binding
transcription factors to RNA polymerase II [27]. Our
method succeeded to find 4/4 proteins of Stb10p complex
and 18/21 proteins of SRB complex, in a module of 26
members (Table 1). In comparison to the similar study
[23], which found 14/21 proteins of SRB in a module of
39 members along with other complexes, our results are
better and the method captured the Stb10p complex that
is associated to SRB in transcriptional level.

A second example is the module of DNA polymerase
alpha (I) primase-NOT-CCR4 complexes, identified with
CDC39 as seed protein (Table 1). The DNA polymerase
alpha (I) - primase complex contains 4 proteins, all
involved in DNA replication [28]. Its structural and bio-
chemical properties are conserved across a wide range of
species. NOT complex contains 5 proteins and CCR4
complex contains 13 proteins. Both complexes are gene
expression regulators and participate in transcription and
in DNA damage response. Our method succeeded to find
5/5 proteins of NOT complex, 4/4 proteins of DNA
polymerase alpha (I) - primase complex and 7/13 pro-

Functional Modules

Protein Complexes in Functional Modules

Seed Protein Connectivity Density Members R MIPS Protein Complex p-Value
YGR210c 0.61 12 0.91 I. elF2B* <le-14

2. elF2* 5.4e-10

3. Cytoplasmic translation init <le-14

CDC39 (YCR093w) 0.73 20 0.75 I. NOT complex* 1.9e-13
2. DNA polymerase alpha (I) — primase* 7.5e-11

3. CCR4 complex <le-14

TAF5 (YBR198c) 0.79 30 0.83 I. TFIID* <le-14
2. TAFlIs* <le-14

3. SAGA* <le-14

4. ADA <le-14

RPB5 (YBR154c) 0.73 32 0.77 I. RNA polymerase llI <le-14
2. RNA polymerase | <le-14

SRBé6 (YBR253w) 0.77 26 0.89 I. RNA polymerase Il holoenzyme <le-14
2. Kornberg's mediator (SRB) <le-14

3. Srb10p* complex 2.3e-10

PRE3 (YJLOOIw) 0.83 18 0.81 I. 20S proteasome™ <le-14
2. 26S proteasome <le-14

SECI0 (YLRI66c) 0.75 10 0.80 |. Exocyst complex <le-14
RFC5 (YBR0O87w) 0.84 10 0.92 |. Replication factor C complex* <le-14
ARCI8 (YLR370c) 0.77 6 0.87 I. Arp2p/Arp3p complex <le-14
SEC27 (YGLI37w) 0.97 10 1.0 I. TRAPP <le-14

The sub-columns of 'Functional Modules' contain statistical data for various modules of different size, while in the two last sub-columns we display
the MIPS description of the basic complexes of each module and their corresponding p-values. (*) DMSP manages to find the entire complex.
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Examples of modules with various sizes resulting from our integrated method. Functional modules determined by
DMSP are represented as graphs, where vertices represent proteins and edges represent interactions that have been experi-

mentally determined. In this figure, we give some examples of modules with less than 20 members (A, B, C) and modules with
more than 20 members (D, E). In each one of these modules protein complexes were identified. This module (A) contains the
Arp2p/Arp3p complex (B) the Replication Factor C complex (C) the 20S Proteasome that was discovered in its entirety, (D)
the SRB-Srb10p complexes and (E) the ADA-SAGA-TFIID complexes.

teins of CCR4 complex in a module of 20 members. Again
in comparison to the study of Wu and Hu [23] our
method gave better results since the module they deter-
mined had 40 members. Another interesting module is
the Arp2p/Arp3p complex (Figure 1A) that was con-
structed with ARC18 as 'seed' protein. This complex
involves 6 proteins, which take part in actin-filament
organization and influence the maintenance of actin-
based structures [29]. Our method succeeded to find 5/6
proteins of this complex in a module of 6 members (Table
1). Again in comparison to the associated study [23], our
method gave better results, since their module consisted
of 20 members.

Finally, we present the module of ADA-SAGA-TFIID com-
plexes (Figure 1E) that was built with TAF5 as seed pro-
tein. ADA complex is part of a larger complex named ADA
complexes, which contains proteins that play an essential
role in organization of chromosome structure [30] and in
transcription. SAGA complex is a multifunctional co-acti-
vator that regulates transcription by RNA polymerase 11
[31]. TFIID contains proteins mostly involved in initia-
tion of RNA polymerase II transcription and in transcrip-
tional control [32]. SAGA and TFIID are closely related
since both participate in the expression of RNA polymer-
ase II transcribed genes [31]. Our method succeeded to
find over 95% of the ADA and SAGA complexes, and 13/
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13 of TFIID complex in a module of 30 members (Table
1). In comparison to the study of Wu and Hu [23], our
method again presents better results since they identified
in a module of 39 members, parts of the SAGA and TFIID
complexes.

The defect of the algorithm used in the cross-checked
study, is that it tends to build large modules in order to
capture certain complexes, whereas DMSP builds small-
sized modules where almost all members are part of a
complex. In this way the condition proposed by Spirin
and Mirny [33], that the size of a module should range
within 5-25 members, is satisfied.

Nevertheless, if we want to examine thoroughly our
approach, we have to extend the conducted experiments
beyond isolated and individual examples. In a task like
this the eloquent question is how we choose the 'seed'’
proteins. The answer lies in the concept of protein com-
plexes that have the leading role in the overall evaluation
of our method. Specifically we chose to examine com-
plexes with more than 5 members and 80% coverage in
terms of proteins included in our data set. The first limita-
tion is based on the fact that it is very probable for small
protein complexes to be contained in large functional
modules by chance. The second limitation deals with the
way we gathered data for this study (i.e. we decreased the
number of PPI, preserving only the highly confident
ones). So there are cases where the method fails to give
good results for certain complexes. In other words while
the information we have included in the study is ade-
quate, for certain cases can be insufficient. Most of the
studies, that exploit PPI data, avoid weeding out the false
positive and false negative interactions, thus this 'burden’
can result in misleading functional modules. However,
the limitations of our dataset offer the advantage of pre-
dicting highly confident functional modules leaving
though some space for interactions that are not yet estab-
lished but have high probability to be correct. One exam-
ple displaying this characteristic is the module of H+-
transporting ATPase vacuolar that was built from VMAS as
seed protein. The role of V-ATPase complex in eukaryotic
cells (15 members) is to couple the energy of ATP hydrol-
ysis into proton transport across intracellular and plasma
membranes [34]|. Our PPI network contains 9/15 of the
members of this complex and the rest 6 proteins are not
included. This case shows that our information is insuffi-
cient in this case. Our method succeeded to capture 8/9
proteins of this complex in a module of 10 members. In
order to find 9/9 members the module must have 29
members. This abrupt enlargement of the subnetwork
results from the 6 proteins that we lack, but at the same
time underlines the efficiency of the proposed integrated
method.

