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abstract

 

The single channel gating properties of human Ca

 

V

 

2.1 (P/Q-type) calcium channels and their
modulation by the auxiliary 

 

�

 

1b

 

, 

 

�

 

2e

 

, 

 

�

 

3a

 

, and 

 

�

 

4a

 

 subunits were investigated with cell-attached patch-clamp recordings
on HEK293 cells stably expressing human Ca

 

V

 

2.1 channels. These calcium channels showed a complex modal
gating, which is described in this and the following paper (Fellin, T., S. Luvisetto, M. Spagnolo, and D. Pietrobon.
2004. 

 

J

 

. 

 

Gen

 

. 

 

Physiol

 

. 124:463–474). Here, we report the characterization of two modes of gating of human Ca

 

V

 

2.1
channels, the slow mode and the fast mode. A channel in the two gating modes differs in mean closed times and
latency to first opening (both longer in the slow mode), in voltage dependence of the open probability (larger de-
polarizations are necessary to open the channel in the slow mode), in kinetics of inactivation (slower in the slow
mode), and voltage dependence of steady-state inactivation (occurring at less negative voltages in the slow mode).
Ca

 

V

 

2.1 channels containing any of the four 

 

�

 

 subtypes can gate in either the slow or the fast mode, with only mi-
nor differences in the rate constants of the transitions between closed and open states within each mode. In both
modes, Ca

 

V

 

2.1 channels display different rates of inactivation and different steady-state inactivation depending on
the 

 

�

 

 subtype. The type of 

 

�

 

 subunit also modulates the relative occurrence of the slow and the fast gating mode
of Ca

 

V

 

2.1 channels; 

 

�

 

3a

 

 promotes the fast mode, whereas 

 

�

 

4a

 

 promotes the slow mode. The prevailing mode of gat-
ing of Ca

 

V

 

2.1 channels lacking a 

 

�

 

 subunit is a gating mode in which the channel shows shorter mean open times,
longer mean closed times, longer first latency, a much larger fraction of nulls, and activates at more positive volt-
ages than in either the fast or slow mode.
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I N T R O D U C T I O N

 

Voltage-gated P/Q-type calcium channels (Ca

 

V

 

2.1) are
located in presynaptic terminals and somatodendritic
membranes throughout the brain (Volsen et al., 1995;
Westenbroek et al., 1995), and have a prominent role
in controlling neurotransmitter release (Dunlap et
al., 1995). The somatodendritic localization of Ca

 

V

 

2.1
channels points to additional postsynaptic roles in, for
example, neural excitability (Bayliss et al., 1997; Pineda
et al., 1998; Mori et al., 2000), synaptic integration and
plasticity (Eilers et al., 1996; Magee et al., 1998), and
gene expression (Sutton et al., 1999). The importance
of Ca

 

V

 

2.1 channels in brain function is stressed by
the evidence that mutations in CACNA1A, the gene
encoding Ca

 

V

 

2.1

 

�

 

1

 

 subunits, cause a group of domi-

nantly inherited human neurological disorders, including
familial hemiplegic migraine, episodic ataxia type-2,
and spinocerebellar ataxia type 6 (Ophoff et al., 1996;
Zhuchenko et al., 1997). Mutations at the mouse ortho-
logue cause a group of recessive neurological disorders,
including the 

 

tottering

 

, 

 

leaner

 

, and 

 

rocker

 

 phenotypes with
ataxia and absence epilepsy, and the 

 

rolling Nagoya

 

phenotype with ataxia without seizures (Fletcher et al.,
1996; Pietrobon, 2002). In the 

 

lethargic

 

 mouse, a mutation
in the gene encoding the auxiliary calcium channel 

 

�

 

4

 

subunit causes a clinical phenotype very similar to that
of 

 

tottering

 

 (Burgess et al., 1997). Knockout mice with a
null mutation in the Ca

 

V

 

2.1

 

�

 

1

 

 gene show severe cerebellar
ataxia and dystonia and selective progressive cerebellar
degeneration (Jun et al., 1999; Fletcher et al., 2001).

The single channel gating properties of Ca

 

V

 

2.1
channels are critical determinants of the time course
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and magnitude of the various Ca

 

2

 

�

 

-dependent pro-
cesses they control. Both experiments and simulations
have shown that even small changes in the kinetics of
channel opening and/or closing and in channel open
probability can strongly affect the time course and mag-
nitude of Ca

 

2

 

�

 

 influx during an action potential (Mc-
Cobb and Beam, 1991; Borst and Sakmann, 1998; Saba-
tini and Regehr, 1999; Colecraft et al., 2001; Bischof-
berger et al., 2002; Meinrenken et al., 2002, 2003).
Given the steep dependence of neurotransmitter re-
lease on Ca

 

2

 

�

 

 influx (Dodge and Rahamimoff, 1967;
Bollmann et al., 2000; Schneggenburger and Neher,
2000), the detailed gating properties of single Ca

 

V

 

2.1
channels will have a strong impact especially on the
time course and magnitude of neurotransmitter release
at central synapses, where P/Q channels appear to be
more effectively coupled to release than other Ca

 

2

 

�

 

channel types (Mintz et al., 1995; Wu et al., 1999; Qian
and Noebels, 2001). Despite the critical role of Ca

 

V

 

2.1
channel gating in determining neurotransmission effi-
cacy at central synapses, surprisingly few data are avail-
able on the single channel gating properties of native
P/Q-type Ca

 

2

 

�

 

 channels (Usowicz et al., 1992; Forti et
al., 1994; Tottene et al., 1996) or recombinant Ca

 

V

 

2.1
channels (Yatani et al., 1994; Bourinet et al., 1999;
Hans et al., 1999; Colecraft et al., 2001; Tottene et al.,
2002). The discovery that mutations causing familial
hemiplegic migraine increase the open probability and
the single channel Ca

 

2

 

�

 

 influx through human Ca

 

V

 

2.1
channels (Hans et al., 1999; Tottene et al., 2002) and,
as a consequence, facilitate the induction and the prop-
agation of cortical spreading depression (van den Maag-
denberg et al., 2004) fosters the interest in extending
our knowledge of the single channel properties of hu-
man Ca

 

V

 

2.1 channels. Therefore, one of our aims here
was to obtain a detailed characterization of the gating
properties of human Ca

 

V

 

2.1 channels at the single
channel level.

In heterologous expression systems, 

 

�

 

 subunits are
powerful regulators of both channel activity and num-
ber of channels expressed in the membrane (Walker et
al., 1998; Dolphin, 2003a). In particular, for the Ca

 

V

 

2.1
channel, there is evidence for both a chaperone-like ef-
fect of 

 

�

 

 subunits on channel trafficking to the plasma
membrane (Brice et al., 1997; Bichet et al., 2000) and
modulation of the voltage range of activation and inac-
tivation as well as the kinetics of inactivation of the
whole-cell current (Stea et al., 1994; De Waard and
Campbell, 1995; De Waard et al., 1995; Cens et al.,
1996). Four different genes encode 

 

�

 

 subunits (

 

�

 

1,2,3,4

 

)
that are differentially expressed in different neurons
and during development (Tanaka et al., 1995; Witcher
et al., 1995; Ludwig et al., 1997; Volsen et al., 1997;
Vance et al., 1998; Burgess et al., 1999). Regional differ-
ences in brain expression pattern can also occur for

splice variants of the same 

 

�

 

 subunit (Helton et al.,
2002). Native P/Q-type channels can contain each of
the four different 

 

�

 

 subunits (Liu et al., 1996), and the
fractional contribution of a particular 

 

�

 

 subunit for
channel formation varies among different brain re-
gions (Pichler et al., 1997). Different combinations of a
Ca

 

V

 

2.1

 

�

 

1

 

 subunit with auxiliary 

 

�

 

 subunits most likely
contribute to generate the large functional diversity of
native P/Q-type calcium channels (Mintz et al., 1992;
Usowicz et al., 1992; Randall and Tsien, 1995; Tottene
et al., 1996; Forsythe et al., 1998; Mermelstein et al.,
1999). Whole-cell current recordings in heterologous
expression systems revealed quite different kinetics of
inactivation and slightly different voltage ranges of acti-
vation depending on the 

