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abstract

 

The retinas of mice null for the neural retina leucine zipper transcription factor (

 

Nrl

 

 

 

�

 

/

 

�

 

) contain no
rods but are populated instead with photoreceptors that on ultrastructural, histochemical, and molecular criteria
appear cone like. To characterize these photoreceptors functionally, responses of single photoreceptors of 

 

Nrl

 

 

 

�

 

/

 

�

 

mice were recorded with suction pipettes at 35–37

 

�

 

C and compared with the responses of rods of WT mice.
Recordings were made either in the conventional manner, with the outer segment (OS) drawn into the pipette
(“OS in”), or in a novel configuration with a portion of the inner segment drawn in (“OS out”). 

 

Nrl

 

 

 

�

 

/

 

�

 

 photore-
ceptor responses recorded in the OS-out configuration were much faster than those of WT rods: for dim-flash
responses 

 

t

 

peak

 

 

 

�

 

 91 ms vs. 215 ms; for saturating flashes, dominant recovery time constants, 

 

�

 

D

 

 

 

�

 

 110 ms vs. 240
ms, respectively. 

 

Nrl

 

 

 

�

 

/

 

�

 

 photoreceptors in the OS-in configuration had reduced amplification, sensitivity, and
slowed recovery kinetics, but the recording configuration had no effect on rod response properties, suggesting

 

Nrl

 

 

 

�

 

/

 

�

 

 outer segments to be more susceptible to damage. Functional coexpression of two cone pigments in a single
mammalian photoreceptor was established for the first time; the responses of every 

 

Nrl

 

 

 

�

 

/

 

�

 

 cell were driven by
both the short-wave (S, 

 

�

 

max

 

 

 

�

 

 360 nm) and the mid-wave (M, 

 

�

 

max

 

 

 

�

 

 510 nm) mouse cone pigment; the apparent
ratio of coexpressed M-pigment varied from 1:1 to 1:3,000 in a manner reflecting a dorso-ventral retinal position
gradient. The role of the G-protein receptor kinase Grk1 in cone pigment inactivation was investigated in recordings
from 

 

Nrl

 

 

 

�

 

/

 

�

 

/

 

Grk1

 

�

 

/

 

�

 

 photoreceptors. Dim-flash responses of cells driven by either the S- or the M-cone pigment
were slowed 2.8-fold and 7.5-fold, respectively, in the absence of Grk1; the inactivation of the M-pigment response
was much more seriously retarded. Thus, Grk1 is essential to normal inactivation of both S- and M-mouse cone
opsins, but S-opsin has access to a relatively effective, Grk1-independent inactivation pathway.
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phototransduction • GPCR signaling • cone opsin • Grk1 • spectral sensitivity

 

I N T R O D U C T I O N

 

Healthy cone photoreceptor function is essential to
normal human vision. The special importance of cones
comes from at least three features of these cells: first,
they initiate vision in the macula, the highly specialized
central region of the retina whose signals map to a
large portion of primary visual cortex; second, they
provide the signals for color vision, allowing us to
discriminate targets on the basis of their spectral con-
tent; third, they enable the retina to signal in the pres-
ence of strong ambient illumination (Burkhardt, 1994;
Pugh et al., 1999; Paupoo et al., 2000).

Cone-specific disease, and disease of nearby rod and
retinal pigment epithelium cells that lead to the demise
of cones, have disastrous consequences for human vision
(http://www.sph.uth.tmc.edu/Retnet/). More than 15

genes are currently known to be associated with auto-
somal dominant macular degeneration (http://www.
sph.uth.tmc.edu/Retnet/); many more will certainly be
discovered to be involved in age-related macular de-
generation (Stone et al., 2004). To investigate the mo-
lecular mechanisms of cone disease, as well as the nor-
mal mechanisms that allow cones to perform their
unique functions, it is critical to have mammalian
models that allow (1) genomic analysis, and manipula-
tion of genes expressed in cones; (2) molecular and
biochemical characterization of the protein products
of such genes; and (3) functional analysis of cones and
their circuits. There is a striking paucity of such models
when it comes to cones, and none yet that allow investi-
gation on all three levels.

The mouse is increasingly the mammalian species of
choice for the investigation of the functional properties
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�

 

/

 

�

 

 Cones

 

of neuronal cell types and tissues, because of the ad-
vanced genomics, the array of tools available for its ge-
netic manipulation, and the rapid generational time. In
retinal research, definitive studies of the role of specific
proteins in rod phototransduction (Xu et al., 1997; Chen
et al., 1999, 2000; Mendez et al., 2000, 2001; Burns et
al., 2002) and rod-based disease (for review see Pierce,
2001) have come from the genetic manipulation of rod
photoreceptor-specific genes in mouse. However, in wild-
type (WT) mice, cones constitute only 

 

�

 

3% of the pho-
toreceptors, with rods comprising the remaining 97%
(Carter-Dawson and LaVail, 1979), precluding ready iso-
lation of cone-specific proteins in the large background
of their rod homologues. Furthermore, mouse cones
have few morphological features that would allow them
to be distinguished from rods under the infrared viewing
conditions required for single-cell photoreceptor elec-
trophysiology. Thus, despite a few studies demonstrating
cone-specific effects of photoreceptor-specific gene dele-
tions in mouse with electroretinographic responses (Ly-
ubarsky et al., 1999, 2000, 2001; Pennesi et al., 2003), the
full-scale investigation of molecularly manipulated cone-
specific genes has been an elusive goal.

The 

 

Nrl

 

 

 

�

 

/

 

�

 

 mouse is a promising mouse model for
the investigation of cone function. The developing

 

Nrl

 

 

 

�

 

/

 

�

 

 retina produces no rods (Mears et al., 2001);
rather, it is populated with photoreceptors exhibiting
ultrastructural, histochemical, molecular, and kinetic
features that support the hypothesis that they are in-
deed cones (Daniele et al., 2005). Here we establish
that the single cone photoreceptors of the 

 

Nrl

 

 

 

�

 

/

 

�

 

mouse can be characterized in detail with single-cell
suction pipette recordings.

The coexpression of two visual pigments in single ver-
tebrate cone photoreceptor cells conflicts with the re-
quirement for distinct neural channels to encode spec-
tral information; the capacity to discriminate lights on
the basis of their spectral content is potentially di-
minished when both pigments drive transduction in a
single cone. Nonetheless, immunohistochemical evidence
shows that cones of many mammals coexpress both an
S-pigment and an M/L-pigment, including rabbits, ham-

sters, guinea pigs, various strains of mice (Rohlich et al.,
1994; Ahnelt, 1998; Applebury et al., 2000; Lukats et al.,
2002), pigs (Hendrickson and Hicks, 2002), and hu-
mans, both fetal and, to a much less extent, adult (Xiao
and Hendrickson, 2000; Cornish et al., 2004). While pig-
ment coexpression in cones is incontrovertible, its func-
tional consequences remain largely unstudied. Cone-
driven ERG b-wave evidence is consistent with the hy-
pothesis that both S- and M-pigments

 

1

 

 drive phototrans-
duction in mouse cones (Lyubarsky et al., 1999), but this
latter evidence could be explained by convergence of sig-
nals from distinct cone classes onto proximal neurons.
Thus, there is of yet no incontrovertible evidence that
both coexpressed photopigments drive phototransduc-
tion in individual cones. 

 

Nrl

 

 

 

�

 

/

 

�

 

 photoreceptors now per-
mit for the first time the characterization of the physio-
logical consequences of coexpression, allowing detection
of coexpression levels of cone M-pigment relative to UV-
pigment at ratios as low as 1:10,000. Finally, the presence
of two mammalian cone pigments in the same photore-
ceptor cell make it possible for the first time to compare
responses driven by one or the other, and to assess the
dependence of the inactivation of the two cone pigments
on Grk1, the only G-protein receptor kinase known to be
expressed in mouse cones. By examining the responses
of photoreceptors of 

 

Nrl

 

 

 

�

 

/

 

�

 

/

 

Grk1

 

�

 

/

 

�

 

 mice, we have de-
termined that Grk1 is involved in the inactivation of both
pigments, but that the S-pigment appears to possess an
effective, Grk1-independent mechanism.

 

M A T E R I A L S  A N D  M E T H O D S

 

Animals

 

All experiments were performed in compliance with National In-
stitutes of Health guidelines, as approved by the Institutional An-
imal Care and Use Committees of the University of Pennsylvania.

 

Nrl

 

 

 

�

 

/

 

�

 

 and 

 

Rho

 

�

 

/

 

�

 

 mice were generated at the University of
Michigan (Mears et al., 2001) and New England Medical Center
(Lem et al., 1999), respectively. Animals used for recordings were
born and maintained in controlled ambient illumination on a 12-h
light/dark cycle, with an illumination level of 2–3 lux. 

 

Nrl

 

 

 

�

 

/

 

�

 

/

 

Grk1

 

�

 

/

 

�

 

 double knockout mice were produced at the University
of Southern California (Zhu et al., 2003) by crossing the 

 

Nrl

 

 

 

�

 

/

 

�

 

mice with 

 

Grk1

 

�

 

/

 

�

 

 mice (Chen et al., 1999).

 

Histochemistry

 

Mouse eyes were removed and placed into 4% paraformaldehyde
for at least 24 h, followed by overnight incubation in 30% su-
crose/PBS. Cryosections of 20-

 

�

 

m thickness were made from
whole 

 

Nrl

 

 

 

�

 

/

 

�

 

 mouse eyes, embedded in tissue freezing medium
(Triangle Biomedical Sciences), and kept at 

 

�

 

80

 

�

 

C. Frozen sec-
tions were first washed and then incubated with normal goat se-
rum, followed by primary antibodies at 1:5,000 dilution in PBS
containing 5% BSA, 0.1% sodium azide, and 0.1% Triton X-100.
After washing, sections were incubated in secondary antibodies
at 

 

�

 

1:300 dilution. The primary antibody was a rabbit polyclonal
raised against residues 3–16 of the mouse M-opsin (Zhu et al.,
2003). Secondary antibodies were goat anti-rabbit conjugated to
FITC (Jackson ImmunoResearch Laboratories).

 

1

 

The mouse genome contains the genes of two cone pigments, one
from the shortwave sensitive class 1 (SWS1) homology group having

 

�

 

max

 

 

 

�

 

 359 nm (Yokoyama et al., 1998), and a second from the long/
midwave sensitive homology group (MWS/LWS) with 

 

�

 

max

 

 

 

�

 

 508 nm
(Sun et al., 1997). The SWS1 group has 

 

�

 

max

 

s ranging from 358 to
425 nm and includes the human S-cone pigment, while the MWS/
LWS group has 

 

�

 

max

 

s ranging from 508 to 611 nm and includes both
the human M-cone and L-cone pigments (Yokoyama and Yokoyama,
2000; Ebrey and Koutalos, 2001). To reflect their homology group
memberships, in this manuscript we will often refer to the mouse
cone pigments with the generic labels “S-cone pigment” and “M-cone
pigment.” At other times, when the ultraviolet sensitivity of the
mouse S-pigment is at issue, we will use the terminology “UV-cone
pigment” to denote the mouse cone pigment with 

 

�

 

max

 

 

 

�

 

 359 nm.



