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abstract

 

According to the classic modulated receptor hypothesis, local anesthetics (LAs) such as benzocaine
and lidocaine bind preferentially to fast-inactivated Na

 

�

 

 channels with higher affinities. However, an alternative
view suggests that activation of Na

 

�

 

 channels plays a crucial role in promoting high-affinity LA binding and that
fast inactivation per se is not a prerequisite for LA preferential binding. We investigated the role of activation in
LA action in inactivation-deficient rat muscle Na

 

�

 

 channels (rNav1.4-L435W/L437C/A438W) expressed in stably
transfected Hek293 cells. The 50% inhibitory concentrations (IC

 

50

 

) for the open-channel block at 

 

�

 

30 mV by
lidocaine and benzocaine were 20.9 

 

�

 

 3.3 

 

�

 

M (

 

n

 

 

 

�

 

 5) and 81.7 

 

�

 

 10.6 

 

�

 

M (

 

n

 

 

 

�

 

 5), respectively; both were com-
parable to inactivated-channel affinities. In comparison, IC

 

50

 

 values for resting-channel block at 

 

�

 

140 mV
were 

 

�

 

12-fold higher than those for open-channel block. With 300 

 

�

 

M benzocaine, rapid time-dependent block
(

 

�

 

 

 

�

 

 0.8 ms) of inactivation-deficient Na

 

�

 

 currents occurred at 

 

�

 

30 mV, but such a rapid time-dependent block
was not evident at 

 

�

 

30 mV. The peak current at 

 

�

 

30 mV, however, was reduced more severely than that at 

 

�

 

30 mV.
This phenomenon suggested that the LA block of intermediate closed states took place notably when channel
activation was slow. Such closed-channel block also readily accounted for the LA-induced hyperpolarizing shift
in the conventional steady-state inactivation measurement. Our data together illustrate that the Na

 

�

 

 channel
activation pathway, including most, if not all, transient intermediate closed states and the final open state,
promotes high-affinity LA binding.

 

key words:

 

sodium channel • fast inactivation • persistent sodium currents • local anesthetics • modulated
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I N T R O D U C T I O N

 

The in vivo targets of local anesthetics (LAs) are voltage-
gated Na

 

�

 

 channels responsible for the generation of
action potentials in excitable membranes (Hille, 2001).
Molecular cloning has thus far identified nine Na

 

�

 

channel 

 

�

 

-subunit isoforms in mammals. The 

 

�

 

-subunit
isoforms contain four repeated domains (D1–D4), each
with six transmembrane domains (S1–S6) and can be
functionally expressed in frog oocytes or in mammalian
expression systems (Catterall, 2000). LAs interact with
residues in the middle of D4S6, D3S6, and D1S6 seg-
ments, probably situated within the inner cavity of the
Na

 

�

 

 permeation pathway (Ragsdale et al., 1994; Wang
et al., 1998, 2000; Yarov-Yarovoy et al., 2001, 2002).

The block of Na

 

�

 

 currents by lidocaine and benzocaine
has been studied extensively. Lidocaine contains a tertiary
amine group, which can be protonated in the aque-
ous solution. In contrast, benzocaine is a neutral LA.

Lidocaine not only elicits a tonic block of Na

 

�

 

 currents
when infrequently stimulated but also produces an ad-
ditional use-dependent block during repetitive pulses
(Hille, 2001). On the other hand, benzocaine fails to
produce any use-dependent block. As a neutral drug,
benzocaine may escape too rapidly during the interpulse
to accumulate such a block. However, both drugs signifi-
cantly shift the steady-state inactivation of Na

 

�

 

 channels
to the hyperpolarizing direction as if LAs stabilize the
inactivated state. Hille (1977) proposed a modulated
receptor hypothesis to account for the complicated
block of LAs. His hypothesis states that the LA receptor
changes its conformation during state transitions and
that the fast-inactivated state has a higher LA affinity than
does the resting state. A similar hypothesis (Hondeghem
and Katzung 1977, 1984) suggested that a class 1 antiar-
rhythmic agent, lidocaine, may additionally block open
cardiac Na

 

�

 

 channels with a higher affinity.
To date, the proof of the high-affinity open-channel

block by LAs remains controversial. Several pieces
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of evidence indicate that the open-channel block by
lidocaine plays a minimal role in the use-dependent
block. For example, both Cahalan (1978) and Yeh
(1978) reported that QX-314, a quaternary ammonium
derivative of lidocaine, failed to block inactivation-defi-
cient Na