 

�

 

 subtype combined with the
Ca

 

V

 

2.1

 

�

 

1

 

 subunit (Sather et al., 1993; Stea et al., 1994;
De Waard and Campbell, 1995; De Waard et al., 1995;
Cens et al., 1996; Moreno et al., 1997; Krovetz et al.,
2000; Restituito et al., 2000; Sokolov et al., 2000; San-
doz et al., 2001; Helton and Horne, 2002; Helton et al.,
2002; Tsunemi et al., 2002). However, the effect of dif-
ferent 

 

�

 

 subunits on the single channel gating proper-
ties of Ca

 

V

 

2.1 channels (and also of the other Ca

 

V

 

 chan-
nels, with the exception of Ca

 

V

 

1.2) remains unknown.
Interestingly, distinct 

 

�

 

 subunits confer unique single
channel gating properties to L-type channels extending
well beyond differences in inactivation (Colecraft et al.,
2002). The regulation of Ca

 

V

 

2.1 channel properties by
variations in 

 

�

 

 subunit composition appears as a poten-
tial mechanism for tuning channel behavior to support
a given physiological role, and might contribute to cre-
ate the great diversity of release efficacy and short-term
synaptic plasticity at different synapses (Atwood and
Karunanithi, 2002). Therefore a second aim here is to
study how the presence of different auxiliary 

 

�

 

 subunits
in the human Ca

 

V

 

2.1 channel alters gating at the single
channel level.

Single channel patch-clamp recordings on human
embryonic kidney HEK293 cells expressing human
Ca

 

V

 

2.1 channels revealed a complex modal gating of
these channels, which is described in this and the ac-
companying paper (Fellin et al., 2004). Here, we report
the characterization of two modes of gating of human
Ca

 

V

 

2.1 channels, the slow mode and the fast mode, that
differ in mean closed times and latency to first open-
ing, in voltage dependence of the open probability, in
kinetics of inactivation, and voltage dependence of
steady-state inactivation. The study of Ca

 

V

 

2.1 channels
containing four different 

 

�

 

 subunits shows that both
the relative occurrence of the slow and fast gating modes
and the inactivation properties within each mode are
modulated by the type of 

 

�

 

 subunit. We also show that
the prevailing mode of gating of Ca

 

V

 

2.1 channels lack-
ing a 

 

�

 

 subunit is a low-p

 

o

 

 mode different from both
the fast and the slow gating modes.
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M A T E R I A L S  A N D  M E T H O D S

 

Cell Culture and Transfection

 

HEK293 cells (American Type Culture Collection, CRL-1533)
were stably transfected with cDNA constructs encoding the hu-
man Ca

 

V

 

2.1

 

�

 

1

 

 (

 

�

 

1A-2

 

), 

 

�

 

2b

 

�

 

-1, and 

 

�

 

1b

 

 (A68-90 cell line) or 

 

�

 

2e

 

(E1H2 cell line) or 

 

�

 

3a

 

 (PB1-14 cell line) or 

 

�

 

4a

 

 (10–13 cell line)
subunits using a standard calcium phosphate–mediated proce-
dure (Hans et al., 1999). Antibiotic-resistant colonies were se-
lected in medium consisting of Dulbecco’s modified Eagle’s me-
dium (DMEM; Life Technologies) supplemented with 6% bovine
calf serum, penicillin, streptomycin, and G418 or a combination
of G418 and Zeocin depending on the constructs used. Cells
were maintained on standard tissue culture plates at 37

 

�

 

C and
5% CO

 

2

 

. Parental lines and subsequent subclones were selected
based on the following criteria: (a) functional responses in a
fluo3 dye–based assay where increases in intracellular Ca

 

2

 

�

 

 are
measured in response to KCl depolarization; (b) Northern and
Western analysis, and (c) electrophysiological characterization.
All cell lines were incubated at 28

 

�

 

C for 12–24 h before electro-
physiological measurements (and in the case of the PB1-14 cell
line also before the fluo3 assay) (Hans et al., 1999).

In the case of transient transfection of HEK293 cells with
cDNA constructs encoding the human Ca

 

V

 

2.1

 

�

 

1 (�1A-2) and �2b�-1
subunits (or of PB1-14 cells with cDNA constructs encoding the
�3a subunit), CD4 expression plasmids were included to permit
the identification of transfected cells as in Hans et al. (1999).

In untransfected HEK293 cells, neither CaV2.1�1 nor � tran-
scripts were detected by Northern blots and neither CaV2.1�1 nor
� protein was detected on Western blots (not depicted). In con-
trast, both Northern and Western blot assays revealed the presence
of an endogenous �2b�-1 subunit in the same cells (not depicted).

Patch-clamp Recordings and Data Analysis

Single channel patch-clamp recordings were performed follow-
ing standard techniques, as in Hans et al. (1999). Currents were
recorded at room temperature with a DAGAN 3900 patch-clamp
amplifier, low-pass filtered at 1 kHz (�3 dB, 8-pole Bessel filter),
sampled at 5 kHz, and stored for later analysis on a PDP-11/73
computer. All single channel recordings were obtained in the
cell-attached configuration. The pipette solution contained (in
mM) 90 BaCl2, 10 TEA-Cl, 15 CsCl, 10 HEPES (pH 7.4 with TEA-
OH). The bath solution contained (in mM) 140 K-gluconate, 5
EGTA, 35 l-glucose, 10 HEPES (pH 7.4 with KOH). The high-
potassium bath solution was used to zero the membrane poten-
tial outside the patch. Liquid junction potential at the pipette tip
was �12 mV, and this value should be subtracted from all volt-
ages to obtain correct values of membrane potentials.

Linear leak and capacitative currents were digitally subtracted
from all records used for analysis. Open-channel current ampli-
tudes were measured by manually fitting cursors to well-resolved
channel openings. Values at each voltage are averages of many
measurements. Open probability, po, was computed by measur-
ing the average current, �I�, in a given single channel current
record and dividing it by the unitary single channel current, i. To
obtain activation curves, po values were calculated in patches con-
taining only one channel by averaging the open probabilities
measured in each sweep with activity at a given voltage (exclud-
ing the last shut time). Single channel activation curves were best
fitted with the Boltzmann equation po � pomax � {1 � exp[�(V �
V1/2)/k]}�1, where k � RT/zF. For open and closed time histo-
grams, a channel opening or closure was detected when more
than one sampling point crossed a discriminator line at 50% of
the elementary current. Histograms of open and closed times

were fitted with sums of decaying exponentials. Log binning and
fitting of the binned distributions were done as described by Mc-
Manus et al. (1987) and Sigworth and Sine (1987). The first
closed time was used to generate the cumulative first latency his-
togram. The best fit was determined by the maximum likelihood
maximization (Colquhoun and Sigworth, 1983), and the best
minimum number of exponential components was determined
by the maximum likelihood ratio test (Rao, 1973). All values are
given as mean 	 SEM.

R E S U L T S

Cell-attached single channel recordings on HEK293
cells stably coexpressing human CaV2.1�1 (�1A-2), �1b,
and �2b�-1 subunits revealed that, in many patches con-
taining only one channel, the same channel showed
two different modes of gating. Fig. 1 A shows consecu-
tive traces from a single channel patch displaying activ-
ity of the same CaV2.1 channel in two different periods
at the same voltage (�30 mV). Analysis of the open and
closed time histograms in the two periods shows that
the two modes of gating differ mainly in the intervals of
time spent by the channel in closed states (Fig. 1 B and
Fig. 2 A). We have called these two modes of gating
“slow” and “fast” for reasons that will become clear be-
low, when the kinetics of inactivation and the latencies
to first opening of a CaV2.1 channel in the two modes
will be considered.