 

289

 

Nikonov et al.

 

Tissue Preparation and Electrophysiological Methods

 

Mice were killed, the eyes enucleated, and whole retinas re-
moved from eye cups under infrared illumination. Small pieces
of retina were dissected in a drop of chilled Locke’s solution
(112.5 mM NaCl, 3.6 mM KCl, 2.4 mM MgCl

 

2

 

, 1.2 mM CaCl

 

2

 

, 10
mM Hepes, 0.02 mM EDTA, 20 mM NaHCO

 

3

 

, 3 mM Na

 

2

 

-succi-
nate, 0.5 mM Na-glutamate, 10 mM glucose), and placed into a
recording chamber. The chamber was continuously refreshed
with Locke’s solution, pH 7.4, equilibrated with 95% O

 

2

 

/5%
CO

 

2

 

, and maintained at 35–37

 

�

 

C with a heating system designed
for microscopy (ALA Scientific). Using silanized suction pipettes,
we recorded from photoreceptors embedded in 50–100-

 

�

 

m di-
ameter slices of retina in either of two configurations, as we ex-
plain in the next section. In both recording configurations, once
the tissue was drawn into the pipette, responses were evoked with
calibrated flashes of light under control of a customized LabView
(National Instruments Corp.) interface.

 

Novel Method of Suction Pipette Recording from the 
Perinuclear Region of Mouse Photoreceptors

 

In our initial efforts to record from 

 

Nrl

 

 

 

�

 

/

 

�

 

 photoreceptors, we
employed the only method used to date for recording from

mouse photoreceptors, drawing the outer segment into the suc-
tion pipette (e.g., Baylor et al., 1979b; Chen et al., 1995, 1999; Xu
et al., 1997). However, we discovered (and report below) that the
functional properties of 

 

Nrl

 

 

 

�

 

/

 

�

 

 photoreceptors, unlike those of
mouse rods, deteriorated during the recording epoch. These ob-
servations led us to develop a novel method of recording, in
which a portion of the perinuclear region (broadly speaking, the
“inner segment”) of the photoceptor is drawn into the suction pi-
pette (Fig. 1). A long history of suction pipette recordings from
amphibian rods and cones has shown that essentially the same in-
formation can be obtained by recording from either segment
(e.g., Cobbs and Pugh, 1987), as expected from the nature of the
circulating current whose source is primarily K

 

�

 

-selective current
in the inner segment/nuclear region and whose sink is the outer
segment cGMP-activated current (Hagins et al., 1970). However,
mouse photoreceptors, unlike those of amphibians, are not
readily isolated from one another, most likely because of much
greater cell–cell adhesions in the outer nuclear layer and near
the outer limiting membrane. We nonetheless found that very
good recordings could be obtained with suction pipettes applied
to thin retinal slices from which cells were not isolated, in effect
using a “loose patch” configuration to record the portion of the
overall circulating that flows through the perinuclear region
(Fig. 1). To make the nomenclature of the recording methods

Figure 1. Illustration of two
methods of “loose patch” re-
cording from photoreceptors
of the Nrl �/� (A and B) and
WT (C and D) mouse retinas,
imaged with infrared illumi-
nation (� � 1000 nm). (A)
Conventional “outer segment
in” (OS in) method in which
all or a portion of the outer
segment is drawn into the
suction pipette; the saturat-
ing photocurrent recorded in
this case was 7 pA. Line
drawings have been overlaid
on the image to identify the
key structures: OS, outer seg-
ment; IS, inner segment; N,
nuclear region; RPE, retinal
pigment epithelium; OLM,
outer limiting membrane. At
right one can see a array of
refractive index variations
perpendicular to the RPE
layer that arise from the
“palisade” of outer segments
projecting into the RPE cell
layer; one photoreceptor has
been outlined on this array.
Semithin plastic sections and
high resolution EM images
of the photoreceptor/RPE

layers of the Nrl �/� retina (Daniele et al., 2005) have been used as a basis for the size and shape of the outlined cells; the images in this
figure are blurred due to the limited resolution of infrared imaging. (B) OS-out method of recording in which the nuclear region of one
(or more) cell is drawn into the suction pipette; in this case the saturating response was 9 pA, and data from this cell are included in the
paper. The images of A and B are of the same retinal slice (though shifted in the chamber). (C) Image of WT retina with portion of
rod outer segment drawn into the suction pipette (OS-in configuration); no recording was associated with this image, but the average
amplitude of the saturating photocurrent in this configuration was 16 pA (Table I). (D) Image of WT retina with nuclear region of cells
drawn into pipette; the saturating amplitude of the photocurrent was 34 pA, and it appeared that two nuclei had been drawn into the
pipette. In each image the white bar represents 10 �m.



 

290

 

Functional Coexpression of S- and M-opsins in Nrl

 

 

 

�

 

/

 

�

 

 Cones

 

simple, we have named the new method “outer segment out” or
“OS out” in contrast to the traditional “OS in” method. In
the body of the paper we document the features of each type of
recording.

 

Dissection to Obtain Tissue from Pieces of Retina of Known 
Location in Eye Coordinates

 

To record from photoreceptors belonging to pieces of retina
whose location of origin in the eye was known, a cautery (Aaron
Medical Industries, Inc.) was used to mark the mid-dorsal and
mid-nasal positions of each eye of a freshly killed mouse. Under
infrared illumination on a dry surface of a Petri dish, each eye was
trimmed of muscle tissue. A drop of superglue was placed nearby
and the eye was lifted and gently placed onto the drop with the
pupil oriented upwards. Two axis marks were made with a marker
on the dish surface corresponding to mid-nasal and mid-dorsal
positions, based on the visible cautery marks. After a few seconds,
when the superglue was dry, the dish was filled with the Locke’s so-
lution. This procedure allowed for removal of the anterior seg-
ment without changing the eyecup’s orientation. Pieces of retina
of known topographic location (usually the most dorsal or ventral
region; cf. Fig. 2) were then dissected from the eyecup and pre-
pared for suction electrode recording as described above.

 

Light Stimulation and Calibration

 

Flash stimulation was provided by two light sources, a tungsten
halogen lamp, whose exposure duration was controlled by an
electronic shutter (Uniblitz Model 222; Vincent Associates), and
a xenon flash lamp that generates flashes of �20 �s duration
(Cobbs and Pugh, 1987). Flash intensity was varied by calibrated
neutral density filters. Fully blocked interference filters with 10-
nm bandwidth (FWHM transmittance) were used to produce
monochromatic stimuli.

Flash energy densities were measured in photons �m�2 at the
image plane of the inverted microscope with calibrated photo-
diodes (United Detector Technology). The number of photo-
isomerizations per photoreceptor produced by a flash was esti-
mated as the product of the energy density (photons �m�2) and
the outer segment collecting area, ac (�m2), as described below.

Data Acquisition

Data acquisition, stimulus timing, as well as control of neutral
density and interference filters were under the control of a com-
puter with a customized Labview interface (National Instruments
Corp.). A current-to-voltage converter (model 8900; Dagan
Corp.) was used to measure membrane photocurrents of outer
segments; responses were filtered with a 4-pole lowpass filter with
cutoff set to 30 Hz. Signals were digitized at 200 Hz with an A-D
converter (National Instruments Corp.). Custom scripts written
with Matlab software (Mathworks Corp.) were used to extract sin-
gle trials from stored records, and to perform sorting, averaging,
and other analyses.

Estimation of Light Collecting Area of WT Rods 
and Nrl �/� Photoreceptors

The light collecting area of mouse photoreceptors illuminated
transversely with unpolarized light in the recording chamber was
estimated with the following formula:

(1)

where f is a factor that depends on the polarization of the inci-
dent light relative to the plane of the disc membranes, 	max is the

aC 2.303fεmaxγ CVOS 10�4,×=

extinction coefficient at its �max of the pigment in solution, 
 the
quantum efficiency of photoisomerization, C the concentration
(M) of the pigment in the outer segment, and VOS (�m3) the en-
velope volume of the outer segment, and the factor 10�4 is re-
quired for consistency with the dimensions of VOS. This formula is
essentially that of Baylor et al. (1979a), Eq. 20, except for the sub-
stitution of the product f	maxC for the specific pigment density.

Collecting Area of Rods. For WT mouse rods, we adopted the val-
ues 	max � 42,000 liter (mol cm)�1 (Saari et al., 2001), 
 � 0.67,
C � 0.003 M, and f � 3/4. The value C � 0.003 M is derived from
many microspectrophotometric (MSP) studies of rod and cone
visual pigments in cells of larger diameter than mouse rods
(Liebman, 1972), including “supersized” peripheral rods of some
primates (Harosi, 1982). The average diameter and length of mouse
rod outer segments are 1.4 and 23.6 �m, respectively (Carter-
Dawson and LaVail, 1979), giving VOS � 37 �m3. With all the pa-
rameters in Eq. 1 thus specified, the collecting area for a rod
transversely illuminated in our recording chamber is estimated
to be ac � 0.54 �m2. The estimate ac � 0.48 �m2 for mouse rods
was provided in a recent investigation involving a similar experi-
mental chamber (Calvert et al., 2001), and we thus adopted ac �
0.5 �m2 as a reasonable compromise.

Collecting Area of Nrl �/� Photoreceptors. For Nrl �/� cells, we
adopted the following values for the constants in Eq. 1: 	max �
41,670 liter (mol cm)�1 (Vought et al., 1999), 
 � 0.67, and C �
0.003 M (the value used for 
 is that widely accepted for mamma-
lian rhodopsin, but we note that Okano et al. [1992] have esti-
mated 
 � 0.61 and 0.62 for chicken cone rhodopsin and iodop-
sin, respectively). The pigment concentration in cones express-
ing a UV pigment has not been estimated with MSP, and almost
certainly cannot be accurately measured in WT mouse cones or
Nrl �/� photoreceptors due to their narrow width. However,
quantitative immunoblot analysis of the total UV pigment con-
tent of the eye is consistent with a concentration equal to that of
rods (Daniele et al., 2005). We assume f � 3/4, as assumed for
rods whose currents were recorded in the same configuration
(above). Because experimenter selection might affect the length
of the OS’s of the cells from which we record electrically, we esti-
mated the length of Nrl �/� outer segments from confocal images
of pieces of live retina prepared in the same manner as for our
physiological experiments, but incubated with the permeant flu-
orescent dye Calcein AM (Molecular Probes). This method gave
abundant images of Nrl �/� outer segments resembling those
seen under infrared illumination during physiological experi-
ments. Outer segments in these confocal images had length
7.1 � 0.2 �m (mean � SEM, n � 42; unpublished data), indistin-
guishable from the length, 7.3 � 0.3 �m, measured with EM
(Daniele et al., 2005). The average OS volume estimated from
the EM data is VOS � 8.3 �m3. With all parameters in Eq. 1 thus
specified, we obtain aC � 0.11 �m2 for the Nrl �/� outer segments
in our experimental conditions. We assumed the photoreceptors
of Rho�/� mice to have the same collecting area as those of the
Nrl �/�, based on the similarity of their appearance under record-
ing conditions. We took this parallel approach to estimating aC of
rods of WT mice, and of Nrl �/� and Rho�/� photoreceptors in or-
der to make comparisons of the relative flash sensitivities and
amplifications of the photoreceptor classes in the units of photo-
isomerizations/flash at �max, an approach that allows a compari-
son of the underlying transduction mechanisms in units intrinsic
to photoreceptor function.