http://www.biomedcentral.com/1471-2105/8/408

We return now to the issue of deciding a set of proteins
that will be used as 'seeds’ for the construction of func-
tional modules throughout the whole data set, in order to
evaluate better our method. Towards this goal we have fol-
lowed a methodology where we sorted the members of a
certain complex, that fulfils the two limitation discussed
above (i.e. more than 5 members and more than 80% in
data coverage). Specifically we sorted its members starting
with the one that had the largest number of neighbours
(independently of the module) down to the member with
the smallest number of neighbours. Subsequently we cre-
ated a set with the top 20% of the sorted members. These
protein sets were used as 'seed' proteins in our method.
Our results show that a large amount of members in the
initially selected protein set can be used as 'seed' resulting
always in the same module. An example is the module of
20S proteasome complex (Figure 1C) which is identified
using one of the SCL1, PRE1, PRE3, PRE9, PRE10, PRE2
proteins as seed. This complex (15 proteins) is involved in
protein degradation through the ubiquitin/proteasomal
pathway [35]. Our method found 15/15 proteins of this
complex in a module of 18 proteins (Table 1). This
remark elucidates the flexibility of our algorithm that
manages to capture the 'correct' modules independently
of the 'seed' protein. In other words the vital need is not
the determination of only one protein but of a candidate
population of proteins that all will end up in the same
result. Once the candidate population is determined the
final choice of the 'seed' protein can be random.

Validation of functional modules

In order to test the validity of the functional modules
determined by our integrated approach we will employ
three criteria. The first one includes the Gene Ontology
annotation scheme to gain insights in the common
underlying biological processes of the modules. The sec-
ond one utilizes the metric of connectivity density to
show how well connected the determined modules are,
while the last one uses a metric we call complex coverage
for checking their biological relevance. At this point it is
worth mentioning that in order to show that our inte-
grated approach is superior to a method restricted to PPI
data only, we applied the W&H to our PPI dataset and
examined the resulted modules with all 3 validation crite-
ria mentioned above. However the forthcoming compari-
sons have different interpretation from the case study
evaluation where we cross-checked our modules with the
modules of the associated study as mentioned in the liter-
ature.

Additionally and in order to have a more coherent evalu-
ation we compared the results of our approach in terms of
functional enrichment analysis with a method using gene
expression data only. Specifically following the method-
ology described in [36,37] we have created a co-expres-
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sion network, where every gene expression profile
corresponds to a node. Under this scheme a co-expression
network is based on the absolute value of correlation coef-
ficient among genes and is represented by an adjacency
matrix. After creating the network we applied an average
linked hierarchical clustering algorithm using diss(i, j) = 1
- a; = 1-|cor (x; x;)|® as a dissimilarity measure where x;
represents the expression profile of the i-th gene.

Returning to the issue concerning the validation check of
the DMSP extracted functional modules, we firstly sub-
stantiated the biological significance of our modules by
estimating the GO biological process term co-occurrence
with the use of the SGD GO Term Finder [38]. This tool
calculates a p-value that represents the probability of
observing the co-occurrence of certain proteins with a spe-
cific GO annotation in a module by chance based on
binomial distribution. The statistical significance of a
module in a GO term is increased as the p-value gets
lower. We scanned all modules resulted by DMSP as well
as the modules descended from the W&H algorithm in
order to examine their functional enrichment in biologi-
cal process GO terms. In Figure 2 it is obvious that the
majority of DMSP modules (75%) has p-value bins larger
than 9, whereas the p-value bins of 80% of the W&H
modules and 83% of the modules determined by cluster-
ing the co-expression network range between 0 and 6. This
comparison establishes the superiority of our integrated
method versus approaches using only one of the two
kinds of genomic data, since the objective of a module-
detecting study is to identify modules whose members
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participate up to a great degree in the same biological
processes and thus fulfill the biological interpretation of
the term 'functional module'. Also further in our valida-
tion process we examined the modules through the pro-
tein complexes they assess. Protein complexes are too
strong indicatives that the members they contain take part
in the same biological process, since the definition of pro-
tein complex requires its members to accomplish a dis-
tinct task at the same time and place [33]. Specifically one
module detected by our integrated approach is character-
ized by APC (Anaphase Promoting Complex), an ubiqui-
tin-protein ligase, which is responsible for the
degradation of mitotic cyclins. Specifically it destroys ana-
phase inhibitory proteins and triggers the separation of
sister chromatids [39]. In this way it creates the low CDK
state essential for cytokinesis and for reforming the pre-
RCs complexes needed for another round of genome rep-
lication. Our algorithm managed to include all its 11 pro-
teins in a module of 11 members. The GO Term Finder
showed that this module is statistically enriched in two
GO terms, cyclin catabolic process (GO: 0008054) and
mitotic spindle elongation (GO: 0000022), with the
p-value < e-14 in both cases.

The verification of how well connected are the members
of a module will be resolved by employing the connectiv-
ity density. Connectivity density is the ratio of the total in-
module degrees of the vertices to the total number of their
connections. This metric has been used in many other
similar studies [3]. The connectivity density has a value
between 0 and 1, but its value should fluctuate between
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In this diagram we present the functional enrichment of modules in biological process GO terms. It is evident that the majority
(75%) of the modules extracted by DMSP has p-value bins larger than 9, whereas 80% of the modules resulting from the PPI
method (W&H) and 83% of the modules determined by clustering the co-expression network (CENC) have p-value bins rang-

ing between 0 to 6.
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0.5 and 1 if we want to have well established results. The
higher the value of connectivity density the more proba-
ble the determination of a functional module is correct.

Based on the concept of connectivity density we tested the
capabilities of our algorithm by tuning the parameters
from the zenith (strictest) up to their nadir (loosest) and
we checked how connectivity density varies accordingly.
As we see in Figure 3A the selection of looser criteria (blue
dotted line) leads to an increased number of modules but
the densities range from 0.3 to 0.5. On the other hand
when we apply gradually stricter parameters (red dotted
line) connectivity density also increases gradually. It is
obvious though that we assess a smaller number of mod-
ules but the density of the majority of those ranges from
0.6 to 0.9. We have already mentioned that it is essential
for the modules to have density above 0.5, so the strictest
parameters were the chosen ones in our study.