The transitions between the two modes were infre-
quent. The channel shown in Fig. 1 was in the slow gat-
ing mode during the first 8 min of the recording, and
then switched to the fast mode and remained in this gat-
ing mode until the end of the recording (for almost 40
min). In different single channel patches, the intervals
of time spent by the channel in each gating mode varied
from tens of seconds to tens of minutes. Average values
of the different gating parameters for the two gating
modes in isolation were obtained from single channel
patches in which, by visual inspection, the channel
showed only (or mainly) one gating mode or two clearly
separated periods in the two modes (Fig. 2 A).

In both gating modes, open and closed time histo-
grams were best fit by the sum of two and three expo-
nential components, respectively. Both the time con-
stants and the relative areas of the two exponential
components best fitting the open time histograms were
similar for the two gating modes, whereas two of the
closed time constants (
c2 and 
c3) were significantly
larger in the slow mode than in the fast mode (Fig. 1 B
and Fig. 2 A). Moreover, their relative areas were differ-
ent in the two gating modes, showing a larger contribu-
tion of the longest closed time intervals in the slow with
respect to the fast gating mode. As a result, at �30 mV,
the open probability of the channel in the fast gating
mode was about twice that in the slow mode (Fig. 1 C
and Fig. 2 B). Measurements of the open probability,
po, as a function of voltage revealed that the CaV2.1
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channel activates at more negative voltages in the fast
gating mode than in the slow mode (Fig. 1 C and Fig. 2
B). Fit with a Boltzmann function of the average activa-
tion curve of CaV2.1 channels containing the �1b sub-
unit gave V1/2 values of 25 and 32 mV (with k values of
5.3 and 4.2 mV) for the fast and slow gating mode, re-
spectively. The single channel currents and conduc-
tance were identical in the two gating modes (not de-
picted, c.f. Table I).

The fast and slow modes of gating were observed in
cells coexpressing human �1A-2, �2b�-1, and any of the
four different � subunits. Fig. 2 B shows that the activa-
tion curves of single channels containing either �1b, or
�2e, or �4a subunits in the fast gating mode were simi-
larly shifted to more negative voltages with respect to
the corresponding channels in the slow mode. Fits with
Boltzmann distributions gave V1/2 values of 28 and 27
mV for channels containing either �2e or �4a subunits
in the fast gating mode (with k values of 6.6 and 5 mV),
and V1/2 values of 36 and 34 mV for the corresponding

channels in the slow gating mode (with k values of 5.9
and 4 mV). The average activation curve of channels
containing the �3a subunit in the fast gating mode was
similar to that of channels containing the other � sub-
units (V1/2 � 23 mV, k � 3.7, n � 6, not depicted; the
only significant difference was with respect to the V1/2

value of channels containing the �2e subunit). An aver-
age activation curve in the slow gating mode is not
available, given the relatively low occurrence of that
gating mode in channels containing the �3a subunit
(see below).

Single channels containing the different � subunits
in either the fast or the slow gating mode had similar
open and closed time histograms at �30 mV, as shown
by the average values of the open and closed time con-
stants in Table I. Only the channels with the �2e subunit
displayed some significant difference with respect to
those with the �1b subunit, and, precisely, both 
c2 and

c3 in the slow gating mode were larger (P � 0.05). As a
consequence, the open probability at �30 mV in the

Figure 1. A single human CaV2.1
channel shows two different modes
of gating: the fast and slow modes.
Cell-attached single channel record-
ings with 90 mM Ba2� as charge
carrier on HEK293 cells stably coex-
pressing human CaV2.1�1 (�1A-2), �1b

and �2b�-1 subunits. Depolarizations
were 720 ms long and were delivered
every 4 s from a holding potential of
�80 mV. Records were sampled and
filtered at 5 and 1 kHz, respectively.
(A) Consecutive traces in two differ-
ent periods from a patch containing
a single CaV2.1 channel. By visual
inspection, the channel was in the
mode of gating shown on the left
(the slow gating mode) during the
first 8 min of recording, and in the
mode of gating shown on the right
(the fast gating mode) during the
remaining 40 min. Single channel
current and conductance were
identical in the two periods. (B)
Log–log plots of the open and
closed time distributions of the same
single channel in the two periods in
fast and slow gating mode. The dark
solid line in each plot is the best-fit-
ting sum of two or three exponential
components for the open or closed
times, respectively (each exponential
component is shown as a dotted

line); time constants of the open times: 0.54 and 1.42 ms (relative areas 40 and 60%) for the slow mode and 0.40 and 1.36 ms (relative
areas 71 and 29%) for the fast mode; time constants of the closed times: 0.34, 3.17, and 13.4 ms (relative areas 64, 14, and 22%) for the
slow mode, and 0.29, 1.17, and 3.54 ms (relative areas 43, 38, and 19%) for the fast mode. (C) Open probability, po, as a function of voltage
for the same single channel gating in the fast (empty symbol) and slow (dark symbol) mode. Fit of the two activation cur ves with a
Boltzmann equation gives V1/2 � 34 mV, k � 4.5 mV, and po max � 0.64 for the slow mode and V1/2 � 29 mV, k � 6.6 mV, and po max � 0.67
for the fast mode. The companion paper (Fellin et al., 2004) describes two additional modes of gating of CaV2.1 channels named b and nb
modes; the single channel shown here was in the nb mode for the entire duration of the recording.



449 Luvisetto et al.

slow gating mode was smaller with the �2e than with the
�1b subunit (P � 0.05).

Overall, from the data in Table I and Fig. 2, we can
conclude that channels containing different � subunits

in either the fast or the slow gating mode show only mi-
nor differences in the rate constants of the transitions
between closed and open states within each gating
mode.

Figure 2. A single human
CaV2.1 channel in the slow gat-
ing mode spends longer intervals
of time in closed states and acti-
vates at more positive voltages
than in the fast gating mode.
Single channel recordings as in
Fig. 1 on HEK293 cells stably
coexpressing human CaV2.1�1

(�1A-2), �2b�-1, and �1b, �2e, or �4a

subunits. (A) Time constants
(
open and 
closed) and relative
areas (%) of the exponential
components best fitting the open
and closed time distributions at
�30 mV of single CaV2.1 chan-
nels (�1A-2–�1b–�2b�-1) in the
slow (dark bar) and the fast
(empty bar) gating mode. Aver-
age values were obtained from
single channel patches (n � 5 for
both the slow and fast mode) in
which, by visual inspection, the
channel showed only (or mainly)
one gating mode or two clearly
separated periods in the two

modes. Average single channel current and conductance were identical for the five channels in either the slow or fast gating mode.
Statistical significance of difference between paired values using student t test: *, P � 0.05; **, P � 0.001. (B) Normalized open probability,
po, as a function of voltage of single CaV2.1 channels containing different � subunits gating in the fast (empty symbol) and the slow mode
(dark symbol). Average values were obtained from single channel patches in which the channel showed only (or mainly) one gating mode
or two clearly separated periods in the two modes: n � 5, 5, and 6 for the slow mode and n � 5, 4, and 4 for the fast mode of channels
containing the �1b, �2e, and �4a subunits, respectively.

T A B L E  I

Single Human CaV2.1 Channels Containing Different � Subunits Have Similar Open and Closed Time Distributions in Either the Fast or the Slow Mode 
of Gating


o1 
o2 
c1 
c2 
c3 po i n

Fast mode

�1b 0.63 	 0.06 1.4 	 0.1 0.39 	 0.05 2.0 	 0.3 6.7 	 1.0 0.350 	 0.020 0.76 	 0.01 5

�2e 0.54 	 0.03 1.2 	 0.1 0.45 	 0.02 2.4 	 0.2 7.4 	 0.5 0.284 	 0.013a 0.75 	 0.01 3

�3a 0.65 	 0.12 1.5 	 0.2 0.41 	 0.04 2.1 	 0.2 6.2 	 0.3 0.330 	 0.014 0.74 	 0.01 6

�4a 0.47 	 0.08 1.4 	 0.04 0.33 	 0.03 2.0 	 0.3 6.4 	 0.9 0.308 	 0.040 0.73 	 0.01 4

Slow mode

�1b 0.48 	 0.08 1.3 	 0.1 0.49 	 0.08 3.8 	 0.8 14 	 1 0.188 	 0.012 0.76 	 0.01 5