 

�

 

 currents in pronase-treated squid axons.
Their results supported the conclusion that the inacti-
vated state plays a dominant role in the use-dependent
block of Na

 

�

 

 currents by LAs. Bean et al. (1983) later
found that lidocaine binds strongly to the inactivated
state of cardiac Na

 

�

 

 channels with an estimated dissoci-
ation constant of 

 

�

 

10 

 

�

 

M, a value within the therapeu-
tic plasma concentration (6.4–21.3 

 

�

 

M). Recent exper-
iments with inactivation-deficient mutant Na

 

�

 

 channels
(IFM/QQQ) also show that the inactivated state has a
higher LA affinity than does the open state (Bennett et
al., 1995; Grant et al., 2000; O’Leary and Chahine,
2002).

Wang et al. (1987), however, reported that QX-314
retains its potency on inactivation-deficient Na

 

�

 

 cur-
rents in squid axons treated with chloramine-T and
suggested that the open-channel block plays a signifi-
cant role in the use-dependent block. Vedantham
and Cannon (1999) found that the lidocaine-induced
slowing of Na

 

�

 

 channel repriming was not the result
of a slowing of recovery of the fast-inactivation gate.
Their finding indicates that use-dependent block does
not involve an accumulation of fast-inactivated chan-
nels. Moreover, various class 1 antiarrhythmic agents,
such as lidocaine, flecainide, amiodarone, and mex-
iletine, potently block persistent late Na

 

�

 

 currents ei-
ther derived from genetic diseases or under patholog-
ical conditions (Ju et al., 1992; An et al., 1996; Wang
et al., 1997, 1999; Nagatomo et al., 2000; Maltsev et
al., 2001).

To investigate the possible role of the activation
pathway in LA block by benzocaine and lidocaine,
we chose to study LA actions on stably transfected
HEK293 cells expressing inactivation-deficient rat
skeletal muscle Na

 

�

 

 channels, rNav1.4-L435W/L437C/
A438W (WCW mutant; Wang et al., 2003a). The point
mutations of WCW mutant channels are at the posi-
tions 19, 21, and 22 of the D1S6 COOH terminus. The
advantage of WCW mutant Na

 

�

 

 channels is that,
unlike the IFM/QQQ mutant cardiac Na

 

�

 

 channels
(Grant et al., 2000), they are well expressed in HEK293
cells. A large persistent late Na

 

�

 

 current in HEK293
cells allows direct examinations of the open-channel
block by LAs. The disadvantage of this approach is that
any mutations or chemical/enzymatic treatments in
theory could alter indirectly or directly the structure of
the lidocaine/benzocaine receptor. Such receptor
alteration could also occur in studies of late Na

 

�

 

currents under pathological conditions or by S6 mu-
tations that cause genetic diseases (Takahashi and

Cannon, 2001). Despite this uncertainty, our result
suggests an important therapeutic role of the open-
channel block by lidocaine in vivo. To our surprise, we
found that benzocaine blocks the open channel po-
tently at 

 

�

 

30 mV as well as the closed intermediate
states at 

 

	�

 

30 mV.

 

M A T E R I A L S  A N D  M E T H O D S

 

HEK293 Cells with Stably Transfected rNav1.4-L435W/
L437C/A438W cDNA

 

Mutagenesis of rNav1.4-L435W/L437C/A438W cDNA in the
pcDNA3 vector was performed as described previously (Wang et
al., 2003a). Cultured HEK293 cells were maintained at 37

 




 

C in a
5% CO

 

2

 

 incubator in DMEM (Life Technologies) containing
10% FBS (HyClone), and 1% penicillin and streptomycin solu-
tion (Sigma-Aldrich). The HEK293 cells were transfected with
the mutant clone in pcDNA3 vector (10 

 

�

 

g) by a calcium phos-
phate precipitation method. Transfected HEK293 cells were
treated with 1 mg/ml G-418 (Invitrogen) in 100-mm culture
dishes, and individual G-418 resistant colonies were isolated us-
ing glass cylinders (i.d. 

 

�

 

 6 mm) 

 

�

 

2 wk after transfection as de-
scribed previously (Wang et al., 2004a). One colony was frozen,
later reestablished, and maintained in Ti-25 flasks without the ad-
dition of G-418 for all studies described here.