Another worth mentioning aspect of our integrated
method is the adaptability of our algorithm concerning
the size of the module versus the size of the kernel protein
set. In Figure 3B we display various cases dealing with the
size of the kernel and of the module. It is obvious that the
size of the module rises not analogically with the size of
the kernel but rather in an 'adaptive' manner. This prop-
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erty of the DMSP algorithm pinpoints its ability to expand
the kernel independently of its size and this procedure
continues until the algorithm can no more add proteins to
the expanding kernel. This property is demonstrated
through Replication factor C complex (Figure 1B). This
complex (5 members) functions as a DNA-dependent
ATPase and takes part in DNA replication [40] and DNA
repair [41]. Our method succeeded to find all 5 proteins
in a module of 10 proteins (Table 1), with the size of ini-
tial kernel equal to 6 members. In comparison to the
study of Wu and Hu [23] our results are better, since their
study identified all 5 members in a module of 17 mem-
bers. Our method managed to control the growing proce-
dure to such a number of proteins in the final module
which is very close to the size of the kernel.

The extracted functional modules were evaluated from the
biological point of view by a metric that takes into consid-
eration the number of protein complexes that have been
successfully encapsulated in a module. Before describing
it, we are inserting a new term named basic complex. Basic
complex is a complex within a module where the p-value
is less than a certain limit which in this work is set to be
10-10. P-value is a measure concerning the degree up to
which a module manages to capture a particular complex.
This metric is mathematically described by:

30

I Size of kernel
I Size of module

In (A) we present the number of modules determined by DMSP on various values of connectivity density. In blue dotted line
we depict the number of functional modules, by keeping looser criteria for the determination of the modules. When we apply
stricter criteria (as in red dotted line) there is a slight decrease in the number of the modules but at the same time the connec-
tivity density values are better. In (B) figure we display the initial size of the kernel, as well as the final size of the module, for
modules with various sizes, and densities above 0.5. As we can see, DMSP manages to expand the initial size of the kernel in
various degrees in order to determine the most coherent module each time.
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where M, is the members of the i-th functional module,
N¢tis the size of a real basic complex, and N the size of
the corresponding determined complex. L determines the
number of basic complexes within the module. Value of
R(Mi) ranges from 0 to 1, with 1 being the ideal case
where our method manages to find all the proteins of the
all basic complexes and 0 as the extreme case where no
member of any basic complex has been found (Table 1).
In our study we focused on a certain number of modules
that we denominate confident and reliable. Thus, after
running the algorithm with strict criteria for all selected
seed proteins we ended up with 78 modules. However, 45
of those had connectivity density over 0.5 and fulfilled the
two constraints discussed above. Subsequently, this set of
45 modules is supported by our integrated method as reli-
able and accurate.

Next step was to create artificial modules so as to make
feasible the comparison, in terms of both connectivity
density as well as complex coverage, with the derived
modules. Specifically we have implemented a randomiza-
tion procedure, where we replaced 30% of the proteins of
the modules with others that connect to the members of
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the module but do not belong to it. This randomized
replacement was realized iteratively 15 times for each one
of the 45 modules and the average connectivity density
was measured (Figure 4A). Each one of the artificial mod-
ules is the average of these 15 random replacements. Also
the protein complex coverage R(Mi) was estimated before
and after the randomization (Figure 4B) for all 45 mod-
ules following the concept realized in connectivity den-
sity. It is evident in Figure 4A that all artificial modules
have smaller connectivity density than the derived ones,
indicating that our algorithm unveils functional modules
with self-reliance. As it is obvious (Figure 4B) the deter-
mined modules have always better coverage in protein
complexes than the artificial ones. In other words the
functional modules identified by our integrated method
are dominated by known protein complexes, many of
which are sometimes identified in their entirety. This
remark elucidates the biggest accomplishment of our
study i.e. to unravel from the 'spider-like' protein web
subnetworks that have a unique and distinct biological
role.

Lastly in our analysis we compare the modules of our inte-
grated method with the modules of the PPI method by
checking their connectivity density as well as the complex
coverage (R). In Figure 5A it is apparent that the connec-
tivity density in 75% of the W&H modules ranges between
0 and 0.7, whereas 83% of the DMSP modules have con-
nectivity density varying between 0.6 and 1. This visible
difference is explained by the way the two algorithms con-
stitute neighbourhoods around the seed protein. On one

1r —
09 L

08} - ‘* *
07 - *
0.6 o= *x
05 **
paf*  * * *

03r

R of partly randomized modules
\
*
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" *
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0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

R of determined modules

(B)

Scatter plots of statistical metrics for the derived and artificial functional modules. Each data point represents statistical value
for a certain functional module (x-axis) and its artificially created corresponding module (y-axis). The red dashed line corre-
sponds to the line y = x. When a data point is below the line then the artificial module has a lower statistical value than the
derived one, while the opposite stands for the case a data point is above the line. When the data point is on the line it means
that the derived and its corresponding artificial module have the same value. (A) The metric used in this plot is connectivity
density, which is a measure of how densely connected is a specific module. (B) Representation of R measuring the coverage in
protein complexes of a detected functional module. It is evident from both diagrams that in all cases the derived from DMSP
functional modules have better statistical values than the artificial ones.
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hand DMSP algorithm embraces only proteins that are
strongly supported both by PPI as well as by gene expres-
sion data. In this way the resulting modules are by far
more densely connected because the respective proteins
were allowed to enter the modules after complying with
the constraints raised by both types of data. On the other
hand W&H algorithm based only on the topological prop-
erties of the PPI network constructs modules whose size is
in many cases bigger, since it includes proteins that are
not so well connected to the other members, thus the con-
nectivity density decreases enormously. The same scene is
repeated when it comes to the metric R. In Figure 5B it is
evident that R in 75% of the W&H modules ranges
between 0-0.7, whereas 90% of the DMSP modules have
R varying between 0.6-1. Again this difference empha-
sizes the superiority of our integrated method and the rea-
son is easily understood. The metric R, as defined, is
affected not only by the number of protein complex mem-
bers encapsulated in the module but also by the size of the
respective module. Based on this the W&H algorithm
loses against DMSP because we observed that its modules
are in most cases bigger in size, with the majority of the
members sharing same functional annotation but with
poor protein complex coverage. The two bar plots of Fig-
ure 5 as well as the diagram of Figure 2 constitute the
proofs that our integrated approach prevails over the PPI
method both from biological as well as by topological
point of view.
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Conclusion

The post genomic era poses two closely connected chal-
lenges. The first challenge is the consolidation of all kinds
of high-throughput data, which in fact all describe the
same complex dynamics of the living cell but through dif-
ferent perspectives. The second challenge is to unlock the
hidden biologically meaningful structures (functional
modules) that lie in these integrated constructions. Our
method is based on the integration of protein interaction
and gene expression profile data, whose association has
already been validated by other studies. We overlaid the
information descending from gene expression clustering
as weights onto a PPI yeast graph, with quite highly confi-
dent interactions. This accomplishment fulfils the need
for consolidation.