�2e 0.48 	 0.03 1.3 	 0.1 0.56 	 0.04 7.2 	 2.0b 24 	 4c 0.125 	 0.021c 0.73 	 0.03 4

�4a 0.56 	 0.12 1.6 	 0.2 0.38 	 0.07 2.2 	 0.8 18 	 4 0.150 	 0.024 0.73 	 0.02 4

Single channel recordings as in Fig. 1 on HEK293 cells stably coexpressing human CaV2.1�1 (�1A-2), �2b�-1, and �1b, �2e, �3a, or �4a subunits. Time constants
of the exponential components best fitting the open (
o1 and 
o2) and closed (
c1, 
c2, and 
c3) time distributions at �30 mV of single CaV2.1 channels
containing different � subunits in slow and fast gating modes. Average values were obtained from single channel patches in which the channel showed only
(or mainly) one gating mode or two clearly separated periods in the two modes. Average values of the open probability and the unitary current from the
same patches are also shown. Most of the data for CaV2.1 channels containing the �3a subunit were obtained from PB1-14 cells transfected with �3a cDNA
(given the low level of expression of �3a subunit in this stable cell line).
a�2e with respect to �1b and �3a, P � 0.05. 
b�2e with respect to �1b and �4a, P � 0.05.
c�2e with respect to  �1b, P � 0.05.
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In addition to different properties of activation, the
human CaV2.1 channel showed different properties of
inactivation in the two modes of gating (Figs. 3 and 4).
During depolarizations to �30 mV, lasting 720 ms, sin-
gle channels containing the �4a subunit showed both
inactivating and noninactivating activity in the fast gat-
ing mode, but almost exclusively noninactivating activ-
ity in the slow mode (Fig. 3 A). Thus, as shown by the
average single channel ensemble currents, inactivation
was more rapid in the fast than in the slow gating
mode. The kinetics of inactivation were more rapid in
the fast than in the slow gating mode independently of
the type of � subunit combined with the CaV2.1�1 sub-
unit (Fig. 3 B). However, the kinetics of inactivation in
each gating mode were different depending on the
type of � subunit. Judging from the fraction of peak
current remaining at the end of the test pulse, the most
rapidly and slowly inactivating channels in the fast gat-
ing mode were those containing the �4a and the �2e

subunit, respectively (with intermediate similar values
with �3a and �1b; c.f. also average fraction of inactivat-
ing traces in Table II). Judging from the time constant

of inactivation, 
i, obtained from fitting the ensemble
averages of the inactivating sweeps (Table II), CaV2.1
channels containing the �4a subunit inactivated more
slowly than those containing the �3a or the �1b subunit.
The discrepancy may arise in part from the existence
and different contribution of an additional noninacti-
vating gating mode of CaV2.1 channels, the b mode,
that will be described in the companion paper (Fellin
et al., 2004). The different kinetics of inactivation of
channels with different � subunits in the slow gating
mode could be best appreciated at voltages �30 mV
(not depicted).

Also the voltage dependence of steady-state inactiva-
tion was different in the two gating modes. Fig. 4 A
shows the open probability in successive depolariza-
tions at the same voltage for two representative patches
containing a single CaV2.1 (�1A-2–�4a–�2b�-1) channel
during recordings in which the holding potential was
changed as indicated above the horizontal bars. When
the holding potential was changed from �80 to �40
mV, the channel in the slow gating mode did not inacti-
vate, in contrast with the clear inactivation shown by

Figure 3. A single human CaV2.1
channel in the fast gating mode
inactivates more rapidly than in the
slow gating mode, independently
of the � subtype. Single channel
recordings as in Fig. 1 on HEK293
cells stably coexpressing human
CaV2.1�1 (�1A-2), �2b�-1, and �4a, �1b,
�2e, and �3a subunits. (A) Represen-
tative traces at �30 mV from two
patches containing a single CaV2.1
(�1A-2–�4a–�2b�-1) channel in either
the fast (left) or the slow gating
mode (right), and pooled average
single channel ensemble currents at
�30 mV from five (n� 323 traces)
and four patches (n � 213 traces)
containing a single channel in the
fast and slow gating mode, respec-
tively. (B) Pooled average single
channel ensemble currents at �30
mV of CaV2.1 channels containing
different � subunits gating in either
the fast (left) or slow mode (right).
Fast mode: �1b, n � 133 from three
patches; �2e, n � 301 from four
patches; �3a,  n  � 201 from
five patches. Slow mode: �1b, n �
139 from three patches; �2e, n � 163
from three patches. Average ensem-
ble currents were obtained from
single channel patches in which,
by visual inspection, the channel
showed only (or mainly) one gating

mode or two clearly separated periods in the two modes. Most of the data for CaV2.1 channels containing the �3a subunit were obtained
from PB1-14 cells transfected with �3a cDNA. The fraction of peak current remaining after 720 ms was 49, 72, 86, and 66% for channels in
the fast mode with �4a, �1b, �2e, and �3a, respectively, and 89, 100, and 100% for channels in slow mode with �4a, �1b, and �2e, respectively.
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the channel in the fast mode. Steady-state inactivation
occurred at more negative voltages in the fast than in
the slow gating mode independently of the type of �
subunit, as shown in Fig. 4 B for CaV2.1 channels con-
taining either �1b or �4a subunits. However, the voltage
dependence of steady-state inactivation in each gating
mode depended on the type of � subunit, as shown for
the fast gating mode in Fig. 4 C. The average open
probabilities at different holding potentials in Fig. 4 (B
and C) were obtained by averaging the open probabil-
ity of all consecutive sweeps at a given holding potential
in several experiments like those in Fig. 4 A. In the slow
gating mode, like in the fast gating mode, the channels
containing the �1b and �4a subunits inactivated at much
more negative voltages than those containing the �2e

subunit. With the �2e subunit, the open probability of a
channel in the slow gating mode could be obtained
at several holding potentials only in a single channel
patch, and in this case, the channel did not show any
steady-state inactivation up to a holding potential of
�10 mV (at which voltage, channels containing �1b and
�4a subunits in the slow gating mode were largely inacti-
vated). In single channel patches, the fraction of traces
without activity at a holding potential of �80 mV (nulls)

was significantly larger for channels gating in the fast
than in the slow mode, and, independently of the gat-
ing mode, was significantly larger for channels contain-
ing a �1b or �4a subunit than for those containing a �2e

subunit (Table II).
The relative occurrence of the slow and fast modes of

gating of CaV2.1 channels appeared to depend on the
type of � subunit. The fraction of time spent by single
recombinant CaV2.1 channels in each gating mode
was evaluated in patches containing only one channel,
whose activity could be recorded for at least 12 min. In
each patch, only the first 12 to 16 min of single channel
activity were considered, to avoid possible distortions
due to different durations of the recording in different
patches. Moreover, due to the difficulty of separating
with a rigorous criterion individual sweeps with either
fast or slow mode activity, only single channel patches in
which the channel showed (by visual inspection) only
(or mainly) one gating mode or clearly separated long
periods in the two gating modes were considered. The
classification of the activity in a certain patch or period
as either slow or fast gating mode was then based on the
open/closed time histograms and/or on the voltage de-
pendence of the open probability. In 168 min of record-
ing (from 11 single channel patches), channels contain-
ing the �1b subunit spent 46% of the time in the slow
gating mode. A larger fraction of time (58%, in 183 min
of recordings from 12 single channel patches) was spent
in the slow gating mode by channels containing the �2e

subunit. Channels containing the �4a subunit spent
most of the time in the slow gating mode (68%, in 117
min of recordings from nine single channel patches).
The opposite was true for channels containing the �3a

subunit (34%, in 87 min of recordings from six single
channel patches). According to Fisher exact test, the
differences in occurrence of the fast and slow gating
modes among channels with the different � subunits
are all statistically significant (P � 0.05 or 0.001). Transi-
tions from the slow gating mode (present at the begin-
ning of the recording) to the fast mode were observed
in 2, 3, 0, and 2 single channel patches with the �1b, �2e,

�3a, and �4a subunit, respectively. The opposite transi-
tion from the fast gating mode (present at the begin-
ning) to the slow mode was observed only in one single
channel patch with the �4a subunit. In the remaining
single channel patches, the channel remained mainly
or only in either the fast (5, 3, 4, and 1 patches) or slow
gating mode (4, 6, 2, and 5 patches).