Quantitative Analysis of Response Data

The activation phase of families of normalized responses R(t)
were fitted with a model of the phototransduction cascade (Lamb
and Pugh, 1992; Pugh and Lamb, 1993),



291 Nikonov et al.

(2)

In Eq. 2, “�” signifies a definition, r(t) is the photoresponse, rmax

its saturating amplitude, � the number of photoisomerizations
produced by the flash, and teff a brief (several ms) delay. Traces
computed with Eq. 2 were convolved with digital filters to incor-
porate the effect of the membrane time constants of rods and
cones (Smith and Lamb, 1997), set to �m � 1 or 5 ms, respec-
tively, and the measured impulse response function of the ana-
logue filter.

Amplitude vs. intensity functions were derived from response
families and fitted with hyperbolic saturation functions of the
form

(3)

where r(tpeak) is the amplitude at the time to peak, tpeak, of the re-
sponse, Q is the flash intensity in photons �m�2, and Q1/2 the
half-saturating intensity. With the amplitude–intensity function
expressed in these units, the flash sensitivity SF of the normalized
response is SF � 1/Q1/2.

R E S U L T S

M-opsin Is Expressed in a Dorso-ventral Gradient in the 
Nrl �/� Retina

As revealed with immunohistochemistry, rodent retinas
typically express two cone visual pigments, an S-opsin
and an M-opsin, and most rodents are known to co-
express these opsins in at least some of their cones
(Rohlich et al., 1994; Applebury et al., 2000). Therefore,
we investigated the extent of M-cone pigment expres-
sion in the Nrl �/� retina with immunolabeling. A clear
dorso-ventral gradient of labeling is observed (Fig. 2).
Comparisons of immunolabeled cells with concurrently
taken DIC images indicated that most photoreceptors
express M opsin at a level that can be detected with im-
munolabeling (unpublished data). Our physiological
experiments (described below) reveal both mouse UV-
cone opsin and M-cone opsin to be present in each Nrl �/�

photoreceptor from which we have recorded and, fur-
ther, allowed quantitative assessment of the relative lev-
els of expression of M- and UV-opsin in single cells.

The Response Kinetics of Nrl �/� Photoreceptors Are Faster 
than Those of WT Rods

As benchmarks for comparison with Nrl �/� photore-
ceptors we made parallel recordings of rods from WT
mice (Fig. 3). In our initial experiments we recorded
from both types of photoreceptors, and from a small
population of cones of the Rho�/� mouse, in the tradi-
tional configuration used for mouse rods (e.g., Xu et
al., 1997), drawing the outer segment into the suction
electrode (“OS in”; Fig. 3, A and G). However, we found
that the responses of the Nrl �/� photoreceptors in the
OS-in configuration changed over time (as described
below), and so we developed a novel method (not pre-
viously used for recording from murine photorecep-

R t( ) r t( )
rmax
--------- 1 exp �1/2ΦA t teff–( )2[ ]– .=≡

R tpeak( ) r tpeak( )
rmax

----------------- Q
Q Q1/2+
---------------------- ,= =

tors) in which a portion of the inner segment was
drawn into the suction electrode (OS-out configura-
tion, Fig. 3, D and J; cf. materials and methods,
Fig. 1). The response properties of Nrl �/� photorecep-
tors were strikingly different in the two configurations,
while those of WT rods were quite similar. The latter
similarity was expected from the long history of record-
ings from amphibian rods and cones, which have re-
vealed the kinetics of circulating current suppression to

Figure 2. Dorso-ventral gradient of M-opsin expression in the
Nrl �/� retina. Image shows a montage of a series of confocal scans
from a single transverse section of a 3-mo-old mouse labeled with
polyclonal rabbit anti-mouse M-opsin antibody (green) and
mounted with a DAPI-containing mounting medium (blue) to
show nuclei of the cells in different layers. The dashed boxes
around dorsal and ventral portions of the retina illustrate the
approximate retinal locations from which retinal slices were taken
for the experiments described in Figs. 5 and 6.



292 Functional Coexpression of S- and M-opsins in Nrl �/� Cones

be very similar, regardless of the segment in the pipette
(e.g., Cobbs and Pugh, 1987). In contrast to WT rods,
however, Nrl �/� photoreceptors in the OS-in configura-

tion had reduced amplification, slower times to peak,
somewhat increased dominant time constants of recov-
ery, and were overall less sensitive to light than in the

Figure 3. Comparison of the kinetics and sensitivity of responses of Nrl �/� and WT rod photoreceptors recorded in two configurations.
Rods were stimulated with 501-nm flashes, while the Nrl �/� cells were stimulated with 361-nm flashes. Each row of panels presents data
from one photoreceptor, recorded in one of two recording configurations described in Fig. 1. A, D, G, and J are light response families,
while B, E, H, and K present the activation phases of the corresponding response family on a faster time base, with the traces fitted with the
G-protein cascade model (smooth gray traces; cf. materials and methods, Eq. 2); the corresponding amplification constants are given in
the figures. C, F, I, and L plot the amplitude vs. intensity functions derived from the response family in the same row (left ordinate) and
plot the time to 40% recovery (right ordinate) for responses to the intensities specified by the abscissa. The amplitude vs. intensity
functions have been fitted with hyperbolic saturation functions (Eq. 3), whose half-saturation magnitudes, Q1/2, are given in the figures.
The recovery time points to the lowermost saturating intensities have been fitted in semilog coordinates (“Pepperberg plots”) with a
straight line to obtain the rate of increase in recovery time per e-fold change in intensity, which estimates �D, the dominant recovery time
constant (Pepperberg et al., 1994; Nikonov et al., 1998). All responses were filtered during acquisition with a 4-pole low pass analogue
filter set at 30 Hz and digitized at 200 Hz. At least three responses to the same flash intensity were averaged for each trace, and at least 10
individual records were used to obtain the averaged responses to the dimmest flashes. The saturating photocurrent amplitudes were 26 pA
(Nrl �/� cell, OS in), 10 pA (Nrl �/� cell, OS out), 26 pA (rod, OS in), 13 pA (rod, OS out). Note that the results in D and E are presented
on a twofold shorter time scale than in the other panels.
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OS-out configuration (Fig. 3; Table I). More impor-
tantly, in the OS-out configuration, Nrl �/� photorecep-
tors were reliably faster than rods, based on two criteria:
first, the time to peak of the dim-flash response; sec-
ond, the dominant time constant of recovery (Table I).

Relative Stability of Cells Recorded in OS-in and 
OS-out Configurations

As the characterization of the responses of cells with
series of flashes depends on their stability, we felt it
critical to document the key properties of individual
cells over the time epochs of the experiments (Fig. 4).
To combine results obtained from different cells, we
scaled the various response properties relative to their
value at �3 min (Fig. 4, C–F, vertical dashed line), an
early time when data collection was typically in full
swing. When recorded in the OS-in configuration, the
circulating current of Nrl �/� photoreceptors declined
slowly over the recording epoch (Fig. 4 C, �), but the
relatively small magnitude of the decline indicates that
the electrochemical gradients of the cells were not seri-
ously compromised over a 20-min recording session.
Over the same epoch, however, the responses of cells in
the OS-in configuration became markedly slower (Fig.
4, A and F), and progressively less sensitive to light (Fig.
4, B and E). In contrast, all the properties of the re-
sponses of Nrl �/� photoreceptors recorded in the OS-
out configuration were quite stable (Fig. 4, C–F, �).
WT rods were completely stable in both configurations,
for recording epochs of up to 2 h (unpublished data).
Of particular note in the characterization of cells in the
OS-in configuration is the decline in the initial acceler-
ation of the response, captured in the amplification co-
efficient (Fig. 4 D); analysis of responses of a limited
number of cells in the first two minutes of recording

Figure 4. Relative stability of the response properties of Nrl �/�

photoreceptors. (A) Traces show responses of a single Nrl �/� cell
to dim (2,100 photons �m�2) and bright (650,000 photons �m�2)
flashes of 361 nm at three different times during a 15-min record-
ing epoch: t1, the 1st min of recording; t2, the 2nd to 5th min; t3,
the 15th min; responses got progressively slower and less sensitive.
Note that dim-flash responses were not recording in the t1 time
frame. (B) Amplitude vs. intensity functions and “Pepperberg

plots” for the cell of panel A at various times in the recording
session (ti refers to the same period as in A). At about t2, the half-
saturating flash intensity, Q1/2, was 5,000 photons �m�2, but as the
cell became less sensitive, Q1/2 shifted to 12,000. The dominant
recovery time constant �D was estimated as in the experiments of
Fig. 1, and found to change little over the time course of the
experiment. (C–F) Properties of the responses of 21 Nrl �/� cells
(OS in, �) and 8 Nrl �/� cells (OS out, �) plotted as a function of
time; the data of each cell was scaled relative to its values at �3
min (dashed line), and then the data of each scaled population
dataset averaged to produce the plotted points. The minimum
number of records averaged for the first time point was 8 (OS in)
and 2 (OS out), while for all other time points the number of
records averaged ranged from 21 to 8 for cells in the two configu-
rations, respectively. Horizontal bars give the time bracket of data
extraction from the raw records; vertical error bars are 95% confi-
dence intervals. The amplification of phototransduction, charac-
terized by the coefficient A (D), declined very rapidly for Nrl �/�

cells recorded in the OS-in configuration, and its value early in the
recording epoch was estimated from a limited number of flashes
rather than from complete response families.
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indicated that amplification declined rapidly at early
times, eventually reaching a value at 20 min that on av-
erage was more than sixfold lower in the OS-in as com-
pared with the OS-out configuration (Table I). Two
nonmutually exclusive explanations of the lability of
the Nrl �/� photoreceptors in the OS-in configuration
are that the outer segments of these cells are more vul-
nerable than rods to physical damage by the suction pi-
pette, and/or that the cone-like disc membranes are
more susceptible to some other compromising alter-
ation when removed from their extracellular matrix
sheath (Daniele et al., 2005; cf. discussion).

