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abstract

 

Cooperativity among the four subunits helps give rise to the remarkable voltage sensitivity of 

 

Shaker

 

potassium channels, whose open probability changes tenfold for a 5-mV change in membrane potential. The coop-
erativity in these channels is thought to arise from a concerted structural transition as the final step in opening the
channel. Recordings of single-channel ionic currents from certain other channel types, as well as our previous re-
cordings from T442S mutant 

 

Shaker

 

 channels, however, display intermediate conductance levels in addition to the
fully open and closed states. These sublevels might represent stepwise, rather than concerted, transitions in the fi-
nal steps of channel activation. Here, we report a similar fine structure in the closing transitions of 

 

Shaker

 

 channels
lacking the mutation. Describing the deactivation time course with hidden Markov models, we find that two sub-
conductance levels are rapidly traversed during most closing transitions of chimeric, high conductance 

 

Shaker

 

 chan-
nels. The lifetimes of these levels are voltage-dependent, with maximal values of 52 and 22 

 

�

 

s at 

 

�

 

100 mV, and the
voltage dependences of transitions among these states suggest that they arise from equivalent conformational
changes occurring in individual subunits. At least one subconductance level is found to be traversed in normal con-
ductance 

 

Shaker

 

 channels. We speculate that voltage-dependent conformational changes in the subunits give rise to
changes in a “pore gate” associated with the selectivity filter region of the channel, producing the subconductance
states. As a control for the hidden Markov analysis, we applied the same procedures to recordings of the recovery
from N-type inactivation in 

 

Shaker

 

 channels. These transitions are found to be instantaneous in comparison.
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I N T R O D U C T I O N

 

Shaker

 

 potassium channels are formed by four identical
subunits surrounding a central ion-conducting pore
(MacKinnon, 1991; Sokolova et al., 2001). The “outer
pore” formed by the pore helices and the ion selectivity
filter (together called the H5 or

 

 

 

P region) is the main
structure that determines the high rate of ion perme-
ation and the ion selectivity of these channels. Although
it is easy to imagine the outer pore as a rigid structure,
many observations have suggested that this region also
participates in voltage-gated activation. Mutations in
this region have been shown to affect greatly the rates of
channel opening and closing (Yool and Schwarz, 1991;
Yellen et al., 1991; Heginbotham et al., 1992; Kirsch et
al., 1992; De Biasi et al., 1993; Zheng and Sigworth,
1997, 1998). In several cases, the gating effects are asso-
ciated with permeation effects such as changes in con-
ductance or ion selectivity (Yool and Schwarz, 1991,

1995; Heginbotham et al., 1992; Zheng and Sigworth,
1997). Supporting the idea that this region participates
in gating, an electron paramagnetic resonance study of
the 

 

Streptomyces lividans

 

 potassium channel KcsA has sug-
gested that the outer pore changes conformation be-
tween closed and open states (Perozo et al., 1999).

Work on Kv2.1 channels (Chapman et al., 1997) and
our previous studies of 

 

Shaker

 

 T442S mutant channels
(Zheng and Sigworth, 1997, 1998) have shown activa-
tion-coupled subconductance levels (sublevels). The ob-
servation that sublevels exhibit differing ion selectivities
suggests that the sublevels arise from small structural
changes in the outer-pore region (Zheng and Sigworth,
1997). Analysis of the kinetics of sublevels could provide
insight into how gating occurs in this multisubunit pro-
tein. Detailed information on the voltage dependence
of the transitions among the various conductance levels
would also help us better understand how subunits in-
teract in response to changes in transmembrane volt-
age. Since the previously reported sublevels in 

 

Shaker

 

channels were recorded from channels with mutations
of the residue T442 in the

 

 

 

P region, it is necessary to ex-
tend the study to channels without pore mutations.

Our previous study of channels having various num-
bers of mutant subunits (Zheng and Sigworth, 1998)
implied the existence of activation-coupled sublevels in
wild-type channels. The mean lifetimes of the sublevels,
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however, were expected to be in the microsecond
range, too short to be quantified by traditional single-
channel analysis techniques. To overcome this prob-
lem, we have combined two approaches in the present
study. First, low-noise single-channel recordings were
made from both 

 

Shaker

 

 channels and a high conduc-
tance 

 

Shaker

 

-Kv3.1 chimeric channel (Lopez et al.,
1994) whose gating characteristics are very similar to
the wild-type 

 

Shaker

 

 channel. Second, to characterize the
sublevels, we used a hidden Markov model (HMM)*
approach that allows the study of brief events buried in
noise (Venkataramanan et al., 2000). We make use of
the N-type inactivation process as an internal control to
verify the results of the HMM analysis.

Here, we report that sublevels are clearly identified
to occur during deactivation of the “intact-pore” chan-
nels. Although their dwell times are 

 

�

 

200-fold shorter,
these sublevels have similar properties to those ob-
served in the T442S “mutant-pore” channels: most de-
activation transitions traverse the sublevels, and the
mean lifetime of each sublevel has similar voltage de-
pendence. These results, together with our previous
studies of T442S mutant channel sublevels, are consis-
tent with the hypothesis that the final gating steps of

 

Shaker

 

 channels involve movements in the ion-selectiv-
ity filter region as well as movements of the “main gate”
that is formed by the S6 helices.

 

M A T E R I A L S  A N D  M E T H O D S

 

cDNA Constructs and Oocyte Expression

 

Three constructs were used in this study. The channel denoted
SN

 

�

 

 is a 

 

Shaker

 

 B chimera (provided by Dr. L.Y. Jan, University of
California at San Francisco, San Francisco, CA) in which the S6
sequence was substituted with the corresponding sequence from
the mKv3.1 (also known as NGK2) channel, and in which the
NH

 

2

 

-terminal inactivation sequence was removed (Lopez et al.,
1994; see Fig. 2 C for sequence comparison in the S6 region be-
tween 

 

Shaker

 

 and SN

 

�

 

). N-type inactivation was reinstalled in
SN

 

�

 

 by subcloning the core sequence of SN

 

�

 

 (between the T1
domain and the end of the COOH terminus) into 

 

Shaker 

 

29-4 us-
ing the restriction sites SnaBI and BsgI. This “full-length” con-
struct was denoted SN. The usual 

 

Shaker

 

 construct, denoted Sh

 

�

 

,
is 

 

Shaker

 

 H4 having the 

 

�

 

6-46 NH

 

2

 

-terminal deletion to remove
inactivation. The amino acid sequence of 

 

Shaker

 

 H4 (Kamb et al.,
1988) is identical to that of 

 

Shaker

 

 B (Schwarz et al., 1988) except
for four amino acids in the COOH-terminal region. The cDNAs
were linearized with EcoO109I, and the capped, T3

 

 

 

run-off tran-
scripts were stored at 

 

�

 

70

 

�

 

C.
Oocytes were obtained from 

 

Xenopus laevis

 

 following the proto-
col previously described (Zheng and Sigworth, 1997), and stored
in ND96 solution at 20

 

�

 

C before and after RNA injection. ND96
contained 96 mM NaCl, 2 mM KCl, 1.8 mM CaCl

 

2

 

, 1 mM MgCl

 

2

 

,
50 U/ml penicillin, 50 ng/ml streptomycin, and 5 mM HEPES,
and was adjusted to pH 7.4 with NaOH. Volumes of 50-100 nl of
cRNA were injected using a microinjector (Drummond Scientific

Co.). Concentrations of injected cRNA were varied to control the
level of expression.