In contrast with the gating properties, the perme-
ation properties of CaV2.1 channels were not affected
by the type of � subunit. CaV2.1 channels containing
the four different � subunits had identical single chan-
nel currents and conductances (Fig. 5).

Given the infrequent transitions between the slow
and fast modes of gating, and the well established fact

T A B L E  I I

Different Properties of Inactivation of Single Human CaV2.1 Channels 
Containing Different � Subunits in the Fast and Slow Gating Modes


i (ms) %in %in % nulls % nulls

fast fast slow fast slow

�1b 242 32 	 8 (6) 7 	 2 (5) 19 	 2 (6) 5 	 1 (5)

�2e 615 16 	 5 (11) 2 	 1 (9) 2 	 1 (11) 1 	 1 (9)

�3a 202 33 	 11 (5) ND 4 	 3 (5) ND

�4a 355 60 	 8 (5) 22 	 3 (6) 17 	 5 (5) 9 	 3 (6)

Single channel recordings as in Fig. 1 on HEK293 cells stably coexpressing
human CaV2.1�1 (�1A-2), �2b�-1 and �1b, �2e, �3a, �4a subunits. The time
constants of inactivation, 
i, were obtained from fitting the ensemble
averages of the inactivating sweeps (pooled averages from the same
patches of Fig. 3 B); %in represents the average fraction of inactivating
sweeps, and % nulls the fraction of traces without activity at a holding
potential of �80 mV, obtained from single channel patches (whose
number is indicated in parenthesis), in which the channel showed only
one gating mode or two clearly separated periods in the two modes. The
value of 
i for channels containing the �2e subunit should be considered as
a lower limit, because the duration of the depolarizations (720 ms) is too
short to define the inactivation kinetic constants. Statistical significance of
differences between paired values: for %in (slow), all � subunits are
significantly different from each other; for %in (fast), only �4a is
significantly different from all other � subunits (P � 0.05 or P � 0.001),
probably as a consequence of the large variability in %in (fast) among
different single channel patches (partly due to different occurrence of a
noninactivating gating mode, the b mode, that is described in the
companion paper by Fellin et al., 2004). % nulls (fast) with �4a and �1b are
both significantly different than those with �2e and �3a (P � 0.05 or P �
0.001); for % nulls (slow), the only significant difference is between �4a

and �2e (P � 0.05). Most of the data for CaV2.1 channels containing the �3a

subunit were obtained from PB1-14 cells transfected with �3a cDNA (given
the low level of expression of �3a subunit in this stable cell line).
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that CaV2.1 channels containing a � subunit activate
and inactivate at more negative voltages than channels
lacking a � subunit (Stea et al., 1994; De Waard and
Campbell, 1995), one might wonder whether the slow
gating mode (showing activation and inactivation at
more positive voltages than the fast mode) corresponds
to channels that have lost the � subunit. This hypothe-

sis is made unlikely by the observation that most of the
observed transitions between gating modes were from
the slow to the fast mode, and is ruled out by the differ-
ent properties of inactivation of channels containing
different � subunits in the slow gating mode. An addi-
tional conclusive evidence against the same hypothesis
is the fact that, in HEK293 cells transfected with only
CaV2.1�1 and �2b�-1 subunits, single CaV2.1 channels
did not gate in the slow gating mode. Interestingly,
channels containing only CaV2.1�1 and �2b�-1 subunits
showed a low-po mode of gating, different from both
the fast and the slow gating modes (Figs. 6 and 7).

Fig. 6 shows consecutive traces of activity at �30 mV
from a patch containing a single �1A2–�2b�-1 channel
and the open–closed time histograms and activation
curve of the same channel. Fig. 7 compares the gating
parameters of the low-po mode typical of �1A2–�2b�-1
channels with those of the slow and fast gating modes
of CaV2.1 channels containing a � subunit. In compari-
son with the slow and fast gating modes, the low-po

mode of CaV2.1 channels lacking the � subunit was
characterized by shorter open times and longer closed
times (Fig. 6, A and B, and Fig. 7 A), by longer first la-
tencies to channel opening (Fig. 7 C), by activation
at more positive voltages, lower open probability, and
shallower dependence of the open probability on volt-
age (Fig. 6 C and Fig. 7 B), and by a much larger num-
ber of nulls (64 	 5% out of 578 traces at �30 mV
in five single channel patches). The time constants of
the two exponential components best fitting the open
time histograms were both smaller in the low-po gating

Figure 4. Steady-state inactivation of human
CaV2.1 channels occurs at more negative voltages in
the fast than in the slow gating mode, independently
of the � subtype. Single channel recordings as in Fig.
1 on HEK293 cells stably coexpressing human
CaV2.1�1 (�1A-2), �2b�-1, and �1b, �2e, �3a, or �4a

subunits. (A) Open probability in successive depolar-
izations at �30 mV as a function of time during
recordings in which the holding potential was
changed as indicated above the horizontal bars, from
two representative patches containing a single CaV2.1
(�1A-2–�4a–�2b�-1) channel in either the fast (left) or
the slow gating mode (right). (B) Normalized open
probability, (po)n, at �30 mV of CaV2.1 channels
gating in the fast and slow modes containing either
the �1b or the �4a subunits as a function of holding
potential, Vh, obtained from patches containing a
single channel showing only, or mainly, one gating
mode or two clearly separated periods in the two
modes. Po at different holding potentials was obtained
by averaging the open probability of all consecutive
sweeps at a given Vh in experiments (n � 3–8) like

those in A. In each experiment, the open probability was normalized to the value at Vh � �80 mV. (C) Normalized open probability, (po)n,
at �30 mV of CaV2.1 channels containing different � subunits all gating in the fast mode as a function of Vh. �1b (
), �2e (�), �3a (�), �4a

(�). Most of the patches contained a single channel. Part of the data for CaV2.1 channels containing the �2e subunit were obtained from
HEK293 cells transiently coexpressing human CaV2.1�1, �2b�-1, and �2e subunits. Most of the data for CaV2.1 channels containing the �3a

subunit were obtained from PB1-14 cells transfected with �3a cDNA.

Figure 5. The single channel current and conductance of
CaV2.1 channels do not depend on the type of � subunit. Single
channel recordings as in Fig. 1 on HEK293 cells stably coexpressing
human CaV2.1�1 (�1A-2), �2b�-1, and �1b, �2e, �3a, or �4a subunits.
Unitary current, i, as a function of voltage of CaV2.1 channels
containing the �1b (�), �2e (�), �3a (�), and �4a (�) subunit. The
average i–V relationships were obtained from 5, 6, 4, and 12
patches and the average slope conductance was of 19.5 	 0.4, 20 	
0.4, 19 	 0.9, and 20 	 0.4 pS for channels containing the �1b, �2e,
�3a, and �4a subunit, respectively.
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Figure 6. The main gating mode of
CaV2.1 channels lacking the � subunit is a
low-po mode different from both the fast
and the slow gating modes. Single channel
recordings as in Fig. 1 on HEK293 cells
transiently coexpressing human CaV2.1�1

(�1A-2) and �2b�-1 subunits. (A) Consecutive
traces at �30 mV from a patch containing
a single �1A-2–�2b�-1 channel. (B) Log–log
plots of the open and closed time distribu-
tions of the single channel in A. Time
constants of the exponential components
best fitting the open times: 0.30 and 0.74 ms
(relative areas 82 and 18%); time constants
for the closed times: 0.69, 11.3, and 34.9 ms
(relative areas 31, 36, and 33%). (C) Open
probability, po, as a function of voltage for
the single channel in A. Fit of the activa-
tion curve with a Boltzmann equation gives
V1/2 � 44 mV, k � 9.1 mV, po max � 0.46.

