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Abstract
Environmental enrichment reduces reactivity to stressor and could also modulate pain perception. In
this study we sought to compare the effects of enriched and standard housing on temperature
perception. In an operant assay, rats housed in an enriched environment exhibited significantly lower
sensitivities to thermal stimuli and displayed less exploratory behavior in a rearing chamber. These
findings indicate that environmental enrichment can significantly affect temperature perception,
likely through stress-related mechanisms.
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It is well known that stress and pain have a synergistic relationship, one enhancing the impact
of the other through shared pathways [1]. Several groups have found that acute and chronic
stress increase nociceptive responses in rats [8,9,11,12]. However, little research has been done
to examine the effects of non-pharmacological, stress-reducing methods on nociceptive
responses in animal models. Environmental enrichment produces neural and hormonal changes
that are thought to reduce reactivity to stressors [7]. It may also reduce pain perception by
strengthening endogenous inhibitory controls. To date, only a few studies examined the
relationship between environmental enrichment and pain perception [21,22]. These studies
suggest that housing environment had no effect on baseline pain perception. However, pain
perception was assayed by measuring tail withdrawal from hot water at only one or two
temperatures. Because the anxiolytic effects of environmental enrichment are likely to occur
at the cortical level, use of reflex-based assays may not be the most effective way to evaluate
the effect of enrichment on supraspinal processing of painful stimuli. It is also important to
examine the effects of enrichment on responses to a range of temperatures since the perception
of these stimuli could be differentially modulated by affective input.

The goal of this study was to determine if environmental enrichment alters thermal pain
perception in rats. Unlike previous studies, we used an operant orofacial assay to measure the
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sensitivity of the rats to temperatures ranging from uncomfortably cold (2°C) to painfully hot
(48°C). In addition, the general activity levels of the rats were assessed by monitoring rearing
behavior.

Seven week-old male hairless Sprague-Dawley rats (Charles River, Raleigh, NC) were housed
in either an enriched environment (n=6) or in a standard environment (n=6) at separate testing
facilities. Rats in the enriched group were housed three per cage. Enriched housing consisted
of a metal cage (81.3 X 45.7 X 61 cm) containing cardboard boxes, two shelves (17.8 X 43.2
cm), a hammock, PVC tubing, various chew toys and an exercise wheel. Enrichment was
constant when rats were not being tested and objects were changed once a week. Animals in
the standard group were housed in pairs in Plexiglas cages (20.3 × 45.7 × 25.4 cm) with no
additional objects. All rats had ad libitum access to food and water between testing sessions,
and their weights were monitored weekly.

General activity levels of all animals were assessed by measuring their vertical locomotor
(rearing) behavior when placed in a cylindrical chamber (19.5 cm diameter × 40.5 cm height).
Rats were allowed to acclimate to the chamber on the first day of testing and both groups were
tested in tandem at the same time of day. The level of activity of each animal was monitored
electronically by recording the number of events and length of time the rats reared on their
hind legs with their forepaws in contact with the aluminum sheet 13.5-cm above the floor
chamber (Fig. 1A,B). Each testing session lasted 15 minutes.

Thermal sensitivity was evaluated using an operant orofacial pain assay [15]. Briefly, rats were
trained to drink sweetened condensed milk while making facial contact with a thermal probe,
set at 37°C. The rats were moved to enriched housing when training began. Following the two-
week training period, the ability of the animals to obtain the milk reward in the presence of
various thermal stimuli was recorded. Enriched and standard rats were tested using a range of
temperatures (2 - 48°C), from cold to very hot. Four behavioral outcome measures were
recorded for each 20-minute testing session: intake (grams of milk consumed), licks (number
of contacts with the sipper tube, which cannot be made without contacting the thermal probe),
stimulus contacts (number of contacts with the thermal probe), and duration (total time in
seconds spent in contact with the thermal probe). Two additional outcomes were also calculated
for each rat: the success ratio (licks/stimulus contact) and the tolerance ratio (duration/stimulus
contact). The success ratio is the number of licks (i.e. successful attempts) divided by the
stimulus contacts (total number of attempts). The tolerance ratio is the duration divided by the
stimulus contacts, which indicates how long the rats were able to remain in contact with the
thermal probe during each individual contact event. All statistical evaluations were made using
SPSS (v. 14.0, SPSS, Inc.).