S- and M-opsins Are Coexpressed and Functional in Nrl �/� 
and Rho�/� Photoreceptors

Immunohistochemistry presented here (Fig. 2) sug-
gests that many, if not all, of the Nrl �/� photoreceptors
coexpress S- and M-cone opsins in a dorso-ventral gra-
dient, as do the cones of three strains of mice (Apple-
bury et al., 2000), and other rodents (Rohlich et al.,
1994; Dkhissi-Benyahya et al., 2001; Lukats et al., 2002).
It is not yet known, however, if the coexpressed pig-
ments are both functional in individual cells, i.e., both
capable of activating phototransduction in the same
cell. To further investigate this issue, we measured the
spectral sensitivities of single Nrl �/� photoreceptors.
After an initial response family to 361-nm flashes was
measured, cells were presented with sets of flashes of
test wavelengths ranging from 361 to 690 nm, inter-
leaved with 361-nm standards, and periodic intense
flashes to determine the magnitude of the saturating
current. Sensitivity at each wavelength was determined
as described above (Eq. 3; cf. Fig. 3, C and F); in each
case normalized at 361 nm. The data of one Nrl �/� cell

for which sensitivity was measured at 10 different wave-
lengths (Fig. 5 A, �) shows that the spectrum of an in-
dividual cell can be described with a pair of pigment
template curves characteristic of the mouse UV- and
M-cone pigments. Similar results were obtained from a
number of cells. Spectral sensitivities measured in this
manner revealed that every Nrl �/� photoreceptor re-
corded functionally coexpressed both UV and M-opsin
(Fig. 5 B). All Nrl �/� cells were maximally sensitive at
�360 nm, but above �440 nm the sensitivity did not
track the UV-cone pigment template (Fig. 5, purple
curves). For simplicity, we present in Fig. 5 B the sensi-
tivities of 36 Nrl �/� cells and 8 Rho�/� cells at just three
wavelengths, 361 nm, and at either 501 or 515 nm. The
relative sensitivity at the middle wavelengths varied
�1,000-fold over the population. Nonetheless, even the
cells least sensitive at 501 or 515 nm were 20-fold more
sensitive than would be expected if they expressed only
the UV-pigment (Fig. 5 B, gray arrow).

We measured the spectral sensitivity of rods (Fig. 5 A)
as a benchmark for the spectra of the Nrl �/� photore-
ceptors. The rod data are well described over a spectral
range of 250 nm and nearly five log units of sensitivity
by a pigment template (Lamb, 1995), modified to in-
clude the sensitivity of the pigment 
-band (Govar-
dovskii et al., 2000) (Fig. 5 A, black curve), providing
assurance that the spectra of the cells of the knockout
mice have been accurately measured. Spectral sensitivi-
ties of rods recorded in the OS-in and OS-out configu-
ration were indistinguishable, showing that the pipette
does not distort the spectrum.

An important question is whether the large variation
in coexpression of the M-pigment manifest in the spec-
tral sensitivity near 510 nm reflects the dorso-ventral gra-

T A B L E  I

Comparison of Properties of Nrl �/�, Rho�/�, and WT Rod Photoreceptors of the Mouse

Genotype (configuration)
(no. of cells) VOS aC Rmax F A tpeak �D

�m3 �m2 pA (�R/�) % s�2 ms ms

Nrl �/� (OS out, n � 8) 8.3 0.11 13 � 5 0.24 � 0.06 3.5 � 1.4 91 � 6 110 � 40

Nrl �/� (OS in, n � 30) 8.3 0.11 16 � 3 0.23 � 0.07 0.56 � 0.21 200 � 20 200 � 20

Rho�/� (OS in, n � 8) 8.3 0.11 6 � 1 0.08 � 0.04 0.11 � 0.07 250 � 60 270 � 50

WT rods (OS out, n � 10) 37 0.5 22 � 8 5.1 � 1.8 7.6 � 1.4 200 � 20 260 � 60

WT rods (OS in, n � 13) 37 0.5 16 � 4 5.6 � 0.8 8.4 � 1.4 210 � 10 210 � 40

WT rods (all, n � 23) 37 0.5 – 5.3 � 1.0 8.0 � 1.0 207 � 9 230 � 20

Columns 2–8 present parameters of the cells whose type is identified in the first column: VOS is the envelope volume of the outer segment, aC the light
collecting area (materials and methods), Rmax the saturating amplitude of the light response, F the sensitivity of the normalized dim flash response,
specified as fraction of the saturating response per photoisomerization (�R/�) (cf. Eq. 3), A the amplification constant (Pugh and Lamb, 1993), tpeak the
time to peak of the dim-flash response, and �D the dominant recovery time constant (cf. Fig. 3). The error terms are 95% confidence intervals; the number
of cells of each type is given with the genotype specification. The results in the table are based on recordings made 2–6 min after recording commenced
(except for rods, and Nrl �/� cells in the OS-out configuration, for which the recordings were stable for long epochs; cf. Fig. 4). In the bottom row, the
weighted average of the results from all the rods are provided, as none of the functional properties (with the exception of Rmax) differed between rods
recorded in the two configurations with statistical reliability; Rmax can be expected to differ, as nothing insures that the perinuclear region drawn into the
suction pipette in the OS-out configuration contains all of the K�-selective channels that constitute the “inner segment” limb of the circulating current.

S̃

S̃
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dient seen in Fig. 2. To address this question, we mea-
sured the spectral sensitivity of photoreceptors from the
most dorsal and most ventral portions of the retina (Fig.
5 B; cf. Fig. 2); the coexpression of M-pigment in cells
from the dorsal retina was on average almost 100-fold
greater than in cells from the ventral retina. However,
there was also substantial variation in the degree of co-
expression in the dorsal and ventral retina areas probed.

Coexpression of M-pigment Is Correlated with Reduced 
Absolute Sensitivity of the UV-pigment–driven Response

The dorso-ventral gradient of M-pigment coexpression
suggests that at least the M-cone pigment level is under

Figure 5. Spectral sensitivities of single mouse photoreceptors.
The sensitivity of the cells of Nrl �/� and Rho�/� mice were normal-
ized to unity at 361 nm, while rod sensitivities were normalized
at 500 nm. (A) Data from a single Nrl �/� cell stimulated at 11
different wavelengths (�) and data from a Rho�/� cell stimulated
at 7 different wavelengths (gray triangle); both cells were recorded
in the OS-in configuration. Averaged spectral sensitivities of seven
rods (OS in, �), and 2 rods (OS out, gray circle); error bars are
standard deviations. The unbroken curves are pigment templates
(Lamb, 1995) for the three murine pigments: �max � 361 nm
(purple curve; UV-cone pigment), �max � 508 nm (green curve;
M-cone pigment), and �max � 500 nm (black; rhodopsin; for � �
450 nm the rhodopsin template was extended into the short-wave
region of the pigment 
-band according to Govardovskii et al.
(2000). Dotted traces are the sum of M-pigment templates and
UV-pigment template. (B) Results from 9 Nrl �/� cells stimulated
with 361, 401, and 420-nm flashes (�); error bars are 95% confi-
dence intervals. Results from 36 different Nrl �/� cells stimulated
with 361-nm and 501 or 515-nm flashes (�), and from 8 Rho�/�

cells (gray triangle). The gray arrow indicates the gap between the
measured sensitivity of the Nrl �/� cells least sensitive at �510 nm

and the predicted sensitivity of a cell expressing only the UV-cone
pigment (violet curve). Data points plotted to the right of the
abscissa break show sensitivity measured at 515 nm for 12 Nrl �/�

cells from the dorsal part of the retina (green triangle), one cell
from the central part of the retina (blue triangle) and 12 cells
from the ventral part of the retina (pink triangle). All results for
this analysis were recorded in the OS-in configuration.

Figure 6. M-cone pigment coexpression in Nrl �/� photorecep-
tors affects the absolute sensitivity to stimuli detected by the UV-
cone pigment. Each point in the plot represents data from a single
Nrl �/� photoreceptor; the purple circles represent data from cells
in slices from the most ventral portion of the retina, while the
green circles represent data from cells in slices from the most dor-
sal portion of the retina, and the white circle one cell from a slice
near the optic disc (see Fig. 2, colored boxes); these cells were re-
corded from in the OS-in configuration in a simplified protocol
that focused only on the dim-flash responses. The gray circles plot
data from cells recorded from in the OS-out configuration, in
slices from unknown retinal locations. The abscissa plots the “co-
expression ratio,” defined as the ratio of the sensitivities (sF) to
dim flashes of 515 and 361-nm stimulation; the ordinate plots the
absolute sensitivity to 361-nm stimulation, sF(361). The black line
was determined from Pearson product-moment correlation analy-
sis of the bivariate data: its slope is �0.08 log10 units of sF(361) per
log10 units of the coexpression ratio; the slope is significantly dif-
ferent from zero (tdf�36 � �2.27, P � 0.02).
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the regulation of a factor that varies in a dorso-ventral
manner. We examined the hypothesis that the UV-cone
pigment might also be regulated in a dorso-ventral gra-
dient, but in an “inverse” manner to that of the M-pig-
ment. We plotted the absolute sensitivity of Nrl �/� pho-
toreceptors to 361-nm flashes as a function of the “co-
expression ratio,” defined as sF(515)/sF(361), the ratio
of sensitivity to 515-nm flashes relative to the sensitivity
to 361-nm flashes (Fig. 6). There is a reliable negative
correlation between log10[sF(361)] and log10[sF(515)/
sF(361)], with cells from the ventral retina having a
higher absolute sensitivity to UV light. Interpreting the
sensitivities as surrogates for the pigment expression
levels, this result suggests that UV-cone pigment expres-
sion is down-regulated in cones in the regions of the
retina where the M-pigment is up-regulated, and vice
versa. In absolute terms, the effect is not large; thus, the
sensitivity to UV light only declines (on average) about
twofold over the nearly 3.5 log10 domain of coexpres-
sion. That the negative correlation is manifest on a
3,000-fold scale of coexpression indicates the that un-
derlying regulatory mechanisms do not simply act to
conserve the total amount of pigment; for example,
this mechanism apparently exerts an influence on UV-

pigment expression level even when M-pigment levels
are 1/1,000 to 1/100 that of the UV-pigment.