Subsequently, we propose a new algorithm (DMSP),
which constitutes subnetworks that originate from a ker-
nel protein set built up from a 'seed' protein. In order for
us to characterize these subnetworks as functional mod-
ules we checked their biological relevance. This was
achieved through some criteria such as the functional
enrichment of the resulting modules in GO terms, their
connectivity density, their coverage in known complexes
and the degree of resemblance between the modules of
our integrated approach and the modules of an associated
work. Our results show that the majority of our modules
have both connectivity density as well as R, over 0.7. Addi-

w
(5]
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. \WEH

0.0-0.5 05-06 086-07 0.7-08 0809 0910
R value

Modules percentage
- ey N nN w
o [} o (4] o

o
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(B)

In (A) bar plot we compare the modules descending from our integrated method and the PPl method in terms of connectivity
density. It is obvious that 75% of the modules descending from the PPl method have connectivity density ranging between 0
and 0.7, whereas the connectivity density of our modules (83%) varies between 0.6 and |. In (B) accordingly we compare the
modules in regard to the metric R. It is apparent that 75% of the modules resulting from the PPl method have R fluctuating
between 0 and 0.7, whereas the R of our modules (90%) varies between 0.6 and |.
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tionally the modules of our integrated method outper-
form the corresponding modules of the PPI method in all
validation criteria. Thus, we succeeded to fulfil the second
expectation mentioned above.

It is obvious that the concept of our method can be
extended to any set of cellular and genetic data. In future
work we plan to use this integrated approach and the con-
cept of DMSP as a basic component for an algorithm that
will perform graph clustering in the overall PPI network,
again having as goal the identification of functional mod-
ules as well as the functional dependencies between mod-
ules.

Methods

The modeling of PPI networks by simple graph structures
is common in many applications, including the determi-
nation of protein complexes, within protein networks.
Protein complexes seem to have a corresponding analog
in the graph structure-like of the protein network. This
analog corresponds to dense subgraphs of the initial
graph, in other words proteins of a specific complex are
found to be highly interactive with each other [42]. Fol-
lowing, we will describe in detail the method we propose
in order to weight the original PPI graph, as well as pro-
vide an extended description of the proposed DMSP algo-
rithm.

Protein interaction data

A common problem that appears when dealing with pro-
tein interaction data, obtained by high-throughput tech-
niques [11,43,44] is confidence. Therefore we used
protein interaction data from studies that assigned a con-
fidence score to the protein interaction data [45,46] and
downloaded these datasets from their websites. From the
first data source we selected protein interaction data with
high and medium confidence score (excluding interac-
tions with low score), while from the second source inter-
action data with likelihood ratio > 1. The final dataset was
formed by the combination of the two data sources and
after removing redundancy contained 8081 interactions
between 2985 proteins.

Gene expression data

We used yeast expression dataset to evaluate our method.
The data contains cell cycle related profiles using cdc15
synchronization over three cell cycles [47]. The expression
data is available in the form of a matrix with N rows and
D columns. The columns represent the 24 time points and
the rows the gene profiles during the cell cycle. The data
used in the calculations had already been preprocessed.
We chose cell cycle data because it highlights the dynamic
character of genes during the phases of the cycle and pin-
points the periodicity of certain genes at certain phases,
revealing their cell-cycle regulation.

http://www.biomedcentral.com/1471-2105/8/408

The initial set of 2985 genes was clustered in 16 groups
according to the fuzzy c-means algorithm. It is worth
mentioning that the number of clusters was appointed by
a cluster validation criterion, which determined the range
of clusters number. There are many clusters validation cri-
teria in the literature that could be used for our purpose.
We have used the well studied case of the Xie-Beni validity
index [48]. This criterion gave the best values in the range
of 12-18 clusters. The final number was defined by MIPS
Functional Catalogue [49], which was used to evaluate the
clusters from the biological point of view by characteriz-
ing the functional distribution of every cluster with the
site-defined hypergeometric distribution (p-value). This
functional catalogue is organized in a hierarchical tree-
like structure and consists of 28 main categories (or
branches) that cover general features like cellular trans-
port, metabolism and protein activity regulation. Proteins
can be assigned to more than one functional category,
allowing a multidimensional annotation scheme [50].
The best p-values (in our study we have set a maximum p-
value of 10-3 for accepting a functional category to charac-
terize a cluster) were found in the case of 16 clusters.

A first observation concerning the range of the resulting
cluster population is that the minimum number of genes
in a cluster is 82 (i.e. in cluster 16) and the maximum is
376 (i.e. in cluster 1). In Table 2 we selectively present the
functional distribution of 6 representative clusters out of
the 16, from the main functional category up to the third-
level subcategory. We did not take into account the rest
more specific subcategories, because both the p-values
and the percentage of genes were insignificant. The clus-
ters 1, 4, 7, 16 distinguish from each other due to the fact
that they contain genes with distinct biological roles,
whereas clusters 3 and 6 include genes with similar bio-
logical function.