 

Low Noise Single-channel Recording

 

Single-channel recordings were made in inside-out patches at
room temperature. Patch pipettes were pulled from 7052 glass
(Garner Glass) or from quartz capillaries (Sutter Instrument
Company) using a laser-based pipette puller (model P2000; Sut-
ter Instrument Co.); the pipette tip diameters were 0.5–1.5 

 

�

 

m.
Pipettes were heavily coated with Sylgard (Dow Corning Co.). In
our hands, quartz pipettes (Levis and Rae, 1993) normally
yielded less noise throughout the recording bandwidth (up to 30
kHz); the noise density measured near 1 kHz from quartz and
7052 glass were 

 

�

 

 5 

 

�

 

 10

 

�

 

30

 

 and 10

 

�

 

29

 

 A

 

2

 

/Hz, respectively. The
pipette solution contained 140 mM potassium aspartate, 1.8 mM
CaCl

 

2

 

, 10 mM HEPES, and the bath solution contained 130 mM
potassium aspartate, 10 mM KCl, 1 mM EGTA, 10 mM HEPES;
each was adjusted to pH 7.3 with KOH. The liquid junction po-
tential at the interface of these two solutions was estimated to be
0.8 mV; no correction was applied.

Recordings were made using an Axopatch 200B amplifier
(Axon Instruments). To avoid magnetic interference, an LCD
monitor was used as the computer display. The Pulse software
(HEKA Electronic) was used for data collection. Voltage pulses
were applied from a holding potential of 

 

�

 

100 mV. Current sig-
nals were filtered at 30 kHz with a Bessel filter and sampled at
200 kHz. For each pulse protocol, 3,000 sweeps were collected at
a rate of 

 

�

 

3 sweeps/s; of these sweeps 

 

�

 

20% were blank and
were later used for leak and capacitive current subtraction. Open
probability was routinely checked to ensure that the channel re-
tained normal gating properties during the long recording time.

 

Step Response and Inverse Filter

 

The step response of the recording system was measured by pro-
viding a triangular waveform voltage through a metal wire that
was placed close to the pipette holder (Sigworth, 1995). The re-
sulting square-wave current response was sampled at 200 kHz
and averaged over many cycles. An inverse filter was then con-
structed by Fourier techniques to convert the impulse response
of the recording to the impulse response 

 

h

 

(

 

n

 

) of a sharp-cutoff,
discrete time filter (Venkataramanan et al., 2000)

with the corner frequency 

 

f

 

x

 

 

 

�

 

 0.4 times the sampling frequency
and the steepness parameter . The relatively short
rise time of this type of filter results in more efficient HMM cal-
culations, even though the filter shows an overshoot 

 

�

 

10% in
amplitude. In our use, the final effective filter bandwidth was 80
kHz. The effect of applying the inverse filter to a recorded trace
is shown in Fig. 1 A; the power spectrum of the background noise
after inverse filtering is shown in Fig. 1 B.

HMM analysis is sensitive to baseline drifts during experi-
ments. To subtract any baseline shift as well as the transient cur-
rents caused by voltage steps in the pulse protocols, 

 

�

 

100 nearby
blank sweeps were averaged and used to subtract each sweep.
The subtracted data were then inverse-filtered to produce the
data set for HMM analysis.

 

HMM Analysis

 

In this study, we focused on the vicinity of the last closing transi-
tion, which was identified in each recorded sweep as follows. A
digital Gaussian filter was used to filter the data to 10 kHz band-
width. Two thresholds, 90% and 10% of the full single-channel

h n( ) exp
fx

2n2

σf
2

---------–
 
 
  sin 2πfxn( )

2πfxn
--------------------------- ,=

σf 1 2⁄=

 

*

 

Abbreviations used in this paper:

 

 AR, auto-regressive; HMM, hidden
Markov model.
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.

 

amplitude, were used to locate the time points when a channel
makes its last transition leaving the open level and when it arrives
at the closed level, respectively. 5–20 additional sample points
(25–100 

 

�

 

s) were added at each end of the selected segments to
include enough data points that represent the open and closed
current levels.

The HMM analysis took three inputs: (1) inverse-filtered raw
data; (2) a kinetic model containing information of the number
of states and their current levels, the connectivity of those states,
transition rates, as well as the auto-regressive coefficients that de-
scribe the background noise; and (3) an events list that contains
pointers to the data selections, obtained as described above. The
HMM model was refined iteratively using the Baum-Welch algo-
rithm (Venkataramanan et al., 2000). Fig. 1 C demonstrates the
HMM convergence in the case of a five-state model. A monotonic
increase in likelihood value is associated with the eventual con-
vergence of parameter values.

The HMM analysis code has been integrated into the TAC sin-
gle-channel analysis software (Bruxton Corp.); it was run on two
Macintosh G3 computers with 233–300 MHz clock speed and 256
MB of memory. We used the modified version TAC X4.0.5 run
with the “continuous-time” option, which invokes the 

 

H

 

-noise al-
gorithm (Venkataramanan et al., 2000). This algorithm takes
into account the distortion of current transitions (including
smoothing and overshoot) by the antialiasing filter. It also ac-
counts for the random timing of state transitions relative to data
sampling by the inclusion of a fictitious “

 

H

 

-noise” in the hidden
Markov model. The background noise itself is described by an
auto-regressive (AR) model; the behavior of this model is demon-
strated in Fig. 1 B, where the AR description is compared with

the background power spectrum computed directly from blank
portions of recordings. Models incorporating three to five AR co-
efficients were tested for modeling the background noise; four
coefficients were generally used in the study because increasing
the number to five made little change in the results but increased
the computation time severalfold. Because the 

 

H

 

-noise algorithm
does not converge when it is included (Venkataramanan et al.,
2000), excess noise associated with the conducting states could
not be modeled. Excess noise is visible at the main conductance
level and in sublevels (in mutant channels where the sublevels
are clearly observed). From our experience with simulations, we
do not expect errors in the determination of rate constants from
this omission, however.