Phototransduction Activated by the UV- and M-cone Opsins in 
Single Cells Is Similar

The spectral sensitivity data establish that both UV- and
M-cone photopigments are expressed in individual
Nrl �/� and Rho�/� photoreceptors, and that both pig-
ments can activate transduction in the same cell. Be-
cause the sensitivity in the midwave spectral region is
far greater than would be expected were only the UV-
pigment expressed and functional (Fig. 5 B), it fol-
lows that dim-flash responses obtained in response to
such midwave stimuli represent transduction driven
purely by the M-pigment, while responses to dim 361-nm
flashes represent transduction driven at least 85% by
the UV-pigment (85% is the “worst case,” in which the
two pigments are coexpressed in 1:1 ratio). It is thus
possible to compare the kinetics of phototransduction
activated in individual cells by one or the other cone
pigment. To perform this comparison, a series of dim
UV or midwave flashes were presented to a cell, with in-
tensities selected to suppress no more than 35% of the
current. Saturating flashes were interleaved with dim

Figure 7. Dim-flash responses of individual
photoreceptors from Nrl �/� mice (A) or
Nrl �/�/Grk1�/� mice (B) driven by either the
UV-cone pigment (purple traces) or the M-
cone pigment (green). Each panel presents
averaged responses of a different single cell in
response to a 361-nm flash (purple traces) and
a 501 or 515-nm flash (green traces). In each
experiment, the thicker purple trace was
obtained first, then the green trace, and finally
the thinner purple trace. The average number
of responses taken for each trace was 31
(range, 10–70). The fraction of current sup-
pressed by the flashes was 0.20 � 0.11 (mean �
SD taken over the population) of the maxi-
mum, and did not differ for the responses to
the UV and midwave flashes. Each trace is scaled
to unity at its peak.
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flashes to monitor the circulating current level, and
comparisons between UV-cone pigment–driven and
M-cone pigment–driven responses deemed valid only
when the traces met a strict criterion of reversibility,
i.e., when the time course of the dim-flash responses to
the ultraviolet flashes before and after the period of
midwave stimulation were indiscriminable to inspec-
tion. Results from cells investigated with this protocol
(Fig. 7 A) show little difference in the kinetics of re-
sponses driven by the UV-cone pigment (purple traces)
as compared with the responses driven by the M-cone
pigment (green traces). Nonetheless, there was a reli-
able tendency for the M-cone responses to recover
more slowly, a tendency that led us to investigate fur-
ther the hypothesis that the two pigments might have
distinct inactivation mechanisms, as we now describe.

Differential Dependence of UV- and M-cone Pigment 
Inactivation on the G-protein Receptor Kinase, Grk1

The functional coexpression of both UV- and M-cone
pigments in Nrl �/� photoreceptors provides a special
opportunity for the investigation of the dependence of
cone pigment inactivation on G-protein–coupled re-
ceptor kinase. The only such kinase in the mouse ge-
nome known to be expressed in cones is Grk1, also
known as “rhodopsin kinase” for its well-established
role in the inactivation of rhodopsin in rods (Chen et
al., 1999, 2001). We thus undertook recordings from
the photoreceptors of Nrl �/� mice that had been cross-
bred with Grk1�/� mice (Chen et al., 1999) to cre-
ate mice with the double-knockout genotype, Nrl �/�/
Grk1�/� (Zhu et al., 2003). Dim-flash responses from a
sample of cells from double-knockout mice are show
in Fig. 7 B; in every case, the dim-flash response driven
by the M-cone pigment was severely retarded in its
recovery relative to the response driven by the UV-
cone pigment. Again, comparisons between responses
driven by the two pigments were only deemed valid
when the responses to ultraviolet flashes collected be-
fore and after the responses to the midwave flashes
had indistinguishable kinetics. It is evident that in the
absence of Grk1 the M-cone pigment–driven responses
recover much more slowly than those driven by the
UV-cone pigment.

To quantify the comparisons of the recovery kinetics
of the responses driven by the two cone pigments in in-
dividual cells, we measured a simple feature of the dim-
flash response, its full-width at half-maximum, or �T50

(Fig. 8 A). �T50s for the UV- and M-cone pigment–
driven responses for animals of the two genotypes are
summarized in the bar chart of Fig. 8 B. While the dele-
tion of Grk1 slowed the recovery of responses driven by
both pigments, the effect on the M-pigment response
was much larger; thus, in the absence of Grk1, the aver-
age �T50 of the response to the M-pigment increased

7.5-fold (from 0.33 to 2.44 s), while the �T50 of the UV-
pigment response increased 2.8-fold (from 0.25 to 0.69 s);
both these differences in �T50 are highly significant
(P � 0.0004), arguing strongly that Grk1 is necessary

Figure 8. Quantitative comparison of the recoveries of dim-flash
responses of photoreceptors of Nrl �/� mice or Nrl �/�/Grk1�/�

mice, driven by either the UV-cone pigment (purple) or M-cone
pigment (green). (A) Method of quantification: the full width
half-maximum (�T50) of the normalized dim-flash response was
determined from the intersection of the traces with a line at 50%
amplitude; three intersections are illustrated by cross-hairs super-
imposed on the traces. �T50 is the interval between the initial
intersection with the response rising phase and the second inter-
section with the recovery phase. (B) Histograms of the �T50s for
the UV-cone pigment (purple bars) and M-cone pigment–driven
responses (green bars) from populations of cells from animals of
the two genotypes (Nrl �/�, n � 17 cells; Nrl �/�/Grk1�/�, n � 9
cells); the error bars are 95% confidence intervals. Statistical
analysis showed that all the values of �T50 represented in Fig. 6 B
are significantly different from one another on the basis of t tests
(two samples, unequal variance, one-tail): for Nrl �/� cells, UV vs.
M-opsin–driven responses, P � 0.032; for Nrl �/�/Grk1�/� cells, UV
vs. M-opsin–driven responses, P � 10�4; for UV-opsin–driven re-
sponses of Nrl �/� cells vs. Nrl �/�/Grk1�/� cells, P � 10�3; for
M-opsin–driven responses of Nrl �/� cells vs. Nrl �/�/Grk1�/� cells,
P � 10�4. There was no statistically reliable difference between the
�T50s of the “pre” and “post” UV-driven responses, and so the
�T50s of these responses were averaged for the histogram analysis.
In other words, the traces of all cells obeyed the reversibility
criterion illustrated in Fig. 7 and in panel A of this figure.
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for normal inactivation of both pigments. Since the re-
cordings used for comparison of dim-flash responses
were made with the outer segment drawn into the suc-
tion pipette, caution is called for in interpreting the ab-
solute numerical values of the �T50s. Nonetheless, as
comparisons were only made when the UV-pigment–
driven response was unchanged throughout the re-
cording epoch, it can be concluded that the inactiva-
tion of the M-cone pigment is more severely affected by
the absence of Grk1 than that of the UV-cone pigment.

Comparison of the Kinetic Properties of Nrl �/� Photoreceptors 
and WT Rods

It is of major importance to determine whether Nrl �/�

photoreceptors are to be classified as cones or possibly
as “a species of photoreceptor intermediate between
cones and rods” (Mears et al., 2001). While a definitive
classification requires comparison of these cells with
WT rods and cones on a battery of ultrastructural,
histochemical, molecular, and physiological features
(Daniele et al., 2005), it is nonetheless useful for the
classification effort to compare the features of the pho-
toresponses of individual Nrl �/� photoreceptors with
those of WT rods recorded under the same conditions.
Our investigation shows that in addition to their distin-
guishing spectral sensitivities, individual Nrl �/� photo-
receptors have response properties that are highly dis-
tinctive from those of rods. Here we summarize those
distinctive properties, giving the results from popula-
tions of cells recorded in either the OS-in or OS-out
configuration (Fig. 9; Table I). In addition to dividing
the data according to the recording configuration, we
have further subdivided the data of Nrl �/� photorecep-
tors recorded in the OS-in configuration into three
subgroups, based on the time to peak of the dim-flash
response. This subdivision is to some degree arbitrary,
but serves to assist in comparative assessment of the fea-
tures of Nrl �/� photoreceptors recorded in this config-
uration with those of WT rods.

Time to peak (tpeak). In the OS-out configuration, the
time to peak of the dim-flash response of Nrl �/� photo-
receptors was tpeak � 91 � 6 ms (mean � 95% c.i.),
more than twofold shorter than that of rods in the con-
figuration that gave the shorter value, tpeak � 200 � 20
ms (Fig. 9 A; P � 10�7, one-tailed t test).

Dominant Time Constant of Recovery (�D). The domi-
nant recovery time constant for just-saturating flashes
(cf. Fig. 3) was reliably shorter in Nrl �/� photorecep-
tors recorded in the OS-out configuration as compared
with rods in the configuration that gave the shorter
value: �D � 110 � 40 ms vs. �D � 210 � 40 ms (Fig. 9 B;
P � 0.0004, one-tailed t test).

Half-saturating Flash Intensity (Q1/2). The flash intensi-
ties that produced half-saturating responses of Nrl �/�

photoreceptors were close to 100-fold higher than

those that half saturated rod responses. Our rod results
(Q1/2 � 40 � 10 photons �m-2, mean � s.d.) are in
good agreement with previous reports: Q1/2 � 30 � 6
photons �m�2 (Howes et al., 2002); 49 � 3 (Xu et al.,
1997), 55 � 5 (Calvert et al., 2000), 60 � 10 (Calvert et
al., 2001), and 67 � 6 (Chen et al., 1999).

Figure 9. Comparison of response properties of WT rods, Nrl �/�

and Rho�/� photoreceptors. Responses of WT rods were recorded
with the outer segment either in the suction electrode (OS in,
black bars, n � 10) or with a portion of the inner segment drawn
into the pipette (OS out, gray bars, n � 13). Similarly, Nrl �/�

photoreceptors were recorded in both configurations (OS out,
red bars, n � 8; OS in, green, n � 12; cyan, n � 13; and blue, n �
5), with the latter groups subdivided based on the time-to-peak of
the dim-flash response (A). Rho�/� cells were recorded only the
OS-in configuration (clear bars, n � 8).
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Flash Sensitivity, Expressed as Fraction of Circulating Cur-
rent Suppressed per Photoisomerization. For interpretation
in terms of the intrinsic properties of phototransduc-
tion, flash sensitivity is best expressed in terms of frac-
tion circulating current suppressed per photoisomer-
ization. To do this, flash intensities expressed in pho-
tons �m�2 are multiplied by the collecting area, aC

expressed in �m2 (materials and methods). At the
peak of the dim-flash response, 5.4 � 1.3% of the rod
circulating current was suppressed per photoisomeriza-
tion; in contrast, only �0.24% of the circulating cur-
rent of the Nrl �/� photoreceptors was suppressed per
photoisomerization (Table I), a 40-fold lower sensitivity
than rods. Comparable differences in rod and cone
sensitivities expressed in photoisomerizations have been
reported for other mammalian species, e.g., 5 � 1.5%
for primate rods (Baylor et al., 1984) vs. 0.2% for pri-
mate cones (Schnapf et al., 1990).

Amplification Coefficient (A). The amplification coeffi-
cient of Nrl �/� photoreceptors in the OS-out configura-
tion was 2.2-fold lower than that of rods: A � 3.5 � 1.4
s�2 vs. A � 8.0 � 1.0 s�2. As mentioned above, Nrl �/�

photoreceptors recorded in the OS-in configuration had
considerably reduced amplification (Fig. 3 B; Fig. 9 D).

Recordings from Rho�/� Cones

Despite a great effort, we were only able to make a
small number of recordings from the cones of rhodop-
sin knockout (Rho�/�) mice, which like Nrl �/� mice
have no rod outer segments (Table I; Fig. 9). Remark-
ably, slices of these retinas appear to have a large
number of cone outer segments, but very few gener-
ate a measurable photocurrent, and those that did de-
cayed even more rapidly in their function than Nrl �/�

photoreceptors recorded in the OS-in configura-
tion. At present, no strong conclusions can be drawn,
but it is notable that Rho�/� outer segments appeared
to be even more fragile and labile that those of Nrl �/�

photoreceptors.