Data integration

In our approach we chose to unify the above types of data
for various reasons. Firstly PPI data from high-throughput
techniques is currently flooded with false interactions
[51]. Also protein interaction measurements descend
from a certain range of experimental conditions, thus they
succeed to identify only a small fraction of all possible
protein-protein interactions. In addition PPI networks
contain unstable interactions or interactions that take
place at different time points, thus the resulting network
does not represent the real one but an overlap of many
different snapshots [3]. Studies that followed the direc-
tion of just clustering a PPI graph (without taking into
account gene expression data) resulted in partially valid
functional modules but failed in elevating those interac-
tions that would contribute to even more coherent mod-
ules like the ones of our integrated method. There are
cases where many of these algorithms tend to ignore
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Table 2: MIPS functional distribution of gene representative clusters

http://www.biomedcentral.com/1471-2105/8/408

Cluster/Genes Functional distribution (MIPS) Percentage (fraction of genes) p-value
I/n =376 14 protein fate 27.2% (102) 2.64 e-05
14.07 protein modification 17% (64) 1.03 e-05

11.02.03 mRNA synthesis 15.2% (57) 1.35 e-04

4/n =259 I'l transcription 29.7% (77) 6.45 e-07
10.03 cell cycle 19.3% (50) 1.58 e-05

10.03.01 mitotic cell cycle and cell cycle control 12.7% (33) 9.93 e-04

7/n =189 42 biogenesis of cellular components 21.6% (41) 2.47 e-03
14.07 protein modification 16.4% (31) 391 e-03

11.01.03 mRNA processing 9% (17) 5.22 e-05

16/n =82 16 protein with binding function or cofactor requirement 32.9% (27) 3.31 e-04
43.01 fungal/microorganismic cell type differentiation 18.2% (15) 8.20 e-04

43.01.03 fungal and other eukaryotic cell type differentiation 18.2% (15) 8.20 e-04

3/n=183 0l metabolism 30% (55) 5.48 e-02
10.03 cell cycle 14% (26) 7.48 e-02

11.04.03 mRNA processing 8% (13) 3.57 e-03

6/n =181 0l metabolism 39.7% (72) 3.91 e-06
10.01 DNA processing 15.4% (28) 1.05 e-03

11.02.03 mRNA synthesis 17.6% (32) 2.99 e-04

Examples of gene clusters after clustering the gene expression data. The first column represents the number of cluster and the number of genes in
it. The second column represents the functional distribution of every cluster according to MIPS from the main category up to the third-level
subcategory. The third column shows the percentage of genes belonging to this category and in the brackets the corresponding actual number. The

last column displays the p-value found by MIPS in every functional category.

peripheral proteins that link to protein clusters with few
connections, even though many of those are true and
experimentally verified interactions [3,33,42]. In our
approach a lot of such interactions is not neglected
because they are 'saved' by the gene expression informa-
tion that is overlaid as weight on the PPI graph. However
an important attribute of PPI networks is that they pro-
vide information about direct binding partners, property
lost when dealing with co-expression networks. All the
reasons mentioned above clarify the insufficiency of the
PPI data alone to produce highly confident functional
modules.

On the other side gene expression data provides informa-
tion of the genome under many different experimental
conditions despite the large amount of inherent noise. In
literature there are studies like [36] that examined the evi-
dent modularity of co-expression networks and studies
like [52] that constructed co-expression networks and
indicated two genes as functionally related if their expres-
sion similarity is conserved under many different condi-
tions and across large evolutionary distances. Also there
are cases [53] where the similarity of expression profiles
was used as a criterion to identify true positive interac-
tions. Although strong expression similarity between two
genes implies same transcriptional control and functional
association, the yielded interactions are often indirect. In
a gene co-expression network two closely connected
nodes are highly correlated but this observation does not
lead to direct interacting partners. Also there are cases
where functionally related genes present significant differ-

ence in their expression profiles [15] (i.e. a certain gene
maybe strongly suppressed in order to allow another one
to be expressed). Therefore clustering them (based strictly
on their expression profiles) into separate groups will lead
to a loss of the specific relation. It is obvious that co-
expression networks offer numerous hypotheses about
the functional association among genes but cannot serve
on their own as the basis for detecting functional mod-
ules. Besides the majority of contemporary methods iden-
tifies functional modules via PPI networks, where the in-
between relations are distinct, and a fraction of these
methods move a step forward and enrich these structures
with other kinds of data [3].

In order to keep the advantages from both sides we
focused on a highly confident PPI network and used the
gene expression data as reinforcement. In other words the
PPI network is the protagonist, whereas the gene expres-
sion data reassures the entrance of certain interactions
into the modules, even if they are not favoured by the
topology. In this way our goal, i.e. to identify functional
modules on the PPI network, is accomplished with great
success, since we manage to lessen up to a great degree the
drawbacks of each kind of data.

Weighted graph

The protein-protein interaction network of yeast is repre-
sented as a graph G(V, E). The vertices of the graph are the
set of unique proteins and therefore in our case is |V| =
2985, whereas the edges of the graph represent the inter-
actions |E| = 8081. Below we explain our methodology of
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adding weights to the edges by exploiting the information
of the gene expression profiles mentioned above. In order
to add weight to an interaction between two proteins x
and y, we find the clusters C(x) and C(y) where they
belong and the corresponding centroids K,, K; of these
clusters. Then, we calculate the distance of each gene from
its centroid and the distance between the two centroids.

The weight of the PPI interaction is given by the metric
described as:

W y) = my([[x - K[>+ [ly - K [[7) + no| [K - K |2
(2)

|| ]| stands for the distance metric and there are many
ways of measuring it (e.g. Euclidean). The constants n,
and n, add an extra confidence score to the factors of the
weight function. They can have the same or different val-
ues according to which member (if any) of the function
we want to enforce. We have selected n, > n, because we
consider the distance between centroids more significant
comparing to the distance of each gene from its centroid.
This selection was driven by the fact that there is noise
(outliers) in the gene expression profiles.

Following the principle that similar expression profiles
are associated with similar function [14], the value of the
above stated metric favours interactions whose corre-
sponding genes have similar expression (i.e. small weight
values derive from small distance among profiles) and
thus enhances them in the overall network.

On the other hand there are many cases where proteins of
the same complex may have quite different (e.g. transient
complexes) or even inverse expression profiles. As a result
an interaction in such a pair of proteins would fail to be
emphasized by the above metric and thus not preferred in
comparison to another smaller weighted interaction. Nev-
ertheless, the proposed algorithm that we will describe in
detail in the following section, manages to overcome
problems like these by incorporating information given
by the rest weighted neighbours of such an interaction,
during the construction of a functional module.

Algorithm DMSP

In this section we will give, after some preliminary con-
cepts, a description of the proposed algorithm named
Detect Module from Seed Protein (DMSP). DMSP builds
functional modules by expanding the kernel neighbour-
hood generated by a 'seed’ protein. In the implementation
presented here, both the 'seed' protein as well as the
extracted functional module, are part of a larger network
which can be represented by a weighted graph structure.

http://www.biomedcentral.com/1471-2105/8/408

Preliminaries

As we have already mentioned, in the approach we have
followed, we combine gene expression profiles and PPI
data, in the form of a weighted graph, G(V, E). By N(x) we
denote the neighbours of a node x, or in other words the
set of nodes that are connected to x. Then, the degree of x
is equivalent to the number of neighbours of x |[N(x)|. For
a given subgraph G, of a larger graph G we define the
internal degree |[N,!NT| as the number of edges connect-
ing x with other vertices belonging to G, and external
degree as the number of nodes with which x is connected
and exist in G but do not belong to G;.