The starting value of the current in the fully open level was as-
signed as that measured from an all-points histogram; those of the
sublevels were assigned using the relative conductances of the
sublevels in the T442S mutant channels. The initial probability of
the open state was assigned to be unity. Usually 300 iterations
were conducted for each fitting process. The speed of the fitting
process was tested with a data set containing 600 data segments
with an average length of 120 points. Using a model with three
states and four free parameters as well as four AR coefficients, it
took a G3 computer 21 s to perform each iteration. With the ac-
tual data sets, a few hours were required to run 300 iterations for a
simple model and overnight to run a complex model.

 

Likelihood Interval Estimation

 

Errors associated with the estimation of the transition rates were
evaluated as likelihood intervals. This was done by mapping the

Figure 1. Filtering, noise and HMM convergence. (A) Portion of a leak-subtracted recording centered on the transition (arrow) be-
tween the 	60 mV activating pulse and the �120 mV deactivating pulse. Due to amplifier saturation the current recording in the vicinity
of the voltage jump is zero. The thick trace shows the original 30-kHz bandwidth; the thin trace is the result of inverse-filtering to 80 kHz.
(B) Power spectrum (points) computed from 37-ms quiescent portions selected from 100 sweeps, and plotted on a linear frequency scale.
Above 60 kHz, the spectral density falls due to the sharp-cutoff filter, which had a half-amplitude (1/4 power) frequency of 80 kHz. Small
spectral peaks due to interference from the computer (65 kHz) and the patch-clamp amplifier’s power supply (95 kHz) are visible. Super-
imposed on the data are the spectral densities computed from the AR noise model parameters of the HMM fit of this data set. It is seen
that the shape of the spectrum is described better as the number of AR coefficients is increased from three to four and five. (C) Conver-
gence of a hidden Markov model. The log likelihood and the value of the S2→S1 rate constant are plotted as a function of iteration num-
ber for the fitting of Model III (see Fig. 3) to the same data set obtained at �120 mV. The inset shows the rapid increase in log-likelihood
value during the first 15 iterations.
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likelihood surface curvature near the apex in each dimension rep-
resented by a free parameter (Colquhoun and Sigworth, 1995). To
do so, maximum-likelihood fitting was conducted while fixing the
parameter in question at selected values in the neighborhood of
its optimal value and allowing the other parameters to vary freely.
(Because the Baum-Welch optimization reestimates each parame-
ter independently, fixing a parameter was simply a matter of not
updating its value at each iteration.) The change in log likelihood
was plotted against the percent change of the tested parameter
and fitted by a parabolic function to yield 

 

s

 

, the one-standard devi-
ation confidence limit on the estimated parameter.

 

R E S U L T S

 

Deactivation of SN

 

�

 

 Channels Is Not Instantaneous

 

Activation-associated sublevels have been observed pre-
viously in 

 

Shaker

 

 channels with the pore mutation
T442S (Zheng and Sigworth, 1997, 1998). To answer
the question whether channels without the mutation
also gate through similar sublevels, we chose to study a
noninactivating, high conductance 

 

Shaker

 

 chimera (Lo-
pez et al., 1994) that we call SN

 

�

 

. Fig. 2 A shows a sin-
gle-channel trace recorded from a SN

 

�

 

 channel ex-
pressed in 

 

Xenopus

 

 oocytes. At a low bandwidth (Fig. 2
A, 5 kHz), the deactivation appears to be instanta-
neous; however, at a higher bandwidth, the time course
of the deactivation transitions sometimes appears to
progress through intermediate steps. Examples of the
last closing transition (as marked by a box in Fig. 2 A),
are shown in Fig. 2 B at 15 kHz bandwidth.

Due to the effect of filtering, an instantaneous step
transition will appear to have a finite transition time. At

15 kHz, the rise time (10–90% amplitude) of a direct
transition from the open level to the closed level is ex-
pected to be 0.34/

 

f

 

c

 

 

 

�

 

 23 

 

�

 

s, in which 

 

f

 

c

 

 is the filtering
frequency (Colquhoun and Sigworth, 1995). In the two
top panels of Fig. 2 B, such a current step is overlaid on
top of the SN

 

�

 

 current trace. The apparently slower clos-
ing rate of SN

 

�

 

 channels observed in most traces is con-
sistent with the possibility that deactivation transitions of
SN

 

�

 

 traverse intermediate conductance levels. The life-
times of these sublevels are expected to be brief, in the
range of tens to hundreds of microseconds (Zheng and
Sigworth, 1998). The brief lifetimes make it difficult to
study these sublevels with conventional methods.

 

HMM Analysis Reveals Multiple Sublevels in SN

 

�

 

 Channels

 

In this study, we wanted to determine the number of
sublevels during deactivation and the mean lifetime of
each sublevel at various voltages. The HMM method
turned out to be a natural choice for this task. Unlike
threshold analysis that relies on detection of current
crossing of a certain level to determine current transi-
tions, HMM analysis finds the model parameters that
maximize the probability of observing the entire data
set given the model (Qin et al., 2000). It is less limited
by noise and can better handle the missed events prob-
lem that is inherent in the threshold analysis.

The first question we tried to answer using HMM was
whether SN

 

�

 

 channels traverse sublevels during deacti-
vation. We started with linear models with increasing
numbers of conducting states (Fig. 3, Models I–IV).

Figure 2. Single SN� channel deactivation. (A) Single-channel current recorded from a SN� channel with symmetrical 140 mM potas-
sium solution, shown at 5-kHz bandwidth. Pulse protocol is shown below the current trace. The vicinity of the last closing transition, marked
by a box and shown in B at expanded time scale, is subjected to HMM analysis. (B) Examples of the closing transitions shown at 15 kHz
bandwidth. A simulated current step after Gaussian filtering to 15 kHz is overlaid on top of the current traces in the top two panels. (C) Se-
quence comparison between Sh� and SN�. The proposed S6 transmembrane domain is marked. Dashes represent identical residues.
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The existence of an additional state would be implied
by a large increase in the likelihood value, relative to
the increase in number of free parameters, when a new
state is added. An increase of about two log-likelihood
units is expected on theoretical grounds (Akaike,
1974) from the addition of one free parameter alone.
However, from simulations our experience is that an in-
crease of at least 10–20 units per free parameter is re-
quired to identify a significant improvement in the
model. A data set of 622 deactivation transitions at
�120 mV was analyzed, and the results are listed in Ta-
ble I. The model having one sublevel and one open
level (Model II) has three additional free parameters
but gives rise to a likelihood value that is 673 log units
higher than that of the model having only one con-
ducting state (Model I). An additional sublevel (Model
III) further increased the likelihood value by 395 log
units. The lifetimes of the two sublevels in Model III
were estimated at �120 mV to be 17 and 36 �s.

These lifetime estimates are briefer than the dwell-
time estimates of 70 and 280 �s that we previously ob-
tained using an amplitude histogram approach on the
deactivation time course of SN� channels (Zheng and
Sigworth, 1998). However, the histograms evaluate the
total time spent in each sublevel, which is analogous
to a burst duration, during deactivation. This differ-
ence, along with the sensitivity of the histogram
method to transition points and to heterogeneous
states (e.g., the T states of Models VIII–XI described

below), probably account for the larger estimates ob-
tained previously.