The activity levels of rats housed in either enriched or standard environments were measured
on four consecutive days. A general linear model was used to perform a two-way ANOVA,
evaluating the individual effect of testing day and housing conditions on rearing events and
duration. There was no significant effect of test day on rearing behavior, but there was a
significant effect of housing on rearing events (F1,48 = 39.168) and duration (F1,48 = 10.238).
The activity levels of animals housed in the enriched environment, as measured by rearing
events and duration, were significantly less than those exhibited by rats in standard housing
(Fig.1C,D).

Exposing animals to enriched housing environments is thought to improve the efficiency of
exploratory behavior [26]. The reduction in rearing activity that we observed in rats housed in
enriched environments may reflect a reduction in exploratory behavior, perhaps as a
consequence of reduced anxiety. Additionally, voluntary wheel running, which is also a
component of our enrichment, has also been shown to reduce activity in the open field test and
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in the elevated plus maze [4]. Thus, access to exercise may lead to a decrease in rearing activity.
A formal comparison of enriched rats with and without wheel access is needed to separate the
effects of enrichment and exercise on rearing behavior.

The reduced levels of activity exhibited by animals housed in enriched environments were
accompanied by greater success in the orofacial pain assay, as indicated by the differences in
licks, facial contacts, and success ratios for the two housing groups. A general linear model
was used to perform a two-way ANOVA, evaluating the individual effect of temperature and
housing conditions on behavior. There was a significant main effect of temperature on all
outcome measures for each group as we have demonstrated previously [15,18]. There was also
a significant main effect of housing on all outcome measures (intake F1,72 = 30.612, licks
F1,72 = 8.955, stimulus contacts F1,72 = 8.759, duration F1,72 = 5.425, success ratio F1,72 =
16.482, tolerance ratio F1,72 = 16.145). Post-hoc unpaired t-tests were used to determine
significance between the housing groups at individual temperatures. The patterns of responses
for intake, licking events and duration are similar, so only licking events are shown (Fig. 2).
The same is true of the success and tolerance ratios, so only the success ratios are shown.
Overall, licking events, success ratio, and the tolerance ratio were higher for the enriched rats
(Fig. 2). The success ratio (Fig. 2C), tolerance ratio, and intake were significantly increased at
2, 42, and 45°C. Licking events (Fig. 2A) and duration were only significantly increased at 2°
C. The opposite was true for stimulus contacts (Fig. 2B); they were generally lower for enriched
animals at all temperatures below 48°C and this decrease was significant at 24°C and 45°C.
This is consistent with a reduction in pain behavior, as animals are able to tolerate the stimulus
and keep their face contacted on the thermode longer. There were no significant differences
between the two groups at 37°C and 48°C for any of the outcome measures.

Previous studies have shown that a variety of stressors can increase nociceptive responses in
chronically stressed laboratory animals and humans [1,6,8,9,11,12]. In this study, we sought
to examine the effect of environmental enrichment, an application that reduces reactivity to
stress, on operant response to a range of thermal stimuli. The enrichment applied in this study
led to decreased activity levels as measured by rearing behavior and also let to increased success
and tolerance ratios in the presence of 2, 24, and 45°C stimulation.

There are several factors that could underlie the differences displayed by the two groups of
animals that are independent of stimulation. One is that object enrichment is known to improve
spatial learning [20] and to cause rats to habituate more quickly to novel objects and
environments [19,26]. Thus, the enriched environment may lead to changes that allow the rats
to attend better to the task and adopt strategies that render them more efficient at completing
the operant task as compared to rats in standard housing. A second possibility is that greater
activity levels of rats in standard housing may reflect an increased tendency to explore the
thermodes. Third, there could be a difference in the motivational potential of the milk reward
for enriched rats versus rats in standard housing. Some studies suggest that rats raised in an
enriched environment do not seek sucrose or drug reward as readily as socially housed controls
[17,23,25]. However, exercise can increase feeding behavior [14], so it is difficult to determine
if enriched rats would be more or less motivated to seek reward.