The above concepts can be expanded to the weighted
graphs easily. Weighted degree of a node is the sum of
weights of the edges between x and its neighbours divided
by [N(x)|. Weighted internal degree of a node x is the sum
of weights of the edges between x and its neighbours
within G, over |Ng,!NT|:

INT _ 1
Be, (x)——N,NT Wy (3)
G ye[\IC1

Correspondingly we define the term of weighted external
degree.

The density of a graph G(V, E) is generally measured by
the proportion of the number of edges in the graph to the
number of all possible edges, which is equal to |V|(|V]-1)
for an undirected graph. Weighted density of a graph or
subgraph D, (G), is the sum of the weights of actual edges
over the edges among all nodes in G:

z<x,y>ewa}/

(@)
vI(lvI-1)

D,(G)=

Description

The algorithm proposed in this paper operates in two
phases. Firstly accepts one 'seed’ protein and selects a sub-
set of its most promising neighbours, subsequently
expands this initial kernel to accept more proteins. This
expansion is based on certain assumptions, concerning
the number of neighbours for the specific protein as well
as the weights of these connections.

In the first stage of the algorithm only a certain number of
the neighbours of the 'seed' protein (named hereafter s) is
selected. These adjacent nodes are sorted in descending
degree of significance and this subset of nodes - proteins
is named kernel.
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The two criteria by which the original kernel is selected are
the density of the kernel and the weighted internal and
external degrees of it.

Initially, the kernel is equal to all the neighbours of s:
Kernel(s) = K,= N(s) (5)

Then for each one of the neighbours u; belonging to Ker-
nel(s) we find the NINT(K ), NEXT(K), as well as the gNT
and SEXT. The objective for selecting the kernel of the seed
node is two-fold. Firstly we check so that the number of
edges of a kernel node within the rest of the kernel is larger
or at least equal to the number of the edges that a node
has outside the group. We accomplish this by requesting
for the internal and external degrees of each node:

NI ()

= >
[NEXT ()| + [N ()

IO<Ks'ui)

In this study we selected p, to have value over 45%. At the
same time and after we have confirmed that a selected
node fulfils the first condition, we request that the same
node has smaller weighted internal degree than its corre-
sponding weighted external degree:

N () < BT (1) o)

Nodes that fail to pass the above criteria are discarded,
while those that do, are sorted based on the level that each
one of them manages to do so.

This original subset of proteins can be furthered distilled,
in order to acquire an even more coherent kernel. This can
be achieved by minimizing D (K;) as:

D™ (K ) = min(&gg)Dw(Ks ) (8)

N

In this step, DMSP removes one at a time, each one of the
sorted per significance nodes starting from the most insig-
nificant until it reaches a minimum value of weighted
density.

The second stage of the algorithm receives as input the
selected kernel of the 'seed' protein and iteratively adds
adjacent nodes based again on certain criteria. The first cri-
terion the algorithm checks is the same as the first one of
the initial stage of the algorithm. After this criterion has
been checked then we select a node to be added to the
neighbourhood, if it satisfies the following:

http://www.biomedcentral.com/1471-2105/8/408

Wi, SP2- & (v) )
G is the final module that is built from the initial kernel
(i.e. initially G = K|), we select the constant p, to be any-
where between 0.9 and 1.0. Relation (8) states that in
order for an adjacent node u; of some kernel node v, to
become member of the module, its weight must be less or
equal to a specific percentage of the weighted internal
degree of node v. Below we describe the pseudocode for
implementing the function of the second stage of DMSP,
named Determine_Module, which is responsible for the
final determination of the functional module:
Algorithm Determine_Module
Input: Ks, p1, p2
Output: Final Module G
. G=GUK;
II. For allv G
a. Calculate N(v)
b. N(v) =N(v) n K
c. For every u;in N(v)
i. Calculate N INT, N EXT
ii. If v e K|
1. R1: I0(G, w;) > p,
iii. Else
1. R1: I0(G, w;) > p,
iv. End
v. if (8) is true then R2 = true else R2 = false
vi. if R1 = true AND R2 = true
1.G=Guv
2. G = Determine_Module(K,, p;, p,, G)
vii. End
d. End
1. End
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As we can depict from lines (ii.1), (iii.1) of the pseudoc-
ode there are two percentage values describing the rela-
tion of internal and external neighbours as it is calculated
in equation 5. The distinction of this value depends on
whether the current node is a direct neighbour of the ker-
nel or not. In this way we have a two-layer scheme where
we retain a looser criterion for immediate neighbours and
a stricter one for the remote neighbours of the initial ker-
nel.

Authors' contributions

IAM conceived the integration method, the algorithm,
and prepared the data sets. KD was responsible for writing
the main body of the text and especially for the biological
aspects of the study. All the above actions were supervised
by AB. All authors read and approved the final manu-
script.

Acknowledgements

The work conducted in our laboratory was supported by a grant form the
General Secretariat of Research and Technology, Ministry of Development
of Greece (013/PENEDO3) to A.B.

References

I. Hartwell LH, Hopfield ], Leibler S, Murray AW: From molecular
to modular cell biology. Nature 1999, 402:C47-C52.

2. BorkP, Jensen LJ, von Mering C, Ramani AK, Lee |, Marcotte EM: Pro-
tein interaction networks from yeast to human. Current Opin-
ion in Structural Biology 2004, 14:292-299.

3. Chen}, Yuan B: Detecting functional modules in the yeast pro-
tein-protein interaction network. Bioinformatics 2006,
22:2283-2290.

4. Rives AW, Galitski T: Modular organization of cellular net-
works. Proc Natl Acad Sci USA 2003, 100:1128-1133.

5. Radicchi F, Castellano C, Cecconi F, Loreto V, Parisi D: Defining
and identifying communities in networks. Proc Natl Acad Sci
USA 2004, 101:2658-2663.

6.  Berg], Lassig M: Local graph alignment and motif search in bio-
logical networks. Proc Natl Acad Sci USA 2004, 101:14689-14694.

7. Pereira-Leal |B, Enright A}, Ouzounis CA: Detection of functional
modules from protein interaction networks. Proteins 2004,
54:49-57.