Are there more than two sublevels in SN� channels?
As shown in Table I, the model having a third sublevel
(Model IV) indeed further increased the likelihood
value by 43 log units per free parameter over Model III.
However, it is noticed that the current level of the addi-
tional state S3 in Model IV is larger than that of the
open state (though only by 10%) and the transitions
into and out of this state are unidirectional and very
rapid. Thus the model describes a brief increase in
channel current just preceding the closing transitions.
The single-channel recordings of SN� channels, simi-
lar to those of wild-type Shaker channels, contained
many brief closures (flickers). One explanation for the
increased likelihood from Model IV is that some of the
deactivation transitions we selected may start from a
flickering state and then proceed through the open
state. However, because the rate constants and current
levels of the other states in Model IV are indistinguish-
able from the values for Model III, we take Model III to
be a good approximate description of the channel be-
havior, having two main sublevels.

The next question we asked was whether the two sub-
levels, denoted S2 and S1, are always traversed during
channel deactivation. A model having S2 outside of the
deactivation pathway (Model III
) clearly did not work,
as indicated by its much lower likelihood value com-
pared with Model III. We also constructed models in

Figure 3. Examples of the models
tested. Each model has one open
state (O), one to four substates (S
and T), and two to three closed
states (C), in which the leftmost
closed state (C0) is an absorbing
state. Deactivation always starts at
the open state. Conductances and
transition rates for each model are
listed in Table I.
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which direct transitions to closed states were allowed
from the open state and from the higher conductance
sublevel S2 (Models V–VII). In models containing

loops, no constraint for detailed balance was applied.
Nevertheless, with these models, we found at most only
moderate increases in the likelihood value. As shown in

T A B L E  I

HMM Analysis Results for SN� Channels

Model no. I II III III
 IV V VI VII VIII IX X XI

Transition rates
(s�1)

O→S2 — — 35,200 1,017 68,978 — 36,408
(33,154)

18,440
(38,511)

29,051
(20428)

25,773 26,555 26,505

O→S1 29,932 21,349 12,085

O→T — — — — — — — — 3,036 4,775 5,007 7,508

O→C 18,132 — — — — 8,705 — 6,674
(0)

— — — —

S3→S2 — — — — 43,959 — — — — — — —

S2→S3 — — — — 0 — — — — — — —

S2→S1 — — 32,248 — 33,950 — 3,583
(20547)

4577
(15,977)

— 37,427 26,549 26,068

S1→S2 — — 30,817 — 32,734 — 799
(27,024)

922
(22,309)

— 41,468 35,592 35,985

T2→T1 — — — — — — — — — — — 12,584

T1→T2 — — — — — — — — — — — 1,857

S2→O — — 0 5,170 0 — 30,634
(0)

20,366
(0)

34,570
(12,279)

3,191 3,098 3,080

S1→O — 26,274 — 23,342 — 15,011 — — — — — —

T→O — — — — — — — — 715
(2,029)

249 260 1,231

S2→C — — — — — — 15,797 7,347 — — 6,978 —

S1→C — 19,916 20,313 24,029 20,475 9,311 1,142 845 15,765 18,787 10,301 23,397

T→C — — — — — — — — 2,782
(6,328)

2,415 2,451 2,519

C→O 13,428 — — — — 1,003 — 1,473 — — — —

C→S1 2,574 2,103 2,305 2,041 1,304 0
(1,213)

 0
(1,046)

2,769
(66,546)

216 878 1,820

C→T 3,204
(6,131)

3,100 2.968 3,870

C→S2 2,790
(586)

1,140
(823)

— — 1,101 —

C2→C0 — — — — — — — — 4
(0)

0 0 0

C1→C0 7,235 528 210 115 196 1,109 520
(382)

1,235
(645)

580
(16,360)

176 343 149

Current (pA)

O �9.0 �10.0 �10.4 �9.7 �9.6 �9.7 �10.5
(�10.3)

�10.3
(�10.5)

�10.4
(�10.5)

�10.5 �10.5 �10.8

 S3 — — — — �10.7 — — — — — — —

 S2 �4.0 �9.4 �6.0 �9.3 �4.7 �4.3
(�9.3)

�4.9
(�9.2)

�4.0
(�9.0)

�9.4 �9.4 �9.4

S1 — — �2.6 �2.1 �2.3 — �1.2 �1.1 — �2.2 �3.2 �1.2

 T2 �5.5

T1
�1.4

(�2.1) �1.4 �1.4 �1.3

Free parameters 4 7 10 10 13 9 12 14 13 18 16 19

Relative log
likelihood

0 673 1,068 828 1,198 723 1,079
(913)

1,057
(949)

1,007
(921)

1,235 1,233 1,402

Transition rates and current levels are given at �120 mV. Numbers in parentheses are those given by an alternative fit using different starting parameter
values. In identifying states, no subscript is used wherever there is no ambiguity.
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Table I, a direct O→C transition gave Model V an in-
crease in likelihood by 25 log units per free parameter
over Model II; similar direct transitions from O and S2
to C reduced the likelihood value of Model VII by �11
log units per free parameter compared with Model III
(the reduction probably reflects a convergence error;
see below). In both cases, the O→C rate was smaller
than the corresponding O→S rate, suggesting that the
O→C transition rarely occurs. The S2→C transition
also moderately increased the likelihood value of
Model VI over Model III, by only 6 log units per free pa-
rameter. We conclude that these direct-closing path-
ways are not ruled out, but their inclusion results in lit-
tle increase in the likelihood values. The simplest
description of our data is that most or all closing transi-
tions occur through both sublevels.

To test whether there are other sublevels that are not
in the S2-S1 pathway, models were considered with a
branching path containing another set of sublevels, de-
noted T2 and T1 (Models VIII–XI). A branching path
clearly increased the likelihood values. For example, the
likelihood of Model VIII was 54 log units per free param-
eter higher than that of Model II. Compared with the S
states, the T states (especially T1) had much longer
mean lifetimes. On the other hand, fewer than 10% of
the deactivation transitions took the T pathway, so that
the states T2 and T1 are rarely visited. Evidence for an al-
ternative sublevel state like T1 has been presented previ-

ously in the study of heteromultimeric channels contain-
ing pore mutant subunits (Zheng and Sigworth, 1998).