Figure 7. Comparison of the gating parameters
of the low-po gating mode of CaV2.1 channels
lacking the � subunit and the slow and fast gating
modes of CaV2.1 channels containing the �
subunit. Cell attached recordings on HEK293
cells stably coexpressing human �1A-2, �2b�-1, and
different � subunits (for the slow and fast gating
modes), or transiently expressing �1A-2 and �2b�-1
subunits (for the low-po gating mode). (A) Time
constants (
open and 
closed) and relative areas (%)
of the exponential components best fitting the
open and closed time distributions at �30 mV of
single CaV2.1 channels in fast (empty bar), slow
(gray bar), and low-po (dark bar) gating modes.
For the fast and slow gating modes, the values of
CaV2.1 channels containing different � subunits
from 18 (5 with �1b, 3 with �2e, 6 with �3a, and 4
with �4a) and 13 (5 with �1b, 4 with �2e, and 4 with
�4a) single channel patches, respectively, were
averaged; for the low-po gating mode, average
values were obtained from six patches containing
a single �1A-2–�2b�-1 channel. Statistical significance
of difference between the values for the low-po

mode and both the slow and fast gating modes,
using Student’s t test: **, P � 0.001. (B) Average open probability as a function of voltage of single CaV2.1 channels containing different �
subunits in either the fast (open circles, n � 18) or the slow (gray circles, n � 13) gating mode and of single �1A-2–�2b�-1 channels in the
low-po gating mode (triangles, n � 6) as in A. Fit of the activation curves with a Boltzmann equation gives for the low-po mode, V1/2 � 43.6
mV, k � 8.9 mV, po max � 0.40; for the fast mode, V1/2 � 26 mV, k � 5.2 mV, po max � 0.45; and for the slow mode, V1/2 � 33 mV, k � 4.2 mV,
po max � 0.53. The different values of po max for the slow and fast gating modes (in contrast with the similar values in Fig. 1 C) are mainly
due to different fractions of time spent by the channels in the b mode (Fellin et al., 2004). (C) Average cumulative first latency histograms
of single �1A-2–�2b�-1 channels in the low-po gating mode (from n � 6 single channel patches) and of single �1A-2–�2b�–�1b channels in
either the fast or the slow gating mode (from n � 5 and 5 single channel patches, respectively). To obtain the histograms, only sweeps with
activity were considered. See text for the parameters of the exponential components best fitting the histograms.
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mode and the contribution of the shortest open times
was larger; on the other hand, the three closed time
constants were all significantly larger and the contribu-
tion of the shortest closed times was smaller in the low-
po gating mode than in both the fast and slow gating
modes (Fig. 7 A). As a result, the open probability of
the channel in the low-po gating mode (at �30 mV) was
0.41 and 0.23 times that in the slow and fast modes, re-
spectively (Fig. 7 B). Fits with a Boltzmann function of
the average activation curves of single channels in the
three gating modes gave V1/2 (and k) values of 44 (k �
8.9, n � 6) mV, 33 (k � 4.2, n � 13) mV, and 26 (k �
5.2, n � 17) mV for the low-po, slow, and fast gating
modes, respectively (for the latter gating modes, the
values from channels containing the different � sub-
units were averaged together). The cumulative first la-
tency histograms of single CaV2.1 channels in both fast
and slow gating modes were best fit by the sum of two
exponential components (
1 � 2.0 ms, 94%, 
2 � 8.7
ms for the fast mode, and 
1 � 1.8 ms, 55%, 
2 � 12 ms
for the slow mode), whereas three exponentials were
necessary for the low-po mode of �1A2–�2b�-1 channels
(
1 � 2.3 ms, 31%, 
2 � 18 ms, 59%, and 
3 � 78 ms,
10%). The time constant of the fastest component was
similar in the three gating modes (�2 ms) but its con-
tribution was very different (from almost 100% for the
fast mode, to only 55% and 31% for the slow and low-po

modes, respectively). Thus, CaV2.1 channels in the fast
gating mode open more rapidly than those in the slow
mode (and the latter more rapidly than those without
� subunit in the low-po mode).

In addition to the prevailing low-po mode of gating,
CaV2.1 channels containing only �1A2 and �2b�-1 sub-
units showed a high-po mode of gating similar to the fast
gating mode of the �1A2–�2b�1-� channels. In three sin-
gle channel patches, the average open probability at
�30 mV of the channel in this gating mode was 0.267 	
0.04; the open time constants were 0.58 	 0.22 and
1.4 	 0.2 ms with relative contribution of 56 	 4 and
44% and the closed time constants were 0.45 	 0.05,
2.4 	 0.1, and 8.8 	 1.6 ms with relative contributions
of 54 	 4, 30 	 2, and 16 	 2%. The half voltage of acti-
vation was 27 	 2 mV (with k � 4.9 	 0.2). Much less
frequently, �1A2–�2b�-1 channels also showed a mode of
gating similar to the slow mode. One may wonder
whether the fast and slow gating modes recorded in
cells transfected with only �1A2 and �2b�-1 subunits may
correspond to channels containing endogenous � sub-
units (that might be expressed at such low level to be
undetectable by Western and Northern blots; Meir et
al., 2000). This interpretation appears unlikely in light
of the following observation. A low-po mode of gating
very similar to that just described was the prevailing gat-
ing mode present (together with the fast and the rarer
slow gating mode) in our initial single channel record-

ings from the cell line PB1-14, which was supposed to sta-
bly express �1A2, �2b�, and �3a subunits. The low-po mode
of gating was however totally absent after transfection of
PB1-14 cells with �3a cDNA, suggesting that for some rea-
sons these cells were not expressing sufficient amounts of
�3a subunits, and therefore most of the recorded single
channels lacked the �3a subunit. Indeed, the single chan-
nel open probability (0.07 	 0.01, n � 3), the open and
closed time constants (
o1 � 0.26 	 0.04 ms, 
o2 � 0.97 	
0.26 ms; 
c1 � 0.72 	 0.10 ms, 
c2 � 8.8 	 0.3 ms, 
c3 �
34 	 5 ms, n � 3), and the fraction of nulls (64 	 6%,
n � 4) obtained for the low-po gating pattern in PB1-14
cells were very similar to those obtained for the low-po ac-
tivity in HEK293 cells transfected with only �1A2 and �2b�-1
subunits. Interestingly, in two single channel patches
from PB1-14 cells, transitions of the same channel from
the slow to the low-po gating mode, and in one of them,
from the low-po to the fast gating mode and back to the
low-po mode were observed. This observation is consis-
tent with the hypothesis that the three gating patterns re-
flect different modes of gating of a CaV2.1 channel lack-
ing a � subunit rather than different combinations of
CaV2.1�1 subunits and auxiliary subunits. The low-po gat-
ing mode shown in Figs. 6 and 7 is the prevailing mode of
gating of CaV2.1 channels without a � subunit, but is com-
pletely absent in channels containing a � subunit. In fact,
in hundreds of cell-attached patches on HEK293 cells
transiently transfected with human CaV2.1�1, �2b�-1, and
�2e subunits, the low-po gating mode was never observed
(Hans et al., 1999; Tottene et al., 2002). Likewise, it was
never observed in cells transiently transfected with only
�1A2 and �2e subunits (n � 8).

D I S C U S S I O N

The main findings reported in this paper can be
summarized as follows. (a) Single recombinant human
CaV2.1 channels show two different modes of gating
(slow and fast), characterized by different mean closed
times and latency to first opening (both longer when
the channel is in the slow mode), different voltage de-
pendence of the open probability (larger depolariza-
tions are necessary to activate the channel in the slow
mode), different kinetics of inactivation (slower in
the slow mode), and different voltage dependence of
steady-state inactivation (occurring at less negative volt-
ages when the channel is in the slow mode). (b) CaV2.1
channels containing any of the � subtypes (�1b, �2e, �3a,
or �4a) can gate in either the slow or the fast mode,
with only minor differences in the rate constants of the
transitions between closed and open states within each
mode. With all � subunits, inactivation is more rapid
and steady-state inactivation occurs at more negative
voltages in the fast than in the slow gating mode. How-
ever, in both gating modes, CaV2.1 channels display dif-
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ferent rates of inactivation and different steady-state in-
activation depending on the � subtype, with �2e giving
a considerably slower rate of inactivation and less nega-
tive voltage range of steady-state inactivation than the
other � subunits. (c) The relative occurrence of the
slow and fast gating modes of CaV2.1 channels is modu-
lated by the type of auxiliary � subunit; �3a promotes
the fast mode, whereas �4a promotes the slow mode of
recombinant CaV2.1 channels expressed in HEK293
cells. (d) The prevailing mode of gating of CaV2.1
channels lacking a � subunit is a low-po mode different
from both the fast and the slow gating modes. A chan-
nel in the low-po mode shows shorter mean open times,
longer mean closed times, longer first latency, a much
larger fraction of nulls, and activates at more positive
voltages, displaying a shallower voltage dependence,
than in either the fast or the slow gating mode.