8.  Arnau V, Mars S, Marin I: Iterative cluster analysis of protein
interaction data. Bioinformatics 2005, 21:364-378.

9.  Chien CT, Bartel PL, Sternglanz R, Fields S: The two-hybrid sys-
tem: A method to identify and clone genes for proteins that
interact with a protein of interest. Proc Natl Acad Sci USA 1991,
88:9578-9582.

10. Gavin AC, Bosche M, Krause R, Grandi P, Marzioch M, Bauer A,
Schultz J, Rick JM, Michon AM, Cruciat CM, Remor M, Hofert C,
Schelder M, Brajenovic M, Ruffner H, Merino A, Klein K, Hudak M,
Dickson D, Rudi T, Gnau V, Bauch A, Bastuck S, Huhse B, Leutwein
C, Heurtier MA, Copley RR, Edelmann A, Querfurth E, Rybin V,
Drewes G, Raida M, Bouwmeester T, Bork P, Seraphin B, Kuster B,
Neubauer G, Superti-Furga G: Functional organization of the
yeast proteome by systematic analysis of protein complexes.
Nature 2002, 415:141-147.

1. HoY, Gruhler A, Heilbut A, Bader GD, Moore L, Adams SL, Millar A,
Taylor P, Bennett K, Boutilier K, Yang L, Wolting C, Donaldson |,
Schandorff S, Shewnarane J, Vo M, Taggart ], Goudreault M, Muskat B,
Alfarano C, Dewar D, Lin Z, Michalickova K, Willems AR, Sassi H,
Nielsen PA, Rasmussen KJ, Andersen JR, Johansen LE, Hansen LH, Jes-
persen H, Podtelejnikov A, Nielsen E, Crawford ], Poulsen V,
Sorensen BD, Matthiesen ], Hendrickson RC, Gleeson F, Pawson T,
Moran MF, Durocher D, Mann M, Hogue CW, Figeys D, Tyers M:
Systematic identification of protein complexes in Saccharo-
myces cerevisiae by mass spectrometry.  Nature 2002,
415:180-183.

20.

21.

22.

23.

24.

25.
26.
27.

28.
29.
30.
31.

32.
33.

34.

35.

36.

http://www.biomedcentral.com/1471-2105/8/408

Schena M, Shalon D, Davis RW, Brown PO: Quantitative monitor-
ing of gene expression patterns with a complementary DNA
microarray. Science 1995, 270:467-470.
Ramsay G: DNA chips: state-of-the art.
16:40-44.

Eisen MB, Spellman PT, Brown PO, Botstein D: Cluster analysis
and display of genome-wide expression patterns. Proc Natl
Acad Sci USA 1998, 95:14863-14868.

Shatkay H, Edwards S, Wilbur W), Boguski M: Genes, themes, and
microarray: using information retrieval for large-scale gene
analysis. In Proceedings of the Eighth International Conference on Intel-
ligent Systems for Molecular Biology, August |6—23, La Jolla, California
Edited by: Altman R, Bailey TL, Bourne P, Gribskov M, Lengauer T,
Shindyalov IN, Eyck LFT, Weissig H. AAAI Press; 2000:317-328.
Futcher B, Latter Gl, Monardo P, McLaughlin CS, Garrels JI: A sam-
pling of the yeast proteome. Mol Cell Biol 1999, 19:7357-7368.
Greenbaum D, Jansen R, Gerstein M: Analysis of mRNA expres-
sion and protein abundance data: An approach for the com-
parison of the enrichment of features in the cellular
population of proteins and transcripts. Bioinformatics 2002,
18:586-596.

Jansen R, Greenbaum D, Gerstein M: Relating whole-genome
expression data with protein-protein interactions. Genome
Res 2002, 12:37-46.

Tornow S, Mewes HW: Functional modules by relating protein
interaction networks and gene expression. Nucleic Acids
Research 2003, 31:6283-6289.

Troyanskaya OG: A Bayesian framework for combining heter-
ogeneous data sources for gene function prediction (in Sac-
charomyces cerevisiae). Proc Natl Acad Sci USA 2003,
100:8348-8353.

Chen Y, Xu D: Global protein function annotation through
mining genome-scale data in yeast Saccharomyces cerevisiae.
Nucleic Acids Research 2004, 32:6414-6424.

Tu K, Yu H, Li YX: Combining gene expression profiles and
protein-protein interaction data to infer gene functions. Jour-
nal of Biotechnology 2006, 124:475-485.

Wu DD, Hu X: An Efficient Approach to Detect a Protein
Community from a Seed. Computational Intelligence in Bioinformat-
ics and Computational Biology. CIBCB '05. Proceedings of the 2005 IEEE
Symposium on. November 14—15, 2005, San Diego 2005.

Enright AJ, Dongen SV, Ouzounis CA: An efficient algorithm for
large-scale detection of protein families. Nucleic Acids Res 2002,
30:1575-84.

King AD, Przulj N, Jurisica I: Protein complex prediction via
cost-based clustering. Bioinformatics 2004, 20:3013-20.

Myer V, Young RA: RNA Polymerase Il Holoenzymes and Sub-
complexes. | Biol Chem 1998, 273:27757-27760.

Guglielmi B, van Berkum NL, Klapholz B, Bijma T, Boube M, Boschi-
ero C, Bourbon HM, Holstege FC, Werner M: A high resolution
protein interaction map of the yeast Mediator complex.
Nucleic Acids Research 2004, 32:5379-5391.

Baker TA, Bell SP: Polymerases and the replisome: machines
within machines. Cell 1998, 92:295-305.

Machesky LM, Gould KL: The Arp2/3 complex: a multifunc-
tional actin organizer. Curr Opin Cell Biol 1999, 11:117-121.
Sterner DE, Berger SL: Acetylation of histones and transcrip-
tion-related factors. Microbiol Mol Biol Rev 2000, 64:435-459.

Wu PY, Ruhlmann C, Winston F, Schultz P: Molecular architec-
ture of the S. cerevisiae SAGA complex. Mol Cell 2004,
15:199-208.

Tansey WP, Herr W: TAFs: guilt by association?
88:729-732.

Spirin V, Mirny LA: Protein complexes and functional modules
in molecular networks.  Proc Natl Acad Sci USA 2003,
100:12123-12128.

Forgac M: Structure and Properties of the Vacuolar (H*)-
ATPases. | Biol Chem 1999, 274:12951-12954.