The above results are summarized in Fig. 4, in which
the log-likelihood value is plotted against the number of
free parameters in each model. It is clearly seen that the
inclusion of one and two sublevels (going from Model I
to Models II and III) gave the most dramatic increases in
likelihood. Adding T2 and T1 gave further increases, but
their contributions were much smaller (Models IX and
XI). In theory, a model with more free parameters
should always give a higher likelihood value (Horn,
1987). Our results generally followed this prediction, but
in some cases we observed decreases in the likelihood
with more complex models. It is likely that the data set
we used did not contain enough information to distin-
guish among those complex models and local maxima
of the likelihood function were being found. Accord-
ingly in the subsequent studies, we chose to focus on
Model III to learn more about the gating behavior of the
dominant S2/S1 sublevels. Although it entirely lacks the
slower pathway through T2 and T1, this simple model
does give values very similar to those of models X–XI for
the rate constants in the S2/S1 pathway (Table I).

SN� Channel Sublevels Show Voltage-dependent Lifetimes

Deactivation transitions in the voltage range from �80
to �140 mV were analyzed with Model III. At each volt-
age, S2 and S1 were seen to have distinct current levels
with linear I-V relationships like that of the open state
(Fig. 5 A). The relative conductances of S2 and S1 are
estimated to be 81 and 13% of the open level, respec-
tively. It was found that the mean lifetime of each sub-
level was voltage-dependent (Fig. 5 B), following simi-
lar bell-shaped curves. The longest lifetimes for S2 and
S1 were found to occur near �100 mV, with the esti-
mated values to be 52 and 22 �s, respectively. The esti-
mated transition rates at �120 mV and the partial
charges, estimated by exponential fitting of the transi-
tion rates as functions of voltage (Fig. 5 C), are given in
Fig. 5 D. At �120 mV, SN� channels deactivate quickly;
accordingly, the backward transitions showed higher
rates than the forward transitions. All the transition
rates were voltage-dependent. The amount of charge
movement in the S2→S1 and S1→C transitions, 1.0 e0

and 1.2 e0, respectively, is smaller than, but comparable
to, our earlier estimates from the T442S mutant chan-
nel sublevels, which were 1.6 e0 and 1.7 e0, respectively
(Zheng and Sigworth, 1997).

It is interesting to compare the size of these esti-
mated charge movements with those of the elementary
charge movements of the Shaker channel voltage sen-
sors. Zagotta et al. (1994) estimated the partial charges
associated with the later conformational change in
each subunit to be 0.32 e0 and 1.1 e0 for the forward
and backward transition, respectively, giving a total of

Figure 4. Comparison of the relative log-likelihood values gener-
ated by models with increasing complexity. Model numbers in pa-
rentheses are the same as in Fig. 3. Those not labeled are models
having the same states as Model XI but with more transition path-
ways linking those states, including pathways between the S states
and the T states. Dotted lines link results from the same model;
open symbols represent fits starting from different initial values
that ended at a different maxima. Dashed lines are drawn at slopes
of 15 log-likelihood units per free parameter.
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1.4 e0. Schoppa and Sigworth (1998a) estimated those
partial charges to be 0.08 e0 and 0.52 e0, yielding a total
charge movement of 0.6 e0.

The estimated forward transition rate S1→S2 is
much higher than the other two forward rates and is
comparable to the backward transition S2→S1. The re-
sult would predict fast flickering between the two sub-
levels. Simulations using the model shown in Fig. 5 D
indeed generated flickerings between S1 and S2 (Fig. 5
E). Such flickering behavior was not obvious in the
T442S mutant channels (Zheng and Sigworth, 1997).

Errors associated with the estimation of each Model
III transition rate were evaluated by fitting the same data
while fixing the rate in question to a certain percent
away from its optimal value (Fig. 6). From this analysis,
we obtained the two-unit likelihood interval for each
rate, which is given in Fig. 5 D. (Two likelihood units are
comparable to two standard deviations, with the two
measures of error being identical in the case of the nor-
mal distribution; Colquhoun and Sigworth, 1995.) In
our case, all of the two-unit likelihood intervals were esti-

mated to be smaller than 20%, with the only exception
to be the C1→C0 transition, which had the very slow rate
of 210 s�1 (representing a rare transition) and a 130%
confidence interval. It should be noted that the data set
at �120 mV was our smallest, containing only 622 deac-
tivation time courses. The data sets at other voltages con-
tained 1,286–1,700 deactivation time courses. It is ex-
pected that the errors associated with the estimates at
those voltages should be smaller.

Does Deactivation of “Wild-type” Shaker Channels
Also Traverse Sublevels?

The SN� channel is a Shaker B chimera having the S6
segment sequence from mKv3.1 (Lopez et al., 1994).
Eight amino acids are changed by the transplant (Fig. 2
C). Despite the fourfold increase in single-channel con-
ductance, the overall gating behavior of the SN� chan-
nels is very similar to “wild-type” Sh� channels (Lopez
et al., 1994; Zheng and Sigworth, 1997). Based on the
observation that T442S channels without the S6 trans-
plant also showed sublevels (Zheng and Sigworth,

Figure 5. Sublevels in the SN� channel have voltage-dependent lifetimes. (A) From the HMM analysis, estimates of the single-channel
current are plotted as a function of membrane potential for the fully-open level and two sublevels. (B) Voltage dependence of the mean
lifetime of each sublevel. Open symbols are results from a series of recordings from the same SN� channel; closed symbols at �120 mV are
results from 765 closing events in a recording from an N-type–inactivating SN channel. The number of sweeps analyzed at each voltage are
as follows: �80 mV, 1,700; �100 mV, 1,286; �120 mV, 622 (SN�), 765 (SN); and �140 mV, 1,588. The superimposed dotted curves are the
state lifetimes predicted by the model shown in D. (C) Voltage dependences of three rate constants and fits to an exponential function,
from which partial charges are obtained. (D) Model III is shown with values for the rate constants (units of s�1) given for V = �120 mV.
The estimated errors are two-unit likelihood intervals as determined in Fig. 6. The partial valence associated with each rate constant is
given in parentheses. The percentage of transitions taking the O→S2 path was obtained by adding an extra closing path from the open
state and comparing the rate constants leading to S2 versus this other path. In most cases, this percent was higher than 90%. The absolute
value of the rate of this transition could not be obtained because the dwell in O state was truncated by our data selection procedure. (E)
Simulated single-channel data at �120 mV using the model shown in D and assuming a value of 1,500 s�1 for the O→S2 rate constant.
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1998), it was considered unlikely that the deactivation-
associated sublevels we observed here were caused by
the S6 mutations. To confirm this, we conducted HMM
analysis on Sh� channels.

A set of 716 deactivation transitions recorded from a
Sh� channel at �100 mV was analyzed with the HMM
method. Examples of Sh� channel deactivations are
shown in Fig. 7 (A and B). When Model II (Fig. 3) was
used, the sublevel was assigned an amplitude of �2.4
pA and a mean lifetime of 56 �s. Compared with Model
I having no sublevel, the likelihood of Model II was 192
log units greater (Fig. 7 C). The transition rates are
listed in Table II. The relative amplitude of the de-
tected sublevel was similar to that of the S2 sublevel in
SN� channels.