Final Perspectives

To provide a final perspective on the comparison of the
kinetics of WT rods and Nrl �/� photoreceptors, we
have plotted the average dim-flash responses of the two
cell types (Fig. 10). Nrl �/� photoreceptors in the OS-
out configuration (red trace in Fig. 10, A and B) are
faster in their recovery kinetics than in the OS-in con-
figuration (green trace in Fig. 10 B), whereas the dim-
flash responses of rods were very similar in the two re-
cording configurations (Fig. 10 B). Clearly, Nrl �/� pho-
toreceptors in the OS-out configuration have much
faster response recoveries than do rods, but a subpopu-
lation of Nrl �/� photoreceptors recorded in the OS-in
configuration also had reliably faster recoveries (green
traces, Fig. 10 B).

D I S C U S S I O N

Nrl �/� Photoreceptors Are Properly Classified as Cones

The single-cell electrophysiological results reported
here, combined with electron microscopy (EM), immu-
nohistochemistry, protein analysis, and electroretino-
graphic (a-wave) analysis, lead to the conclusion that
Nrl �/� photoreceptors are a species of cones. At the EM
level, the number of open basal discs and the size and
shape of mitochondria clearly identify Nrl �/� photore-
ceptors as cones (Carter-Dawson and LaVail, 1979; un-
published data). At the histochemical level, each Nrl �/�

photoreceptor has associated with it an extracellular
matrix sheath that is stained by the plant lectin, peanut
agglutinin or PNA (Daniele et al., 2005), a unique
characteristic of cones, including the cones of WT
mice (Blanks and Johnson, 1983; Johnson et al., 1986;
Blanks et al., 1988). Like WT cones, Nrl �/� photorecep-
tors express both UV- and M-cone opsins, and when
photoactivated, both cone pigments drive phototrans-
duction in the absence of rod transducin, rod phos-
phodiesterase, and rod cGMP channels (Mears et al.,

Figure 10. Comparison of the normalized dim-flash responses
of Nrl �/� photoreceptors and WT rods. (A) Responses of the
population of Nrl �/� photoreceptors whose responses were re-
corded in the OS-out configuration are all shown (gray traces),
along with their average (red trace). (B) Dim-flash responses of
rods recorded in the two configurations are compared with those
of Nrl �/� photoreceptors; the green trace presents the average
response of the subpopulation of Nrl �/� photoreceptors recorded
in the OS-in configuration whose data are summarized in the
histogram of Fig. 9 with green bars; the red trace is the same as
that illustrated in A.
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2001), while cone isoforms of these proteins are ex-
pressed in abundance (Mears et al., 2001; Daniele et
al., 2005). When measured either in situ with paired-
flash a-wave methods (Daniele et al., 2005), or mea-
sured with suction pipette recordings in the OS-out
configuration, the dim-flash responses and recovery ki-
netics of Nrl �/� photoreceptors are highly reliably
faster than those of WT rods (Table I; Figs. 3, 9, and
10). The average time to peak of the dim-flash re-
sponses (tpeak � 91 ms) is, however, somewhat slower
than those previously reported for other mammalian
S-cones: macaque, tpeak � 60 ms (Schnapf et al., 1990);
ground squirrel tpeak � 30 � 9 ms, (Kraft, 1988).

Functional Coexpression of UV- and M-cone Pigments in Nrl �/� 
and Rho�/� Photoreceptors

The results presented here establish incontrovertibly
for the first time that the photoreceptors of Nrl �/� and
Rho�/� mice functionally coexpress both the UV- and
M-cone pigments (Fig. 5); that is, both cone pigments
drive phototransduction in the individual cells, consis-
tent with expectations from WT mice and other ro-
dents based on immunohistochemistry (Rohlich et al.,
1994; Applebury et al., 2000; Dkhissi-Benyahya et al.,
2001; Lukats et al., 2002). The results further establish
that the coexpression ratio of M- to UV-pigments varies
�1000-fold, reflecting a positional gradient in the ret-
ina (Fig. 2; Fig. 5 B), well documented in WT mouse
cones (Applebury et al., 2000; Fei and Hughes, 2001).
Functional coexpression of a UV-pigment and one or
more midwave to longwave pigments has been previ-
ously shown in recordings of single salamander cones
(Makino and Dodd, 1996), but the work presented
here provides the first demonstration of functional co-
expression in mammalian cones.

The dim-flash responses driven by the two pigments
in Nrl �/� photoreceptors differ little in kinetics (Fig. 7
A), implying that phototransduction activated by the
two pigments is quite similar. Nonetheless, responses
driven by the M-pigment recover reliably if only slightly
more slowly than responses driven by the UV-pigment
in some cells (Fig. 7 A; Fig. 8). Genomic information
on the mouse indicates that (as in other mammals)
there is only one cone transducin (Gnat2), and cer-
tainly the remaining proteins of the transduction cas-
cade are the same regardless of which pigment is acti-
vated in a cell. Hence, the most likely explanation of
this slight difference in recovery kinetics is that the UV-
and M-pigments are inactivated differently.

Functional Coexpression of S- and M-cone Pigments in Rodent 
Photoreceptors and Color Vision

A basic insight of color science is that “color vision,” op-
erationally defined as the ability to discriminate of stim-
uli on the basis of their spectral content, requires at

least two visual pigments and, further, requires that the
signals generated by the photoreceptors containing the
two pigments be encoded neurally in a manner that
preserves their distinct information. The functional co-
expression of S- and M-cone pigments in rodent pho-
toreceptors appears to be at odds with this basic re-
quirement for color vision proper and seems to pose a
problem as to why rodent cones would express two
pigments. The solution to this conundrum is that the
view that “cones are for color vision” is misguided. The
most important function of cones in vision is to provide
useful visual signals in daylight, even under conditions
when most of their visual pigment is bleached. Indeed,
the steady-state response of cones never saturates in
steady illumination, no matter how intense (Burkhardt,
1994). Beyond the prime directive of cones to give sig-
nals in bright light there is additional survival value to
sampling different portions of the spectrum. Such spec-
tral sampling by two pigments needn’t be encoded in
separate neural channels to be useful to the organism.
Functional coexpression of S- and M-opsin, with the lat-
ter expressed in a dorso-ventral gradient (Fig. 1) no
doubt samples the spectrum of the sky and the ground
in a manner that provides information of survival value
to rodents. Moreover, it seems possible that despite
cone pigment coexpression, mice could learn to dis-
criminate spectrally pure stimuli (e.g., 400 vs. 500 nm)
independent of relative intensity (and thus appear to
have a rudimentary form of color vision) based on the
unique dorso-ventral pattern that each stimulus would
produce. Thus, independent of its absolute intensity, a
400-nm stimulus of large angular extent would produce
a higher level of excitation in the ventral than in the
dorsal retina, while a 500-nm stimulus would produce
the opposite. The encoding of the differing dorso-ven-
tral gradients resulting of the two stimuli could be done
with a single neural channel, in effect generating a dis-
tinct retinotopic pattern of neural excitation for stimuli
of different wavelengths, even though the physical stim-
uli are spatially homogeneous. Discrimination based on
such retinotopic gradients would not qualify as color vi-
sion proper, which requires that such stimuli be dis-
criminable when the retina is stimulated locally. How-
ever, such a mechanism could conceivably underlie the
discriminability found in a recent behavioral investiga-
tion by Jacobs et al. (2004).

Both the UV-cone Pigment and S-cone Pigment Require Grk1 
for Normal Inactivation

Genomic analysis and histochemistry (Chen et al., 2001;
Weiss et al., 2001; Caenepeel et al., 2004) indicate
that only one GPCR kinase known to phosphorylate
opsins, Grk1 (alias “rhodopsin kinase”), is expressed in
mouse photoreceptors. In particular GRK7, an appar-
ently more ancient kinase that is strongly expressed in
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the cones of many species, is completely absent in
mouse (Chen et al., 2001; Weiss et al., 2001; Tachiba-
naki et al., 2001), although evolutionary analysis of ge-
nomic information suggests that it was present in the
common ancestor of primates and mice (Caenepeel
et al., 2004). Recent work has shown that the light-
exposed UV-pigment is phosphorylated in the Nrl �/�

retina, but not in retinas of Nrl �/�/Grk1�/� (Zhu et al.,
2003), providing indirect evidence that Grk1 is in-
volved in mouse S-pigment inactivation. Our record-
ings from Nrl �/�/Grk1�/� photoreceptors (Fig. 7 B; Fig.
8) show that the recovery phase of dim-flash responses
driven by either the UV- or M-cone pigment is slowed
by the deletion of Grk1, establishing definitively that
Grk1 is necessary for the normal inactivation of the
mouse cone photoresponse, as previously inferred from
cone-driven electroretinographic responses of Grk1�/�

mice (Lyubarsky et al., 2000).

The Inactivation of the M-cone Pigment Is More Severely 
Slowed by Grk1 Deletion

The possibility of recording dim-flash responses from
individual photoreceptors driven by either the UV- or
the M-cone pigment produced a major surprise: the
M-cone pigment–driven responses recover much more
slowly than the UV-cone pigment–driven responses in
the absence of Grk1 (Figs. 7 and 8). This result implies
that there are important differences between the two
cone pigments in their requirement for Grk1 for inacti-
vation and, in particular, leads to the hypothesis that
the UV-cone pigment has a Grk1-independent mecha-
nism of inactivation that is faster than that of the
M-cone pigment. One example of such an hypothesis is
that the spontaneous hydrolysis of the all-trans chro-
mophore from its Schiff-base attachment in the Meta-
rhodopsin II/Metarhodopsin III states is faster in the
UV- pigment than in the M-pigment (Vought et al.,
1999). Another example would be the presence of an
as yet undetected Grk or other kinase, although such a
kinase would have to have a strong preference for S-opsin
over M-opsin as a substrate. In this context, it bears
mention that in fish, Grk7 appears to be more efficient
in inactivating rhodopsin than Grk1 (Tachibanaki et
al., 2001); given that S-opsins have greater homology
with rhodopsin than with M-cone opsins, if another ki-
nase is responsible for the relatively faster inactivation
of S-opsin in the absence of Grk1, it would have an un-
usual substrate specificity.