 

Electrophysiology and Data Acquisition

 

The whole-cell configuration of a patch-clamp technique (Ham-
ill et al., 1981) was used to study Na

 

�

 

 currents in HEK293 cells at
room temperature (22 

 

�

 

 2

 




 

C). Electrode resistance ranged
from 0.5 to 1.0 M

 

�

 

. Command voltages were elicited with
pCLAMP8 software and delivered by Axopatch 200B (Axon
Instrument) or by EPC-7 (List Electronics). Cells were held at

 

�

 

140 mV and dialyzed for 10–15 min before current recording.
Most of the capacitance and leak currents were cancelled with a
patch-clamp device and by P/

 

�

 

4 subtraction. Liquid junction
potential was not corrected. Peak currents at 

 

�

 

30 mV were 2–20
nA for the majority of cells. Access resistance was 1–2 M

 

�

 

 under
the whole-cell configuration; series resistance compensation of

 

�

 

85% typically resulted in voltage errors of 

 

	

 

4 mV at 

 

�

 

50 mV.
Most dose–response studies were performed at 

 

�

 

30 mV for the
outward Na

 

�

 

 currents. Such recordings allowed us to avoid the
complication of series resistance artifacts and to minimize in-
ward Na

 

�

 

 ion loading (Cota and Armstrong, 1989). Curve fitting
was performed by Microcal Origin. An unpaired Student’s 

 

t

 

 test
was used to evaluate estimated parameters (mean 

 

�

 

 SEM or fit-
ted value 

 

�

 

 SE of the fit); P values of 

 

�

 

0.05 were considered sta-
tistically significant.

 

Solutions and Chemicals

 

Lidocaine-HCl and benzocaine were purchased from Sigma-
Aldrich. Drugs were dissolved in DMSO at 100 mM as stock solu-
tions and stored at 4

 




 

C. Final drug concentrations were made by
serial dilution. The highest DMSO concentration in the bath so-
lution (1%) had little effect on Na

 

�

 

 currents. Cells were perfused
with an extracellular solution containing (in mM) 65 NaCl, 85
choline-Cl, 2 CaCl

 

2

 

, and 10 HEPES (titrated with tetramethylam-
monium-OH to pH 7.4). In some experiments, we used the Na

 

�

 

-
free extracellular solution by replacing 65 mM NaCl with 65 mM
choline-Cl. The pipette (intracellular) solution consisted of (in
mM) 100 NaF, 30 NaCl, 10 EGTA, and 10 HEPES (titrated with
cesium-OH to pH 7.2).
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R E S U L T S

 

A Hek293 Cell Line Expressing Robust rNav1.4-WCW 
Inactivation-deficient Na

 

�

 

 Currents

 

Fig. 1 A shows the Na

 

�

 

 currents at various membrane
potentials from a cell stably transfected with rNav1.4-
WCW mutant channels. The inactivation-deficient Na

 

�

 

currents were activated at 

 

�

 

50 or 

 

�

 

60 mV. The peak
currents were measured and the peak conductance/
voltage relationship was then plotted (Fig. 1 B). The re-
sult shows that the activation parameters (midpoint
voltage, V

 

0.5

 

 

 

�

 

 

 

�

 

31.7 

 

�

 

 1.2 mV, and slope factor, k 

 

�

 

9.6 

 

�

 

 1.0 mV, 

 

n

 

 

 

�

 

 6) for the WCW mutant channels are
similar to those of wild-type counterparts (P 

 

�

 

 0.05;
V

 

0.5

 

 

 

�

 

 

 

�

 

32.0 

 

�

 

 0.9 mV; k 

 

�

 

 8.7 

 

�

 

 0.8 mV; Wang et al.,
2003a). The level of expression of this WCW-trans-
fected cell line was relatively high with 407 

 

�

 

 32 pA/pF
at 

 

�

 

50 mV (

 

n

 

 

 

�

 

 31), compared with 

 

�

 

250 pA/pF in
transiently transfected cells expressing the wild-type
rNav1.4 channels (Nau et al., 2003). The high level of
Na

 

�

 

 channel expression in this cell line remained sta-
ble for several months.