The possibility that Sh� channels also have a second
sublevel was tested using Model III. However, although
this and other more complex models yielded higher

log-likelihood values than Model II (Fig. 7 C), in each
case one or more of the estimated rates exceeded
100,000 s�1. We take rate constant values of this magni-
tude, greater than half the sampling rate, to be artifac-
tual; in our experience with simulations, they typically
arise from attempts of the HMM algorithm to fit fea-
tures of the noise. Therefore, we take the only reliable
result of this analysis to be the conclusion that Model II
is much superior to Model I, and that the Sh� channel
passes through at least one sublevel during deactiva-
tion. The lifetime of the detected subconductance state
is �50 �s at �100 mV, and its relative conductance is
�60% of the full channel conductance level. These
characteristics are essentially the same as the main sub-
level S2 of the SN� channel.

The poor performance of Model III means only that
we cannot tell whether there is more than one sublevel
in Sh� channels. It is quite possible that a second sub-

Figure 6. Likelihood intervals for rate constant es-
timates of Model III obtained from one of the data
sets of deactivations at �120 mV. Solid curves are fit
of the function �L � �(x � x0)2/s2, in which �L is
the difference in the log likelihood from its maxi-
mum value, x is the value of the given rate constant,
x0 is the optimal value for that rate, and s is the fitted
one-unit likelihood interval for the estimated rate
constant. The confidence intervals given in Fig. 5 B
represent �2s.
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level corresponding to S1, having a smaller conductance
and a shorter lifetime, does in fact exist. That such a sub-
level is not detected may probably result from the lower
signal-to-noise ratio of the Sh� current recordings.

An Internal Control: N-type Inactivation Transitions

Several possible control experiments can be envisioned
that would allow the reliability and sensitivity of the
HMM method to be tested. One test would be to con-
duct a parallel analysis on simulated data to see if HMM
analysis would come up with the same parameters that
have been used to generate the data. This was the major
test used by Venkataramanan et al. (1998a, 1998b, 2000)
during the development of the HMM method used
here. Sunderman and Zagotta (1999a,b) used a single-
channel current generator to synthesize an analogue sig-
nal that was recorded by the same setup used in the ex-
periment. This test had the advantage in that it better

simulated the experimental situation. The test we chose
to do was to reinstall N-type inactivation in SN� chan-
nels, yielding the SN channel type, and to analyze N-type
inactivation recovery transitions in the same way as we
did with deactivation transitions. This approach has sev-
eral advantages. First, the two kinds of transitions are re-
corded from the same channel under identical condi-
tions. This avoids any variation in experimental condi-
tions and data processing. Second, N-type inactivation is
a well understood process in voltage-dependent potas-
sium channels, achieved by an NH2-terminal domain
that physically blocks ion permeation (Hoshi et al., 1990;
Zagotta et al., 1990; Zhou et al., 2001). It is expected that
the current transitions representing N-type inactivation
and the subsequent recovery from inactivation should
both be single-step transitions (Fig. 8 A). Third, based
on the mechanism of N-type inactivation, we expect that
it should not interfere with the activation gating of the
channels. With the SN channel, we found that indeed its

Figure 7. Wild-type Sh� channels close through
sublevels. (A) Single-channel current recorded from a
Sh� channel with symmetrical potassium solution,
shown at 5 kHz bandwidth. Pulse protocol is shown be-
low the current trace. (B) Examples of the closing
transitions shown at 15 kHz bandwidth. (C) Compari-
son of the relative log-likelihood values for Sh� chan-
nels. Model numbers in parentheses indicate the same
models as in Fig. 3; unlabeled symbols represent ex-
tensions of Model II having additional transitions. Dot-
ted lines link results obtained from the same model
with different initial parameter values. Open symbols
represent fitting results that contain rate estimates ex-
ceeding 100,000 s�1. Dashed lines are drawn with
slopes of 15 log-likelihood units per free parameter.
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macroscopic activation and deactivation processes were
very similar to SN� channels.

Single-channel currents were recorded from SN
channels (Fig. 8, B1 and B2). A total of 765 channel
events during tail currents at �120 mV were selected,
based on the criteria that the current recovered to the
fully open level and stayed at that level for a time long
enough to allow reliable estimation of the current am-
plitude. Segments of the current rising phase and de-
caying phase were selected and analyzed independently
using HMMs. It was found that models with one or two
sublevels provided dramatically improved fits to the de-
activation transitions over Model 1 that had only open
and closed states. The log-likelihood values increased
by 673 and 395 units in going from Model 1 to 2 and 3
(Fig. 8 C). The two sublevels detected by Model 3 had
conductance values and mean lifetimes similar to those
found in SN� channel deactivations (the mean life-
times are plotted in Fig. 5 for comparison), confirming
that the deactivation process was not affected by restor-
ing the N-type inactivation.

On the other hand, having additional sublevels did
not fit the inactivation-recovery transition any better
than Model 1. The small increases in log-likelihood val-
ues, 6 and 22 for Models 2 and 3, respectively, are well
within the range expected from the addition of one or
four free parameters. In the case of Model 2, the esti-
mated lifetime of the sublevel was 12 �s and its esti-

mated amplitude was 2% of the open current, making
it essentially indistinguishable from the closed level. In-
creasing the number of AR coefficients in the noise
model from four to five and six further reduced the es-
timated lifetime and conductance of this state, suggest-
ing that this state reflects only an imperfection in mod-
eling the noise. As a further test, we fixed the conduc-
tance of the sublevel to values close to those of the ones
found in the deactivation transitions of the same chan-
nels (Fig. 8 C, Models 2
 and 2

). This dramatically re-
duced the likelihood value generated from fitting the
inactivation-recovery transitions but had little effect on
those generated from fitting the deactivation transi-
tions. We thus conclude that the inactivation-recovery
transition is direct while the deactivation transition
clearly passes through sublevels.

D I S C U S S I O N

The present paper is the third in a series of studies of
the activation-coupled sublevels in Shaker potassium
channels (Zheng and Sigworth, 1997, 1998). Using a
recently developed “continuous-time” HMM analysis
method we analyzed high resolution recordings from
Shaker channels and from high conductance chimeric
channels. By comparing the likelihood ranking of vari-
ous kinetic schemes, we conclude that Shaker channels
traverse at least one or two sublevels during deactiva-
tion. Transitions through sublevels are voltage-depen-
dent, and the mean lifetimes of the sublevel states are
in the microsecond range, too short to be analyzed by
conventional methods.

HMM Analysis of Single-channel Currents

The behavior of many ion channels can be well de-
scribed by finite-state Markov models, suggesting that
the gating transitions occur between well-defined states
(Horn, 1987). Single-channel events can be analyzed by
first idealizing the recording into closed and open
dwells, and then fitting histograms of dwell times with
mixtures of exponential functions (Colquhoun and
Sigworth, 1995) that reflect the dwells in various collec-
tions of states. The main problem with this approach is
that the unavoidable background noise in practical re-
cordings prevents the unambiguous detection of brief
channel events, and sublevel events are particularly dif-
ficult to characterize.