Modal gating appears to be a highly conserved
feature among different ion channel types. Discrete
modes of single channel activity, presumably corre-
sponding to different sets of protein conformations,
have been described for voltage-dependent Ca2� (Hess
and Tsien, 1984; Yue et al., 1990; Plummer and Hess,
1991; Delcour et al., 1993; Forti and Pietrobon, 1993;
Rittenhouse and Hess, 1994; Mantegazza et al., 1995),
Na� (Patlak and Ortiz, 1986; Nilius, 1988; Moorman et
al., 1990; Zhou et al., 1991; Alzheimer et al., 1993;
Bohle et al., 1998), K� (Marrion, 1996; Singer-Lahat et
al., 1999), and Cl� (Blatz and Magleby, 1986) channels,
and also for Ca2�-activated and G protein–activated K�

channels (McManus and Magleby, 1988; Smith and
Ashford, 1998; Yakubovich et al., 2000) and for ligand-
activated channels (for example see Naranjo and Brehm,
1993; Popescu and Auerbach, 2003). In most cases,
it remains unclear whether the transitions between
modes of gating (occurring in time frames ranging
from hundreds of milliseconds to several minutes) re-
flect slow conformational changes intrinsic to the chan-
nels or conformational changes driven by chemical re-
actions or interaction with other proteins. However,
there are several clear instances in which phosphoryla-
tion–dephosphorylation reactions either modulate the
rate constants of interconversion between different gat-
ing modes of the channel or drive the channel into dif-
ferent gating modes corresponding to different states
of phosphorylation (c.f. for L-type Ca2� channels, Ochi
and Kawashima, 1990; Yue et al., 1990; Herzig et al.,
1993; Ono and Fozzard, 1993; Dzhura et al., 2000; for
different K� channels, Marrion, 1996; Smith and
Ashford, 1998; Singer-Lahat et al., 1999; for a cation
channel in Aplysia neurons, Wilson and Kaczmarek,
1993). In other cases, it has been shown that the inter-
conversion between different gating modes is either
modulated or driven by the interaction of the channel
with other proteins, e.g. auxiliary subunits (Naranjo

and Brehm, 1993; Chang et al., 1996; Singer-Lahat et
al., 1999; Wakamori et al., 1999; Meir et al., 2000) and/
or G protein subunits (Delcour et al., 1993; Lee and
Elmslie, 2000; Colecraft et al., 2001), or calmodulin
(Imredy and Yue, 1994; Peterson et al., 1999; Zuhlke et
al., 1999). In addition, voltage dependence of the rate
constants of interconversion between different gating
modes has been clearly shown for L-type Ca2� channels
(Pietrobon and Hess, 1990; Forti and Pietrobon, 1993;
Cloues et al., 1997; Hivert et al., 1999).

This (and the following, Fellin et al., 2004) is the first
report of modal gating of CaV2.1 channels. The fast
and slow modes of gating, described in this study, are
quite different from the gating modes previously re-
ported for L-type and N-type Ca2� channels (Hess and
Tsien, 1984; Yue et al., 1990; Plummer and Hess, 1991;
Delcour et al., 1993; Rittenhouse and Hess, 1994; Man-
tegazza et al., 1995). The distinguishing features are
(a) the long mean lifetimes (time frame of several min-
utes), pointing to quite slow rate constants for the tran-
sitions between the two gating modes, and (b) the dif-
ferent kinetics and voltage dependence of inactivation
of the channel in the two gating modes, together with
different closed times (but similar open times) and dif-
ferent voltage dependence of activation. The gating
modes of L-type Ca2� channels are characterized by
large differences in open and closed times of the chan-
nel in the different modes, leading to very different
open probabilities, without reported clear differences
in inactivation properties (Hess and Tsien, 1984; Yue et
al., 1990; Mantegazza et al., 1995). Gating modes with
different kinetics and voltage dependence of inacti-
vation have been reported for N-type Ca2� channels
(Plummer and Hess, 1991), but the much shorter
mean lifetime (few seconds) of the inactivating and
noninactivating gating modes of N-type channels and
the similar open and closed times of the channel in the
two gating modes clearly distinguish the modal behav-
ior of N-type (CaV2.2) channels from that of CaV2.1
channels described here (but see Fellin et al., 2004).
On the other hand, inactivating and noninactivating
gating modes with mean lifetimes in the time frame of
several minutes, which share several properties with the
fast and slow gating modes of CaV2.1 channels, have
been described for Na� and KV1.1 channels (Zhou et
al., 1991; Singer-Lahat et al., 1999; Tabarean et al.,
1999). For both Na� and K� channels, there are indi-
rect evidences, from macroscopic current recordings,
that interaction of the channel with the cytoskeleton
and with G�� subunits either modulate or drive switch-
ing between the inactivating and noninactivating gat-
ing modes (Levin et al., 1996; Ma et al., 1997; Jing et al.,
1999; Tabarean et al., 1999). It will be interesting to in-
vestigate with future work whether similar protein in-
teractions modulate or drive switching between the fast
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and slow gating modes of CaV2.1 channels. For the
time being, we have established that interaction with
syntaxin1A is not involved in this mode switching, since
incubation with botulinum toxin C1, to cleave syntaxin,
did not alter modal gating of human CaV2.1 channels
expressed in HEK293 cells (unpublished data; c.f. Sut-
ton et al., 1999).

Our data suggest that the equilibrium between the
slow and fast gating modes of CaV2.1 channels is modu-
lated by the type of auxiliary � subunit. Thus, � sub-
units exert a dual regulation of inactivation of CaV2.1
channels; on one hand, the � subtype affects the inacti-
vation properties of the channel in each gating mode,
and, on the other hand, it affects the fraction of time
spent by the channel in the slowly inactivating and
more rapidly inactivating gating modes. The order of
efficiency with which the different � subunits shift the
equilibrium between gating modes toward the inactivat-
ing fast mode (�3a � �1b� �2e � �4a) is quite different
from that with which they increase the rate of inactiva-
tion of the channel (�4a � �1b � �3a �� �2e, judging
from the fraction of current inactivating during 720 ms,
or �3a � �1b � �4a �� �2e, judging from the time con-
stant of inactivation of the ensemble current of the in-
activating traces) or shift steady-state inactivation to-
ward negative voltages (�4a � �1b � �3a �� �2e). These
observations suggest that the � subunit modulation of
inactivation properties and of modal gating occurs by
different mechanisms and molecular interactions. It
might be interesting to note that the two � subunits
that seem to favor the slow gating mode are those that
specifically interact with the COOH and NH2 terminals
of the CaV2.1�1 subunit (Walker et al., 1998, 1999), with
�4a showing both a higher affinity for these binding
sites and a larger occurrence of the slow gating mode.

The dual independent regulation of channel inacti-
vation by � subunits might contribute to explain the
disagreement in the literature regarding the order of
efficiencies with which different � subunits modulate
the inactivation properties of CaV2.1 channels (Stea et
al., 1994; De Waard and Campbell, 1995; Restituito et
al., 2000). In fact, different splice variants of CaV2.1�1

might well display a different equilibrium between the
slow and fast gating modes or a different regulation of
modal gating by � subunits. Moreover, as found for
many channels, mode switching might be modulated
by other factors (e.g., interactions with other proteins
or metabolic processes) that may be cell type specific.