The conventional steady-state inactivation curve (h

 




 

)
showed incomplete inactivation using a two-pulse pro-

tocol. Fig. 2 A showed current traces at the test pulse of

 

�

 

30 mV for 5 ms (V

 

test

 

; solid arrow) with various condi-
tioning pulses (V

 

con

 

; dashed arrow) for 100 ms. Peak
currents at the test pulse were measured and plotted
against the corresponding conditioning voltage (Fig. 2
B). The voltage dependence shown in this graph sug-
gests that the decline in relative peak currents begins at
the conditioning pulse near 

 

�

 

50 mV, where the Na�

channels are activated. One possibility is that the de-
cline of peak currents after a conditioning pulse is due
to the enhanced slow inactivation of the open Na�

channel during depolarization, which was accelerated
significantly in WCW mutant channels (Wang et al.,
2003a).

Concentration- and Time-dependent Block of Inactivation-
deficient Na� Currents by Lidocaine

Block of the open state of Na� channels by lidocaine was
conspicuous in inactivation-deficient rNav1.4-WCW mu-
tant channels. Such open-channel block was concentra-
tion and time dependent at �30 mV (Fig. 3 A). In gen-
eral, the larger the lidocaine concentration the faster
the blocking time course and the greater the steady-state
block of the late Na� currents (Fig. 3 A, 1–100 �M

Figure 1. Activation of rNav1.4-WCW mutant
Na� channels. (A) Currents were evoked by
50-ms test pulses from �100 to �50 mV in
10-mV increments. (B) Normalized membrane
conductance (gm) was plotted against the volt-
age. gm was calculated from the equation gm �
INa/(Em � ENa), where INa is the peak current,
Em is the amplitude of the voltage step, and ENa

is the estimated reversal potential of the Na�

current. Plots were fitted with a Boltzmann
function (1/[1 � exp((V0.5 � V)/k)]). The
average midpoint voltage (V0.5) and slope (k)
were �31.7 � 1.2 mV and 9.6 � 1.0 mV, re-
spectively (n � 6). Holding potential was set at
�140 mV.

Figure 2. Conventional steady-
state inactivation measurement (h
)
of rNav1.4-WCW mutant Na�

channels. (A) Currents were evoked
by a 5-ms test pulse (Vtest) at �30
mV. Test pulses were preceded by
100-ms conditioning pulses (Vcon),
increasing in 5-mV increments
from �160 to �15 mV (inset). (B)
Normalized availability of rNav1.4-
WCW mutant channels plotted as a
function of the conditioning pulse
voltage. The plot was fitted with a
Boltzmann function. The average
midpoint (V0.5) and slope (k) were
�36.2 � 0.9 mV and 8.7 � 0.6 mV,
respectively (n � 7). Holding po-
tential was set at �140 mV.
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lidocaine). This behavior is customarily found in the
block of voltage-gated K� channels by quaternary ammo-
nium ions such as nonyltriethyammonium and tetrapen-
tylammonium ions (Armstrong, 1971; Hille, 2001).

Dose–Response Curve of Lidocaine

The peak currents at the beginning of the pulse and
the maintained late Na� currents at the end of the
pulse (Fig. 3 A) were measured at various lidocaine
concentrations, normalized with the amplitude without
drug and plotted against lidocaine concentrations (Fig.
3 B). The 50% inhibitory concentration (IC50) for the
late Na� currents is 20.9 � 3.3 �M with a Hill coeffi-
cient of 0.9 � 0.1 (n � 5; triangle), whereas the IC50 for
the peak Na� currents is 314 � 25 �M with a Hill coeffi-
cient of 0.8 � 0.1 (n � 5; square). Our interpretation
of these data is that the IC50 for the late currents re-
flects the lidocaine affinity of the open channel during
depolarization, whereas the IC50 for the peak currents
is related to the lidocaine affinity of the resting channel
before depolarization. The difference in IC50 values
between the resting- and the open-channel block by
lidocaine is 15-fold (314 �M vs. 20.9 �M). The Hill co-
efficient was near unity, suggesting that one lidocaine
molecule blocks one channel.

Concentration- and Time-dependent Block of Inactivation-
deficient Na� Currents by Benzocaine

Previous reports all indicate that benzocaine effec-
tively stabilizes the inactivated sodium channels (Hille,
2001). To investigate the possible open-channel block
by this drug, we applied benzocaine to inactivation-
deficient mutant channels. The superimposed WCW
mutant Na� currents are shown without and with vari-
ous concentrations of benzocaine (Fig. 4 A; 10 �M to 1
mM). Beside concentration-dependent block, we unex-
pectedly found that benzocaine also elicited a time-
dependent block of mutant currents similar to the phe-
notype produced by lidocaine (Fig. 3 A). Benzocaine
was evidently capable of blocking the open state of mu-
tant channels.