The fact that there is no significant difference between rats in enriched and standard housing
with a neutral stimulus argues against the first two possibilities mentioned above. As to the
third possibility, one would expect that if one group were more or less motivated to seek and
consume the reward that there would be a difference in intake and licks maintained between
the two groups throughout the range of temperatures tested. However, this was not the case;
the two groups had significant differences in both intake and licks only at 2°C. If motivational
differences do exist, they appear to be dependent on the stimulus accompanying the reward.
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Therefore, in this study we provide evidence to suggest that environmental enrichment does
effect operant responses to thermal stimuli in rats, and that these responses are stimulus-
dependent. We show here that enriched rats performed significantly better than rats in standard
housing at 2, 24, and 45°C, as measured by the success ratio and the tolerance ratio. However,
at 48°C there is no difference in performance. This is likely due to the fact that a stimulus of
this intensity activates A-δ nerve fibers that sense high threshold inputs, which can be
imminently more damaging to tissue if the animal remains on it too long. This may explain
why others failed to find significant effect of enrichment on heat sensitivity using reflexive
withdrawal from a single hot stimulus [5,21,22]. Thus, enriched housing can improve rats’
tolerance of temperatures that are not immediately damaging, but are still strongly aversive,
such as cold stimuli, or on the threshold of what is perceived as painful, such as 45°C in this
case.

Part of our enrichment included an exercise component. Exercise is known to engage the reward
system [3] and is also known to reduce pain in healthy subjects [13,24]. There is also evidence
to suggest that the reward-avoidance circuitry in the brain is involved in the processing of
painful stimuli [2]. Therefore, it is possible that exercise may lead to changes in this circuitry
that can effect reactivity to painful, aversive stimuli. Such changes may underlie the enriched
rats’ decreased sensitivity to cold and hot stimuli.

To date none have examined the effect of housing on cold sensitivity. There are several lines
of evidence to suggest that the affective component of sensory processing is stronger for cold
stimuli than for hot stimuli. Human subjects rate cold stimuli as more unpleasant relative to
their intensity than hot stimuli [10,16]. We recently demonstrated that rats prefer a 48°C
stimulus to a -4°C, despite the fact that the success and tolerance ratios were not significantly
different for the two temperatures [18]. That enriched rats were more successful in the presence
of a cold stimulus also supports a strong role for affect-mediated central modulation of
peripheral cold sensitivity.

This study provides evidence that housing conditions can have significant effects on thermal
sensitivity, although further studies are needed to verify the role of stress-modulated systems,
such as the opioid and serotoninergic systems as they related to these changes. The effect of
housing on cold sensitivity in particular supports the idea that cold sensitivity may be
predominantly vulnerable to stress-related changes in descending inhibitory controls. This may
be one explanation for the prevalence of cold sensitivity in neuropathic pain, where these
descending inhibitory controls are impaired. Traditional behavioral assessment of pain has
been based on reflex or innate behaviors of animals housed in standard housing conditions,
equivalent to our standard housing. The results reported here may have implications for future
evaluation of pain-mediated behavior in animal models and the translation to the clinic.
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Fig. 1. Effect of housing on vertical locomotion (rearing) behavior in rats
The top two panels show a rat at rest (A) and rearing (B) in the cyclinder. Rats in enriched
housing (black bars) had significantly fewer rearing events (C) and a significantly lower total
rearing duration (D) as compared to rats in standard housing (white bars). Error bars represent
SEM. *P<0.05.
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Fig. 2. Effect of housing and temperature on operant behavior in rats
Rats in enriched (closed circles) and standard (open circles) housing were tested at a range of
cold to hot temperatures. There was a significant main effect of housing on all outcomes. Three
of the six outcome measures are shown: licks (A), stimulus contacts (B), and the success ratio
(licks/stimulus contact, C). Error bars represent SEM. *P<0.05, unpaired t-test comparing
enriched and standard groups at each temperature.
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