A large variability of the inactivation properties (both
kinetics and voltage range of inactivation) of the whole
cell Ca2� current in both HEK293 cells and oocytes
expressing rat CaV2.1 channels has been reported
(Moreno et al., 1997; Restituito et al., 2001; Rousset et
al., 2001). A similar variability has been noted also in
tsA201cells expressing CaV2.2 (N-type) channels (Hur-

ley et al., 2000). Restituito et al. (2001) have excluded
both different levels of palmitoylation and different lev-
els of � expression as the cause of the variable inactiva-
tion properties, and have proposed that the variability
may reflect a variable fraction of channels that have lost
the � subunit after being targeted to the membrane.
Our single channel recordings do not support the pres-
ence of a significant fraction of CaV2.1 channels lacking
a � subunit in transfected HEK293 cells. In fact, in hun-
dreds of cell-attached patches on cells transiently trans-
fected with human CaV2.1�1, �2�, and �2 subunits, the
low-po gating mode, typical of CaV2.1 channels lacking
a � subunit, was never observed. On the other hand, a
variability in the equilibrium between the gating modes
described in this and the companion paper (Fellin et
al., 2004) may well explain the variable inactivation
properties of recombinant CaV2.1 channels in different
cells (c.f. variable fraction of time spent by a single
CaV2.1 channel in the different gating modes).

In many central synapses, CaV2.1 channels are prefer-
entially located at the release sites and are more effec-
tively coupled to neurotransmitter release than other
Ca2� channel types (Mintz et al., 1995; Wu et al., 1999;
Qian and Noebels, 2001). At these synapses, the action
potential–evoked Ca2� influx and the local Ca2� in-
crease that triggers neurotransmitter release are mainly
determined by the kinetics of opening and closing, the
open probability, and the unitary conductance of CaV2.1
channels (Borst and Sakmann, 1998; Sabatini and Regehr,
1999; Meinrenken et al., 2002, 2003). Given the steep
dependence of neurotransmitter release on Ca2� influx
(Dodge and Rahamimoff, 1967; Bollmann et al., 2000;
Schneggenburger and Neher, 2000), even small changes
in these properties have a large effect on the number of
vesicles released by an action potential (Sabatini and
Regehr, 1999; Meinrenken et al., 2002). The impact of a
relatively small change in the kinetics of activation of
presynaptic Ca2� channels on the Ca2� current and neu-
rotransmitter release evoked by an action potential at a
central synapse has been shown by Borst and Sakmann
(1998). The presynaptic Ca2� channels (mainly P/Q) of
the Calyx of Held activated more rapidly after a brief
prepulse; the faster activation resulted in an increased
action potential-evoked presynaptic Ca2� current, which
could be simulated with a small increase in the rate con-
stant for gate opening (using a Hodgkin and Huxley–
type kinetic scheme to model Ca2� channel gating). The
importance of the kinetics of activation of presynaptic
Ca2� channels in determining the fraction of channels
that open during a short action potential and the ensu-
ing Ca2� current waveform and neurotransmitter re-
lease has been shown also by Sabatini and Regehr
(1999) with similar simulations.

Human CaV2.1 channels gating in the slow or the fast
gating mode have quite different latencies to first open-
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ing, activation curves, and open probabilities. The mag-
nitude and timing of Ca2� influx in response to an ac-
tion potential are then expected to be quite different
for CaV2.1 channels in the fast or the slow gating mode.
One can approximately infer the impact that the differ-
ent latencies to first opening of channels in the fast and
slow mode may have on the Ca2� current evoked by an
action potential by considering the impact of G protein
modulation of CaV2.1 channels on the action poten-
tial–evoked Ca2� current as measured by Colecraft et
al. (2001). The relative difference in latencies to first
opening between G protein–inhibited single rat CaV2.1
channels and uninhibited channels in Colecraft et al.
(2001) appears in fact comparable to that between hu-
man CaV2.1 channels in the slow and fast mode (at
nearly equivalent voltages, taking into account that
both the po–V and i–V curves measured by Colecraft et
al. appear to be shifted by �15 mV toward positive volt-
ages with respect to those measured here). The longer
latency to first opening of G protein–inhibited chan-
nels produced a marked reduction of the whole cell
Ca2� current elicited by an action potential (Colecraft
et al., 2001). One can predict that the slow mode of
CaV2.1 channels would produce a comparable reduc-
tion of the Ca2� current elicited by an action potential.
Note that the lower open probability of a channel in
the slow mode, compared with the fast mode, would
also contribute to reduce Ca2� influx in response to an
action potential.

Synaptic transmission and other physiological re-
sponses that are dependent on action potential–evoked
Ca2� influx through CaV2.1 channels would then be po-
tently modulated by any factor that regulates the equi-
librium between the slow and fast modes of gating of
CaV2.1 channels. The auxiliary � subunit appears to be
one of these factors since the relative occurrence of the
fast and slow gating modes was different in single hu-
man CaV2.1 channels containing different � subunits.
The � subunit composition of CaV2.1 channels could
thus contribute to fine tune presynaptic Ca2� influx to
local physiological requirements and contribute to cre-
ate the great diversity of release efficacy at different syn-
apses (Atwood and Karunanithi, 2002). Given the dif-
ferent inactivation properties of the fast and the slow
mode and the dual regulation of inactivation of human
CaV2.1 channels by � subtypes (affecting both the
equilibrium between modes and inactivation within
modes), CaV2.1 channels containing different � sub-
units may also lead to different amounts and timing of
Ca2� influx in response to presynaptic trains of action
potentials (Forsythe et al., 1998) or to postsynaptic
complex voltage waveforms (containing both excita-
tory postsynaptic potentials and action potentials) as
those generated in response to high-frequency presyn-
aptic stimulation (Liu et al., 2003). Liu et al. (2003)

have shown that different kinetics of inactivation and
especially voltage- dependence of steady-state inactiva-
tion of Ca2� channels have a striking impact on the
amount and temporal pattern of Ca2� influx in re-
sponse to the repetitive firing waveforms that simulate
the postsynaptic response of a pyramidal neuron to
high-frequency and theta rhythm presynaptic stimula-
tion. The � subunit composition of CaV2.1 channels
may therefore also contribute to fine tune postsynaptic
Ca2� influx and Ca2�-dependent processes to specific
stimuli and local physiological requirements. It may
also contribute to create the great diversity of short-
term synaptic plasticity at different synapses (Forsythe
et al., 1998; Atwood and Karunanithi, 2002).

As discussed above, modal gating is widespread
among channels and regulation of the equilibrium be-
tween gating modes appears as a widespread mecha-
nism for neuromodulation of channel function. CaV2.1
channels are known to be regulated by many different
transmitters and various signaling pathways (Catterall,
2000; Dolphin, 2003b; Elmslie, 2003). Except for G
proteins (Colecraft et al., 2001), modulation of CaV2.1
channels has not been studied at the single channel
level. We can exclude that the slow gating mode corre-
sponds to the reluctant gating mode of CaV2.1 chan-
nels bound to G�� (Colecraft et al., 2001). However, a
shift in the equilibrium between slow and fast gating
modes may be possibly involved in the regulation of
CaV2.1 channels by, e.g., phosphatidyl-inositol-4,5-bis-
phosphate (Wu et al., 2002), or oxidation (Li et al.,
1998; Chen et al., 2002) or hippocampal A2b adenosine
receptors (Mogul et al., 1993). In each case, at the
whole-cell level, the modulation produced changes in
the voltage dependence of Ca2� current activation.
While it remains to be seen whether these changes
were due to shifts between the gating modes of CaV2.1
channels, certainly the regulation of the complex modal
gating of these channels (described here and in Fellin
et al., 2004) provides a potent and versatile mecha-
nism to fine tune Ca2� influx and Ca2�-dependent
processes to specific stimuli in a changing physiologi-
cal environment. Given the critical role of CaV2.1
channels in controlling neurotransmitter release at
central synapses, regulation of their modal gating
could have profound consequences on synaptic trans-
mission and plasticity.
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