Dose–Response Curve of Benzocaine

To determine the resting- and the open-channel block
by benzocaine we measured the peak and the late mu-
tant currents at various benzocaine concentrations (Fig.
4 A), normalized with the control currents in the ab-
sence of drug, and plotted against concentrations. The
IC50 for the open-channel block is 81.7 � 10.6 �M with
a Hill coefficient of 0.9 � 0.1 (n � 5; triangle), whereas

Figure 3. Block of rNav1.4-WCW mutant
currents by lidocaine. (A) Representative
current traces are shown at various
lidocaine concentrations. Cells were depo-
larized by a 50-ms test pulse at �30 mV.
Pulses were delivered at 60-s intervals. (B)
Peak and maintained late currents at the
end of the test pulse as shown in A were
measured at various lidocaine concentra-
tions. Data were normalized to the control
saline response and fitted with the Hill
equation. The IC50 value for the peak
current was 314 � 25 �M (Hill coefficient,
0.8 � 0.1) (�, n � 5). For the maintained
late current the IC50 was 20.9 � 3.3 �M
(0.9 � 0.1) (�, n � 5).

Figure 4. Block of rNav1.4-WCW Na�

currents by benzocaine. (A) Representative
current traces are shown at various ben-
zocaine concentrations. Cells were depo-
larized by a 50-ms test pulse at �30 mV.
Pulses were delivered at 60-s intervals. (B)
Peak currents and maintained late currents
at the end of the test pulse as shown in A
were measured at various benzocaine
concentrations. Data were normalized to
the control saline response and fitted with
the Hill equation. The IC50 value for the
peak current was 1.16 � 0.05 mM (Hill
coefficient, 0.9 � 0.1) (�, n � 5). For the
maintained current, the IC50 was 81.7 �
10.7 �M (0.9 � 0.1) (�, n � 5).
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the IC50 for the resting-channel block is 1.16 � 0.05 mM
with a Hill coefficient of 0.9 � 0.1 (n � 5; square) (Fig.
4 B). It is unclear why the Hill coefficient is near unity
in benzocaine block as previous reports indicate that
the Hill coefficient deviates from unity in neuronal Na�

channels, ranging from 0.5 to 2.4 (Meeder and Ul-
bricht, 1987). The difference between the IC50 values of
the resting- and the open-channel block by benzocaine
was �13-fold. Such a high ratio indicates a significant
change in the binding affinity of benzocaine during
activation. Previous results showed that the affinities
for the resting and inactivated channels in myelinated
nerve fibers were 0.7 mM (KR) and 0.038 mM (KI), re-
spectively (Meeder and Ulbricht, 1987). However, these
values were calculated from shifts in h
 curve using a
modulated receptor model. It was not possible to mea-
sure the inactivated block by benzocaine directly be-
cause of its rapid recovery at �140 mV. The ratio of KR/
KI was 17.5, which is comparable to the ratio we ob-
tained for the resting and open-channel block in inacti-
vation-deficient WCW mutant channels.

Recovery from the Open-channel Block

We measured the recovery time course from the open-
channel block by lidocaine and benzocaine. Most of
mutant channels are noninactivating after a 30-mV
pulse for 50 ms (Fig. 5 A, circle) and can be reacti-
vated rapidly. With 100 �M lidocaine, the recovery time
course at holding potential (�140 mV) followed a two-
exponential function (square). The slow component
(40.2%) had a time constant of 292 � 19 ms (n � 5),
whereas the fast component had a time constant of �5
ms. This slow recovery time constant for lidocaine
block is slower than that found for the inactivated
rNav1.4 wild-type Na� channels (179 � 17 ms; Wright

et al., 1997; P � 0.05). With 300 �M benzocaine, most
of mutant channels recovered quickly with a fast time
constant of �5 ms (triangle) while a small component
(9%) recovered with a time constant of 220 ms.