The theory of hidden Markov models, which has
been very successfully applied in speech recognition, was
first introduced to single-channel analysis �10 yr ago
(Chung et al., 1990). In the HMM approach, the ob-
served current is modeled to be the sum of Gaussian
noise and the noiseless signal coming from a finite state,
first-order hidden Markov process that represents the
channel’s activity. The model parameters can be itera-

T A B L E  I I

HMM Analysis Results for Sh� Channels

Model no. I II III

Transition rates (s�1)

O→S 33,100 134,103a

 S→O — 0 0

 O→C 15,400 — —

 C→O 2,090 — —

 S2→S1 — — 40,249

 S1→S2 — — 0

 S1→C — 17,800 20,607

 C→S1 — 3,700 6,910

 C1→C0 11,800 4,890 4,567

Current (pA)

O �2.77 �3.38  �0.61

S2 — �2.42 �4.27

S1 — — �2.52

Free parameters 4 7 10

Relative log
likelihood 0 192 366

Transition rates and current levels are given at �100 mV. In identifying
states, no subscript is used wherever there is no ambiguity. 
aTransition rate that is suspect because it exceeds half the sampling rate.
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tively estimated using the maximum likelihood method
(Baum et al., 1970). Because no idealization is involved,
the method can be used with data at lower signal-to-
noise ratio (or equivalently, at wider bandwidth) than
conventional analysis, and the HMM method is particu-
larly useful in identifying subconductance levels.

In early applications of HMM analysis, the back-
ground noise in successive data samples was assumed
to be uncorrelated (the white noise case). The high
resolution measurement of current with the patch
clamp, however, inevitably yields colored noise, due to
noise currents induced in the capacitance at the
preamplifier input as well as noise from relaxation
processes (Benndorf, 1995). In their pioneering ap-
plications of HMM analysis, Chung et al. (1990, 1991)
exploited the fact that through aliasing the noise is
approximately white when the single-channel data are

sampled below the Nyquist rate; however, this limits
the time resolution of the analysis. Subsequent work
by Fredkin and Rice (1992), Venkataramanan et al.
(1998a,b), Michalek et al. (2000) and Qin et al.
(2000) have incorporated models of colored noise
into HMM algorithms. Venkataramanan et al. (2000)
have extended this approach to account for the fact
that the data do not arise from a discrete-time process
but instead from a sampled, continuous-time process.
The resulting “H-noise algorithm” was used by Sun-
derman and Zagotta (1999a,b) to analyze the behav-
ior of CNG channels, and it is the algorithm that we
have used here. This algorithm assumes that, at most,
one transition occurs within a sampling interval, al-
though good results are obtained when this assump-
tion does not strictly hold. From simulations, we have
found that rate values are well estimated up to at least

Figure 8. Recovery from inactivation to the
fully-open level does not traverse sublevels. (A)
Partial gating scheme illustrating multistep activa-
tion and a single-step inactivation process. (B1)
Representative current sweeps of a SN channel
that has N-type inactivation intact, shown at 5-kHz
bandwidth. The channel activates and subse-
quently inactivates upon depolarization to 	60
mV. An event representing recovery from inactiva-
tion at �120 mV is marked by a box and shown in
detail in B2, where it is shown at 15 kHz with en-
larged scales. Data segments for recovery from in-
activation (a) and deactivation (b) were analyzed
separately. (C) Comparison of HMM analysis of
the recovery from inactivation (La) and deactiva-
tion (Lb) from 765 sweeps. A state enclosed by a
box has a fixed current amplitude whose value is
shown. N, number of free parameters in each
model; La and Lb, relative log-likelihood values
for a and b, respectively. Results were obtained
with four AR coefficients.
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half of the sampling rate, which was 200 kHz in our
experiments.

Our application of the continuous-time HMM analysis
has allowed us to deduce the properties of sublevels with
mean lifetimes in the range of tens of microseconds.
The existence of such sublevels has been suggested by
our previous experiments on channels with mutant sub-
units that dramatically prolong the sublevel durations
(Zheng and Sigworth, 1998). In that study, we obtained
indirect dwell-time estimates from amplitude histo-
grams, but this method did not evaluate the transition
rates. In the present study, we were able to estimate the
transition rates, and obtain these over a voltage range to
allow characterization of their voltage dependence.

Sublevels Are Associated with Subunit Gating Transitions

It has been found that gating transitions of Shaker chan-
nels are coupled to charge movements totaling �13 e0

(Bezanilla, 2000). From analysis of the voltage depen-
dence of channel activity (Bezanilla et al., 1994; Zagotta
et al., 1994; Schoppa and Sigworth, 1998b) and from gat-
ing-current fluctuations (Bezanilla, 2000), it has been
deduced that this large charge movement occurs in
small steps, 1–2 e0 in size. In the present work, the transi-
tions among the states C, S1, and S2 are seen to be volt-
age-dependent, with each transition having a predicted
charge movement of �1.0 e0. A comparable voltage de-
pendence (1.6 e0) was seen in channels containing the
T442S mutation (Zheng and Sigworth, 1997). The volt-
age dependence causes the lifetimes of the sublevels to
diminish at more depolarized voltages, making sublevels
undetectable under physiological conditions. It is inter-
esting that the charges associated with the transition be-
tween S2 and S1 and the one between S1 and C are es-
sentially equal. We take this as evidence that the transi-
tions among conducting states may represent equivalent
conformational changes occurring in each subunit.

Activation-coupled subconductance levels have been
observed in various members of the voltage-gated potas-
sium channel superfamily. The large conductance Ca2	-
activated potassium channel appears to close through a
brief sublevel 5–10% in amplitude (Ferguson et al.,
1993). The Kv2.1 channel and mutants have four sublev-
els that are more prominent at small depolarizations
(Chapman et al., 1997). Activation of a Shaker pore mu-
tant (T442S) traverses two sublevels whose mean life-
times are in the millisecond range (Zheng and Sigworth,
1997). We now add to the list the wild-type Shaker chan-
nels. Interestingly, activation-coupled sublevels also have
been observed in other multisubunit ion channels (for
review see Fox, 1987). These include glutamate receptor
channels (Rosenmund et al., 1998; Schneggenburger
and Ascher, 1997), inward rectifier potassium channels
(Lu et al., 2001), and CNG channels (Zimmerman and
Baylor, 1986; Taylor and Baylor, 1995; Ruiz and Karpen,

1997). In one study of mutant NMDA receptor channels,
the conductance levels are seen to have differing ion se-
lectivities (Schneggenburger and Ascher, 1997). In other
cases (Ruiz and Karpen, 1997; Rosenmund et al., 1998),
the occupancy of the various sublevels has been shown
to be controlled by the number of ligands bound to the
channels. Since each subunit carries a binding site, the
sublevels can be pictured as arising from the asymmetri-
cal activation of channel subunits.