Voges D, Zwickl P, Baumeister W: The 26s proteasome: A
Molecular Machine Designed for Controlled Proteolysis.
Annual Review of Biochemistry 1999, 68:1015-1068.

Carlson MR, Zhang B, Fang Z, Mischel PS, Horvath S, Nelson SF:
Gene connectivity, function, and sequence conservation:
predictions from modular yeast co-expression networks.
BMC Genomics 2006, 7:40.

Nat Biotechnol 1998,

Cell 1997,

Page 14 of 15

(page number not for citation purposes)


http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10591225
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10591225
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15193308
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15193308
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16837529
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16837529
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12538875
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12538875
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14981240
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14981240
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15448202
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15448202
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14705023
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14705023
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15374873
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15374873
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1946372
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1946372
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1946372
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11805826
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11805826
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11805837
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7569999
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7569999
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7569999
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9447591
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9843981
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9843981
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10523624
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10523624
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11779829
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11779829
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14576317
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14576317
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12826619
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15585665
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16530869
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16530869
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11917018
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11917018
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15180928
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15180928
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9774381
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9774381
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15477388
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15477388
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9476890
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9476890
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10047519
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10047519
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10839822
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10839822
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15260971
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9118213
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14517352
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14517352
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10224039
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10224039
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10872471
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10872471
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16515682
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16515682

BMC Bioinformatics 2007, 8:408 http://www.biomedcentral.com/1471-2105/8/408

37. Zhang B, Horvath S: A General Framework For Weighted
Gene Co-Expression Network Analysis. Statistical Applications in
Genetics and Molecular Biology 2005, 4:Article |7.

38. Saccharomyces Genome Database Gene Ontology Term
Finder [http://db.yeastgenome.org/cgi-bin/GO/goTermFinder]

39. Zachariae W, Nasmyth K: Whose end is destruction: cell divi-
sion and the anaphase-promoting complex. Genes Dev 1999,
13(16):2039-2058.

40. Cullmann G, Fien K, Kobayashi R, Stillman B: Characterization of
the five replication factor C genes of Saccharomyces cerevi-
siae. Mol Cell Biol 1995, 15:4661-4671.

41. Kolodner RD, Marsischky GT: Eukaryotic DNA mismatch
repair. Curr Opin Genet 9:89-96.

42. Bader GD, Hogue CWV: An automated method for finding
molecular complexes in large protein interaction networks.
BMC Bioinformatics 2003, 4:2.

43. Uetz P, Giot L, Cagney G, Mansfield TA, Judson RS, Knight JR, Lock-
shon D, Narayan V, Srinivasan M, Pochart P, Qureshi-Emili A, Li Y,
Godwin B, Conover D, Kalbfleisch T, Vijayadamodar G, Yang M, John-
ston M, Fields S, Rothberg JM: A comprehensive analysis of pro-
tein-protein interactions in Saccharomyces cerevisiae. Nature
2000, 403:623-627.

44. Ito T, Chiba T, Ozawa R, Yoshida M, Hattori M, Sakaki Y: A compre-
hensive two-hybrid analysis to explore the yeast protein
interactome. Proc Natl Acad Sci USA 2001, 98:4569-4574.

45. von Mering C, Krause R, Snel B, Cornell M, Oliver SG, Fields S, Bork
P: Comparative assessment of large-scale data sets of pro-
tein-protein interactions. Nature 2002, 41:399-403.

46. Patil A, Nakamura H: Filtering high-throughput protein-protein
interaction data using a combination of genomic features.
BMC Bioinformatics 2005, 6:100.

47. Spellman PT, Sherlock G, Zhang MQ, lyer VR, Anders K, Eisen MB,
Brown PO, Botstein D, Futcher B: Comprehensive Identification
of Cell Cycle-regulated Genes of the Yeast Saccharomyces
cerevisiae by Microarray Hybridization. Mol Biol Cell 1998,
9:3273-3297.

48. Pal NR, Bezdek JC: On Cluster Validity for the Fuzzy C-means
model. IEEE Transactions on Fuzzy Systems 1995, 3:370-379.

49. Munich Information center for Protein Sequences (MIPS)
Functional Catalogue [http://mips.gsf.de/proj/funcatDB/
search _main_frame.html]

50. Ruepp A, Zollner A, Maier D, Albermann K, Hani J, Mokrejs M, Tetko
I, Guldener U, Mannhaupt G, Munsterkotter M, Mewes HW: The
FunCat, a functional annotation scheme for systematic clas-
sification of proteins from whole genomes. Nucleic Acids
Research 2004, 32:5539-5545.

51. Sprinzak E, Sattath S, Margalit H: How Reliable are Experimental
Protein-Protein Interaction Data? Journal of Molecular Biology
2003, 327:919-923.

52. Stuart JM, Segal E, Koller D, Kim SK: A gene-coexpression net-
work for global discovery of conserved genetic modules. Sci-
ence 2003, 302:249-255.

53. Deane CM, Salwinski L, Xenarios |, Eisenberg D: Protein interac-
tions: two methods for assessment of the reliability of high
throughput observations. Mol Cell Proteomics 2002, 1:349-356.

Publish with BioMed Central and every
scientist can read your work free of charge

"BioMed Central will be the most significant development for
disseminating the results of biomedical research in our lifetime."
Sir Paul Nurse, Cancer Research UK
Your research papers will be:
« available free of charge to the entire biomedical community
« peer reviewed and publishedimmediately upon acceptance
« cited in PubMed and archived on PubMed Central
« yours — you keep the copyright

Submit your manuscript here: O BioMedcentral
http://www.biomedcentral.com/info/publishing_adv.asp

Page 15 of 15

(page number not for citation purposes)


http://db.yeastgenome.org/cgi-bin/GO/goTermFinder
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10465783
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10465783
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7651383
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12525261
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12525261
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10688190
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11283351
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11283351
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11283351
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15833142
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15833142
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9843569
http://mips.gsf.de/proj/funcatDB/search_main_frame.html
http://mips.gsf.de/proj/funcatDB/search_main_frame.html
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15486203
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15486203
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15486203
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12662919
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12662919
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12934013
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12934013
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12118076
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12118076
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12118076
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Results
	Conclusion

	Background
	Results and discussion
	Case study evaluation
	Validation of functional modules

	Conclusion
	Methods
	Protein interaction data
	Gene expression data
	Data integration
	Weighted graph
	Algorithm DMSP
	Preliminaries
	Description


	Authors' contributions
	Acknowledgements
	References