The Rate of Activation of Phosphodiesterase per 
Photoisomerization in Nrl �/� Photoreceptors Is Reduced 
Relative to that in WT Rods

The amplification constant, extracted from analysis of
the activation phase of the response of photoreceptors,
quantifies the accelerating closure of cGMP channels

as the photoactivated pigment (R*) activates its trans-
ducin, transducins activate phosphodiesterase (PDE),
and cGMP declines (Lamb and Pugh, 1992; Pugh and
Lamb, 1993; Leskov et al., 2000). The average amplifi-
cation constant of WT rods (A � 8.0 s�2) is 2.3-fold
higher than that of Nrl �/� photoreceptors (A � 3.5 s�2;
OS-out configuration) (Table I). Theory predicts A to
be inversely proportional to the OS cytoplasmic vol-
ume, Vcyto (Lamb and Pugh, 1992), and analysis of rods
having different OS volumes has confirmed this predic-
tion (Pugh and Lamb, 1993). Given that the Hill coeffi-
cient of the cGMP-activated channels in both types of
photoreceptors is the same (Yau, 1994), and that the ki-
netic parameters (kcat and Km) of the cone PDE are
comparable to those of the rod PDE (Gillespie and
Beavo, 1988; Gillespie, 1990), it follows from the in-
verse dependence of A on Vcyto and the volume ratio of
the WT rod OS to the Nrl �/� OS, 4.5, that the rate of
activation of PDEs per R* is �10-fold lower in Nrl �/�

cells than in rods.
The amplification coefficients of both rods and Nrl �/�

photoreceptors estimated from the single-cell record-
ings presented here are close to estimates obtained
from ERG a-wave data; for rods, A � 8.0 s�2 (single
cells, Table I) vs. 7.4 s�2 (WT ERG a-waves, 8 wk olds;
Lyubarsky et al., 2004); A � 3.5 s�2 (single Nrl �/� cells,
OS out, Table I), vs. 4.0 s�2 (ERG a-waves, 4–6-wk-old
Nrl �/� mice; Daniele et al., 2005). It bears mention that
the end-on collecting area of Nrl �/� photoreceptors in
vivo, required to estimate amplification from a-wave
data, was hypothesized to be increased fourfold by light
funneling in the inner segment. This hypothesis is sup-
ported by the dimensions of the Nrl �/� photoreceptor
inner segment, which electron microscopy reveals to
taper steeply to the outer segment (Daniele et al.,
2005).

The Decreased Amplification and Speed of Nrl �/� 
Photoreceptors in the OS-in Configuration Suggests that 
Mouse Cones Removed from their Matrix Sheath Deteriorate

The changes in the properties of the responses of Nrl �/�

photoreceptors recorded with the OS drawn into the
suction electrode (Fig. 4) suggest that these outer seg-
ments are more labile than those of WT rods. One ex-
planation is that the suction pipette itself may damage
the outer segment in the OS-in configuration. An alter-
native, and not mutually exclusive, hypothesis is that
damage may begin before drawing the cell into the suc-
tion pipette. Like WT mouse cones, each Nrl �/� photo-
receptor has a PNA-stained extracellular matrix, which
appears to be attached to the inner segment and which
ensheaths the outer segment (Daniele et al., 2005).
Since the cone matrix sheath makes adhesions with
both the cone and the RPE apical surface, the removal
of the retina from the RPE necessarily disrupts the at-



302 Functional Coexpression of S- and M-opsins in Nrl �/� Cones

tachment of the cone sheath to the RPE, and likely also
disrupts attachment of the sheath to cones (Johnson et
al., 1986; Hageman et al., 1995). Damage to or loss of
these attachments could compromise the cone disc
membranes.

The Nrl �/� Retina as a Preparation for the Investigation of 
Mammalian Cone Function

Because of the power of mouse genetics and molecular
biology, the Nrl �/� retina holds much promise as a
preparation for the investigation of cone physiological
and biochemical function, and for the identification of
molecules involved in cone-specific genetic disease.
The recent characterization of the dependence of
mouse UV-cone pigment phosphorylation and cone ar-
restin binding on Grk1 (Zhu et al., 2003) constitutes an
initial realization of the first promise, and the genetic
characterization of a large set of genes whose expres-
sion is enriched in the Nrl �/� retina (Yoshida et al.,
2004) provides a foundation for the second. The de-
gree to which the gene expression profiles and physio-
logical response properties of Nrl �/� photoreceptors
correspond to those of WT mouse cones will ultimately
be resolved by physiological experiments and gene ex-
pression analyses. Meanwhile, the conclusion that Nrl �/�

photoreceptors are indeed a species of cones opens the
door to many investigations of fundamental impor-
tance to the understanding of molecular function in
cones, and ways in which mutations of genes expressed
specifically in cones and nearby cells leads to their
demise.

We thank Dr. J. Lem (Tufts University School of Medicine, Bos-
ton, MA) for providing rhodopsin�/� mice, and Dr. C.-K. Chen
(University of Utah Health Sciences Center, Salt Lake City, UT)
for providing Grk1�/� mice. 

E.N. Pugh Jr. is supported by a Jules and Doris Stein Research
to Prevent Blindness Professorship, and C.M. Craft is supported
by the Mary D. Allen Chair in Vision Research of the Doheny Eye
Research Institute. This work was also supported by NIH-EY-
02660; EY-11115; EY-00395, The Foundation Fighting Blindness;
and Research to Prevent Blindness Foundation.

Lawrence G. Palmer served as editor.

Submitted: 4 November 2004
Accepted: 2 February 2005

R E F E R E N C E S

Ahnelt, P.K. 1998. The photoreceptor mosaic. Eye. 12:531–540. 
Applebury, M.L., M.P. Antoch, L.C. Baxter, L.L. Chun, J.D. Falk, F.

Farhangfar, K. Kage, M.G. Krzystolik, L.A. Lyass, and J.T. Rob-
bins. 2000. The murine cone photoreceptor: a single cone type
expresses both S and M opsins with retinal spatial patterning.
Neuron. 27:513–523.

Baylor, D.A., T.D. Lamb, and K.-W. Yau. 1979a. Responses of retinal
rods to single photons. J. Physiol. 288:613–634.

Baylor, D.A., T.D. Lamb, and K.-W. Yau. 1979b. The membrane cur-
rent of single rod outer segments. J. Physiol. 288:589–611.

Baylor, D.A., B.J. Nunn, and J.L. Schnapf. 1984. The photocurrent,

noise and spectral sensitivity of rods of the monkey Macaca fascic-
ularis. J. Physiol. 357:575–607.

Blanks, J.C., G.S. Hageman, L.V. Johnson, and C. Spee. 1988. Ultra-
structural visualization of primate cone photoreceptor matrix
sheaths. J. Comp. Neurol. 270:288–300.

Blanks, J.C., and L.V. Johnson. 1983. Selective lectin binding of the
developing mouse retina. J. Comp. Neurol. 221:31–41.

Burkhardt, D.A. 1994. Light adaptation and photopigment bleach-
ing in cone photoreceptors in situ in the retina of the turtle. J.
Neurosci. 14:1091–1105.

Burns, M.E., A. Mendez, J. Chen, and D.A. Baylor. 2002. Dynamics
of cyclic GMP synthesis in retinal rods. Neuron. 36:81–91.

Caenepeel, S., G. Charydczak, S. Sudarsanam, T. Hunter, and G.
Manning. 2004. The mouse kinome: discovery and comparative
genomics of all mouse protein kinases. Proc. Natl. Acad. Sci. USA.
101:11707–11712.

Calvert, P.D., V.I. Govardovskii, N. Krasnoperova, R.E. Anderson, J.
Lem, and C.L. Makino. 2001. Membrane protein diffusion sets
the speed of rod phototransduction. Nature. 411:90–94.

Calvert, P.D., N.V. Krasnoperova, A.L. Lyubarsky, T. Isayama, M. Ni-
colo, B. Kosaras, G. Wong, K.S. Gannon, R.F. Margolskee, R.L.
Sidman, et al. 2000. Phototransduction in transgenic mice after
targeted deletion of the rod transducin alpha-subunit. Proc. Natl.
Acad. Sci. USA. 97:13913–13918.

Carter-Dawson, L.D., and M.M. LaVail. 1979. Rods and cones in the
mouse retina. I. Structural analysis using light and electron mi-
croscopy. J. Comp. Neurol. 188:245–262.

Chen, C.K., M.E. Burns, W. He, T.G. Wensel, D.A. Baylor, and M.I.
Simon. 2000. Slowed recovery of rod photoresponse in mice lack-
ing the GTPase accelerating protein RGS9-1. Nature. 403:557–
560.

Chen, C.K., M.E. Burns, M. Spencer, G.A. Niemi, J. Chen, J.B. Hur-
ley, D.A. Baylor, and M.I. Simon. 1999. Abnormal photore-
sponses and light-induced apoptosis in rods lacking rhodopsin
kinase. Proc. Natl. Acad. Sci. USA. 96:3718–3722.

Chen, C.K., K. Zhang, J. Church-Kopish, W. Huang, H. Zhang, Y.J.
Chen, J.M. Frederick, and W. Baehr. 2001. Characterization of
human GRK7 as a potential cone opsin kinase. Mol. Vis. 7:305–
313.

Chen, J., C.L. Makino, N.S. Peachey, D.A. Baylor, and M.I. Simon.
1995. Mechanisms of rhodopsin inactivation in vivo as revealed
by a COOH-terminal truncation mutant. Science. 267(5196):374–
377.

Cobbs, W.H., and E.N. Pugh Jr. 1987. Kinetics and components of
the flash photocurrent of isolated retinal rods of the larval sala-
mander, Ambystoma tigrinum. J. Physiol. 394:529–572.

Cornish, E.E., M. Xiao, Z. Yang, J.M. Provis, and A.E. Hendrickson.
2004. The role of opsin expression and apoptosis in determina-
tion of cone types in human retina. Exp. Eye Res. 78:1143–1154.

Daniele, L.L., C. Lillo, A.L. Lyubarsky, S.S. Nikonov., N. Philp, A.J.
Mears, A. Swaroop, D.S. Williams, and E.N. Pugh Jr. 2005. Cone-
like morphological, molecular and electrophysiological features
of the photoreceptors of the Nrl knockout mouse. Investigative
Ophthalmology and Visual Science. In press.

Dkhissi-Benyahya, O., A. Szel, W.J. Degrip, and H.M. Cooper. 2001.
Short and mid-wavelength cone distribution in a nocturnal Strep-
sirrhine primate (Microcebus murinus). J. Comp. Neurol. 438:490–
504.

Ebrey, T., and Y. Koutalos. 2001. Vertebrate photoreceptors. Prog.
Retin. Eye Res. 20:49–94.

Fei, Y., and T.E. Hughes. 2001. Transgenic expression of the jelly-
fish green fluorescent protein in the cone photoreceptors of the
mouse. Vis. Neurosci. 18:615–623.

Gillespie, P.G. 1990. Phosphodiesterases in visual transduction by
rods and cones. In Cyclic Nucleotide Phosphodiesterases: Struc-



303 Nikonov et al.

ture, Regulation and Drug Action. J. Beavo and M.D. Houslay,
editors. Wiley, New York. 163–184.

Gillespie, P.G., and J.A. Beavo. 1988. Characterization of a bovine
cone photoreceptor phosphodiesterase purified by cyclic GMP-
sepharose chromatography. J. Biol. Chem. 263:8133–8141.

Govardovskii, V.I., N. Fyhrquist, T. Reuter, D.G. Kuzmin, and K.
Donner. 2000. In search of the visual pigment template. Vis. Neu-
rosci. 17:509–528.

Hageman, G.S., M.F. Marmor, X.Y. Yao, and L.V. Johnson. 1995.
The interphotoreceptor matrix mediates primate retinal adhe-
sion. Arch. Ophthalmol. 113:655–660.