Fine Structure in the Final Concerted Step
of Channel Opening

Detailed studies of Shaker channel activation (Bezanilla
et al., 1994; Zagotta et al., 1994; Schoppa and Sigworth,
1998a, b) have described the early steps in the activation
process to be transitions in each of the four subunits
that occur independently; however, the final one or two
steps before channel opening are modeled to be for-
wardly directed, concerted transitions that produce a
steep voltage dependence of overall channel activation.

In the T442S mutant of the SN� channel (Zheng and
Sigworth, 1997), both activation and deactivation are
seen to proceed in a stairstep fashion through two sub-
conductance levels. Evidence has been presented from
channels containing fewer than four T442S subunits
(Zheng and Sigworth, 1998) and from channels en-
tirely lacking this mutation (the present study) that it is
not the mutation that gives rise to the sublevels, in-
stead, the mutation merely lengthens their duration. A
comparison of the lifetimes of the S1 and S2 sublevels
in SN� and the T442S variant (see Fig. 9, B and C)
shows that the voltage dependences are similar, but the
mean lifetimes differ by a factor of �200. SN� and
wild-type Shaker channels pass through these sublevels
very quickly; if our estimates for the rate constants of
SN� are extrapolated to �45 mV (the approximate
half-activation voltage) Model III becomes

where rates are given in seconds�1 at �45 mV and ques-
tion marks denote rate constants that were not deter-
mined in the present study. The strongly forward-
biased transition S1→S2 can explain much of the
forwardly directed equilibrium that has been ascribed
previously to the final concerted steps in channel open-
ing. However, the S1→S2 transition is only one of three
transitions that we now see to occur in rapid succession
before channel opening; all of these occur on a much
shorter time scale than the macroscopic activation time
constant of �8 ms at this potential.

(SCHEME I)
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We conclude that the concerted transitions postu-
lated in previous kinetic studies of Shaker channels actu-
ally contain a fine structure, in which voltage-depen-
dent transitions in individual subunits give rise to a
stairstep increase in channel conductance. However,
these transitions are highly cooperative, such that they
occur in very rapid succession toward the fully-open
channel configuration.

Gating Role of the Outer Pore

The residue T442 corresponds to T75 at the interior
end of the pore helix of the KcsA channel (Doyle et al.,
1998; Fig. 9 A). In KcsA, T75 participates in binding of
two potassium ions: its carbonyl and hydroxyl oxygens
help form an ion binding site, and its main chain atoms
contribute significantly to the stabilization of the ion in
the water-filled cavity. In the present work, we conclude
that the T442S mutation also has a large “gating” effect,
stabilizing the various conducting states of the channel
(Fig. 9, B and C). This stabilization corresponds to a
change in free energy of about �5 kcal/mol. It is inter-
esting to see that a very small structural change at this

position—the Thr-to-Ser mutation removes a methyl
group--produces rather large gating effects.

The main activation gate of the Shaker channel has
been mapped to residues at the intracellular end of the
S6 transmembrane domain (Yellen, 1998). Evidence for
an intracellular gate dates from Armstrong’s study of
the interaction of intracellular blockers with the gating
process (Armstrong, 1971) and more detailed structural
information has come from the trapping of blockers
(Holmgren et al., 1997), accessibility analysis (Liu et al.,
1997), and a Cd2	 cross-linking study (Holmgren et al.,
1998). Most convincingly, the accessibility of intracellu-
lar Ag	 ions to an S6 cysteine is seen to increase dramat-
ically when the channel opens (Del Camino et al.,
2001). However, it seems unlikely that this main gate
could also produce the subconductance levels observed
in the channels, especially in view of the differing ion se-
lectivities of the sublevels (Zheng and Sigworth, 1997).
An attractive hypothesis is that the transitions through
sublevels involve gating transitions in a “pore gate” asso-
ciated with the outer-pore region of the channel
(Zheng and Sigworth, 1998; Fig. 9 D). It appears that

Figure 9. A mutation at the
ion selectivity filter dramati-
cally affects sublevels. (A) Mo-
lecular model of the KcsA po-
tassium channel highlighting
the position of T75, which is
equivalent to T442 in Shaker B.
(B) A representative single-
channel current trace re-
corded from a T442S mutant
channel, SNS�, with the pulse
protocol shown underneath.
Arrows point to dwells at sub-
levels during deactivation. (C)
Lifetimes in sublevels of the
SNS� channel, measured by
threshold analysis (open sym-
bols), are compared with
those of SN� channels. (D) A
cartoon showing three possi-
ble gates in the Shaker chan-
nel: (1) the S6 gate; (2) the
pore gate; and (3) the N-type
inactivation gate.



561 Zheng et al.

such a pore gate is the operational gate in CNG-gated
channels (Sun et al., 1996; Becchetti et al., 1999; Liu
and Siegelbaum, 2000; Flynn and Zagotta, 2001).

What is the relationship between the pore gate and
the main S6 gate in a Shaker channel? During the deac-
tivation process, the channel rapidly moves from the
open state through one or more sublevels; we take
these transitions to be the action of the pore gate, with
each step representing a conformational change in the
outer pore region reflecting a deactivation transition in
an individual subunit. The channel then becomes
closed (i.e., its current becomes unmeasurably small)
either from further closing of the pore gate or from the
eventual closing of the main gate. There are many ki-
netically distinguishable closed states of the channel;
judging from the effects of intracellular blockers and
the inactivation particle on channel-gating behavior, we
expect that most of the closed states will correspond
to the main gate being closed. It is quite possible
that some closed states—mainly ones closest to open
states—may represent states in which the main gate is
open but the pore gate, although not being maximally
closed, provides a sufficient barrier to ion passage that
the ionic current is too small to observe.

Our speculative picture is one in which the main gate
is typically the first to open during activation and the
last to close during deactivation. In the T442S mutant
channels (Zheng and Sigworth, 1997), the final activa-
tion approach to the fully open state occurs through
one or two sublevels as the pore gate responds to the fi-
nal motions of voltage sensors in individual subunits.
As we have shown in the present paper, the deactivation
process in mutant and wild-type Shaker channels starts
with brief dwells in sublevels that we take to be “par-
tially closed” conformations of the pore gate. Coupled
to the pore gate and to motions of the subunit voltage
sensors, the main gate closes a short time later. This be-
havior is the result of a system that, at low time resolu-
tion, appears to have a single concerted transition that
governs channel opening; this concerted transition re-
sults in a high voltage sensitivity for channel opening.
At high resolution, this “concerted” transition is now
resolved into several steps in which sublevels are tra-
versed in very rapid succession.
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