Hagins, W.A., R.D. Penn, and S. Yoshikami. 1970. Dark current and
photocurrent in retinal rods. Biophys. J. 10:380–412.

Harosi, F.I. 1982. Polarized microspectrophotometry for pigment
orientation and concentration. Methods Enzymol. 81:642–647.

Hendrickson, A., and D. Hicks. 2002. Distribution and density of
medium- and short-wavelength selective cones in the domestic
pig retina. Exp. Eye Res. 74:435–444.

Howes, K.A., M.E. Pennesi, I. Sokal, J. Church-Kopish, B. Schmidt,
D. Margolis, J.M. Frederick, F. Rieke, K. Palczewski, S.M. Wu, et
al. 2002. GCAP1 rescues rod photoreceptor response in GCAP1/
GCAP2 knockout mice. EMBO J. 21:1545–1554.

Jacobs, G.H., G.A. Williams, and J.A. Fenwick. 2004. Influence of
cone pigment coexpression on spectral sensitivity and color vi-
sion in the mouse. Vision Res. 44:1615–1622.

Johnson, L.V., G.S. Hageman, and J.C. Blanks. 1986. Interphotore-
ceptor matrix domains ensheath vertebrate cone photoreceptor
cells. Invest. Ophthalmol. Vis. Sci. 27:129–135.

Kraft, T.W. 1988. Photocurrents of cone photoreceptors of the
golden-mantled ground squirrel. J. Physiol. 404:199–213.

Lamb, T.D. 1995. Photoreceptor spectral sensitivities: common
shape in the long-wavelength region. Vision Res. 35:3083–3091.

Lamb, T.D., and E.N. Pugh Jr. 1992. A quantitative account of the
activation steps involved in phototransduction in amphibian
photoreceptors. J. Physiol. 449:719–758.

Lem, J., N.V. Krasnoperova, P.D. Calvert, B. Kosaras, D.A. Cameron,
M. Nicolo, C.L. Makino, and R.L. Sidman. 1999. Morphological,
physiological, and biochemical changes in rhodopsin knockout
mice. Proc. Natl. Acad. Sci. USA. 96:736–741.

Leskov, I.B., V.A. Klenchin, J.W. Handy, G.G. Whitlock, V.I. Govar-
dovskii, M.D. Bownds, T.D. Lamb, E.N. Pugh Jr., and V.Y. Ar-
shavsky. 2000. The gain of rod phototransduction: reconciliation
of biochemical and electrophysiological measurements. Neuron.
27:525–537.

Liebman, P.A. 1972. Microspectrophotometry of photoreceptors.
In Handbook of Sensory Physiology. H.J.A. Dartnall, editor.
Springer, New York. 481–528.

Lukats, A., O. Dkhissi-Benyahya, Z. Szepessy, P. Rohlich, B. Vigh,
N.C. Bennett, H.M. Cooper, and A. Szel. 2002. Visual pigment co-
expression in all cones of two rodents, the Siberian hamster, and
the pouched mouse. Invest. Ophthalmol. Vis. Sci. 43:2468–2473.

Lyubarsky, A.L., C. Chen, M.I. Simon, and E.N. Pugh Jr. 2000. Mice
lacking G-protein receptor kinase 1 have profoundly slowed re-
covery of cone-driven retinal responses. J. Neurosci. 20:2209–
2217.

Lyubarsky, A.L., B. Falsini, M.E. Pennesi, P. Valentini, and E.N.
Pugh Jr. 1999. UV- and midwave-sensitive cone-driven retinal re-
sponses of the mouse: a possible phenotype for coexpression of
cone photopigments. J. Neurosci. 19:442–455.

Lyubarsky, A.L., F. Naarendorp, X. Zhang, T. Wensel, M.I. Simon,
and E.N. Pugh Jr. 2001. RGS9-1 is required for normal inactiva-
tion of mouse cone phototransduction. Mol. Vis. 7:71–78.

Lyubarsky, A.L., L.L. Daniele, and E.N. Pugh. 2004. From candelas
to photoisomerizations in the mouse eye by rhodopsin bleaching
in situ and the light-rearing dependence of the major compo-

nents of the mouse ERG. Vision Research. 44:3235–3251.
Makino, C.L., and R.L. Dodd. 1996. Multiple visual pigments in a

photoreceptor of the salamander retina. J. Gen. Physiol. 108:27–
34.

Mears, A.J., M. Kondo, P.K. Swain, Y. Takada, R.A. Bush, T.L. Saun-
ders, P.A. Sieving, and A. Swaroop. 2001. Nrl is required for rod
photoreceptor development. Nat. Genet. 29:447–452.

Mendez, A., M.E. Burns, A. Roca, J. Lem, L.W. Wu, M.I. Simon,
D.A. Baylor, and J. Chen. 2000. Rapid and reproducible deactiva-
tion of rhodopsin requires multiple phosphorylation sites. Neu-
ron. 28:153–164.

Mendez, A., M.E. Burns, I. Sokal, A.M. Dizhoor, W. Baehr, K. Pal-
czewski, D.A. Baylor, and J. Chen. 2001. Role of guanylate cyclase-
activating proteins (GCAPs) in setting the flash sensitivity of rod
photoreceptors. Proc. Natl. Acad. Sci. USA. 98:9948–9953.

Nikonov, S., N. Engheta, and E.N. Pugh Jr. 1998. Kinetics of recov-
ery of the dark-adapted salamander rod photoresponse. J. Gen.
Physiol. 111:7–37.

Okano, T., Y. Fukada, Y. Shichida, and T. Yoshizawa. 1992. Photo-
sensitivities of iodopsin and rhodopsins. Photochem. Photobiol. 56:
995–1001.

Paupoo, A.A., O.A. Mahroo, C. Friedburg, and T.D. Lamb. 2000.
Human cone photoreceptor responses measured by the elec-
troretinogram a-wave during and after exposure to intense illu-
mination. J. Physiol. 529:469–482.

Pennesi, M.E., K.A. Howes, W. Baehr, and S.M. Wu. 2003. Guany-
late cyclase-activating protein (GCAP) 1 rescues cone recovery ki-
netics in GCAP1/GCAP2 knockout mice. Proc. Natl. Acad. Sci.
USA. 100:6783–6788.

Pepperberg, D.R., J. Jin, and G.J. Jones. 1994. Modulation of trans-
duction gain in light adaptation of retinal rods. Vis. Neurosci. 11:
53–62.

Pierce, E.A. 2001. Pathways to photoreceptor cell death in inher-
ited retinal degenerations. Bioessays. 23:605–618.

Pugh, E.N., Jr., and T.D. Lamb. 1993. Amplification and kinetics of
the activation steps in phototransduction. Biochim. Biophys. Acta.
1141:111–149.

Pugh, E.N., Jr., S. Nikonov, and T.D. Lamb. 1999. Molecular mecha-
nisms of vertebrate photoreceptor light adaptation. Curr. Opin.
Neurobiol. 9:410–418.

Rohlich, P., T. van Veen, and A. Szel. 1994. Two different visual pig-
ments in one retinal cone cell. Neuron. 13:1159–1166.

Saari, J.C., M. Nawrot, B.N. Kennedy, G.G. Garwin, J.B. Hurley,
J. Huang, D.E. Possin, and J.W. Crabb. 2001. Visual cycle im-
pairment in cellular retinaldehyde binding protein (CRALBP)
knockout mice results in delayed dark adaptation. Neuron. 29:
739–748.

Schnapf, J.L., B.J. Nunn, M. Meister, and D.A. Baylor. 1990. Visual
transduction in cones of the monkey Macaca fascicularis. J. Physiol.
427:681–713.

Smith, N.P., and T.D. Lamb. 1997. The a-wave of the human elec-
troretinogram recorded with a minimally invasive technique. Vi-
sion Res. 37:2943–2952.

Stone, E.M., T.A. Braun, S.R. Russell, M.H. Kuehn, A.J. Lotery, P.A.
Moore, C.G. Eastman, T.L. Casavant, and V.C. Sheffield. 2004.
Missense variations in the fibulin 5 gene and age-related macular
degeneration. N. Engl. J. Med. 351:346–353.

Sun, H., J.P. Macke, and J. Nathans. 1997. Mechanisms of spectral
tuning in the mouse green cone pigment. Proc. Natl. Acad. Sci.
USA. 94:8860–8865.

Tachibanaki, S., S. Tsushima, and S. Kawamura. 2001. Low amplifi-
cation and fast visual pigment phosphorylation as mechanisms
characterizing cone photoresponses. Proc. Natl. Acad. Sci. USA.
98:14044–14049.

Vought, B.W., A. Dukkipatti, M. Max, B.E. Knox, and R.R. Birge.



304 Functional Coexpression of S- and M-opsins in Nrl �/� Cones

1999. Photochemistry of the primary event in short-wavelength
visual opsins at low temperature. Biochemistry. 38:11287–11297.

Weiss, E.R., M.H. Ducceschi, T.J. Horner, A. Li, C.M. Craft, and S.
Osawa. 2001. Species-specific differences in expression of G-pro-
tein-coupled receptor kinase (GRK) 7 and GRK1 in mammalian
cone photoreceptor cells: implications for cone cell phototrans-
duction. J. Neurosci. 21:9175–9184.

Xiao, M., and A. Hendrickson. 2000. Spatial and temporal expres-
sion of short, long/medium, or both opsins in human fetal
cones. J. Comp. Neurol. 425(4):545–559.

Xu, J., R.L. Dodd, C.L. Makino, M.I. Simon, D.A. Baylor, and J.
Chen. 1997. Prolonged photoresponses in transgenic mouse
rods lacking arrestin. Nature. 389:505–509.

Yau, K.-W. 1994. Cyclic nucleotide-gated channels: an expanding
new family of ion channels. Proc. Natl. Acad. Sci. USA. 91:3481–
3483.

Yokoyama, R., and S. Yokoyama. 2000. Comparative molecular biol-
ogy of visual pigments. In Molecular Mechanisms in Visual Trans-
duction. D.G. Stavenga, W.J. de Grip, and E.N. Pugh Jr., editors.
Elsevier Science Publishing Co. Inc., New York. 257–296.

Yokoyama, S., F.B. Radlwimmer, and S. Kawamura. 1998. Regenera-
tion of ultraviolet pigments of vertebrates. FEBS Lett. 423:155–
158.

Yoshida, S., A.J. Mears, J.S. Friedman, T. Carter, S. He, E. Oh, Y.
Jing, R. Farjo, G. Fleury, C. Barlow, et al. 2004. Expression profil-
ing of the developing and mature Nrl�/� mouse retina: identifi-
cation of retinal disease candidates and transcriptional regula-
tory targets of Nrl. Hum. Mol. Genet. 13:1487–1503.

Zhu, X., B. Brown, A. Li, A.J. Mears, A. Swaroop, and C.M. Craft.
2003. GRK1-dependent phosphorylation of S- and M-opsins and
their binding to cone arrestin during cone phototransduction in
the mouse retina. J. Neurosci. 23:6152–6160.