The presence of a major slow component in the re-
covery from lidocaine block predicted that repetitive
pulses at a high frequency would result in additional
use-dependent block of mutant currents. To illustrate
this phenotype we applied a two-pulse protocol shown
in Fig. 5 B (bottom). The peak currents before and af-
ter 100 �M lidocaine (Fig. 5 B, top) were measured,
normalized, and compared. For the first pulse, there
were 73.1 � 0.7% peak currents remained but only
52.2 � 1.3% in the second pulse (P � 0.001, n � 9).
Thus, lidocaine produced considerable use-dependent
block of mutant channels during the second pulse. In
comparison with 300 �M benzocaine, there were 74.2 �
0.8% peak currents in the first pulse and 72.5 � 1.6%
in the second pulse (P � 0.358, n � 8) (Fig. 5 B, mid-
dle). Benzocaine therefore failed to elicit additional
use-dependent block in mutant channels.

Minimal Effects of External Na� Ions on Lidocaine or 
Benzocaine Block

Barber et al. (1992) reported that lidocaine block was
not affected by external Na� ion concentrations rang-
ing from 20 to 150 mM. In our experiments, the con-
centration of Na� ions in the external solution was 65
mM. We therefore tested whether complete removal of
Na� ions from the external solution has any effects on
lidocaine and benzocaine block of mutant currents.
Without external Na� ions, the IC50 values for the rest-
ing- and open-channel block are 324 � 26 �M (with
Hill coefficient of 0.97 � 0.07, n � 5; Fig. 6 A, square)
and 17.6 � 3.2 �M (0.63 � 0.07, n � 5; triangle) for

Figure 5. Recovery time
courses from the open-channel
block and additional use-depen-
dent block by lidocaine and
benzocaine. (A) Recovery time
courses without (�) and with the
open-channel block by lidocaine
(�) and benzocaine (�) at the
holding potential are plotted
against normalized currents. The
pulse protocol is shown in inset.
The fitted values and number of
experiments are given in the
text. (B) Additional use-depen-
dent block by lidocaine (top) but
not by benzocaine (middle) is
found in the second pulse. The
pulse protocol is shown at the
bottom. Peak currents before
and after LAs are normalized
and the mean values are given in
the text.
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lidocaine and 1.15 � 0.07 mM (0.92 � 0.04, n � 5; Fig.
6 B, square) and 107 � 6 �M (0.88 � 0.04, n � 5; trian-
gle) for benzocaine. These IC50 values are not signifi-
cantly different from those obtained in the presence of
external Na� ions at 65 mM (Figs. 3 and 4; P � 0.05).
We conclude that external Na� ions have minimal ef-
fects on the block of mutant currents by benzocaine or
by lidocaine.

Current–Voltage Relationship in the Presence of 
300 �M Benzocaine

Since benzocaine is a neutral compound, its binding
should not be influenced directly by voltage within the
membrane electric field. Fig. 7 A shows the current
traces at various membrane voltages in the presence of
300 �M benzocaine. There is strong time-dependent
benzocaine block at voltages higher than �10 mV (vs.
Fig. 1 A for control without drug). The time constant
for open-channel block by 300 �M benzocaine was
0.82 � 0.08 ms (n � 5) at �30 mV. However, such
rapid time-dependent block is minimal at voltages near
�30 mV. This lack of time-dependent block could be
due to the slower time course of channel activation at
�30 mV, which overlap with the fast time course of ben-
zocaine block. In fact, the extent of the block of peak
currents at the lower voltages is actually larger (�60%
is blocked at �30 mV) than that at the high voltages
(�30% is blocked at �30 mV) (Fig. 7 B). These results
indicate that channel activation is important for ben-
zocaine block but not the channel opening per se.
Also, our data suggest that the resting block by ben-
zocaine is better determined at �30 mV than at �30
mV (Fig. 7 B) because the activation time course is
more rapid at �30 mV. Otherwise, the IC50 value of the
resting-channel block will be �300 �M for benzocaine

if measured at �30 mV. It is interesting to note that the
late currents at the end of 50 ms pulse were blocked al-
most constantly by benzocaine from �40 to �50 mV
(�65%; Fig. 7 C, triangle, n � 4) unlike the large varia-
tion in block of peak currents (Fig. 7 C, square).

The results of identical analyses for lidocaine block at
100 �M (Fig. 8, A–C) unfortunately are not as explicit
as those shown for benzocaine (Fig. 7, A–C) but the
trend is similar. For example, although the time-depen-
dent block by lidocaine is present at �30 mV (Fig. 8 A),
it is less profound than that at �50 mV. The block of
late mutant currents increases progressively from �40
to 0 mV (Fig. 8 C). This overlaps with the voltage where
channels open (Fig. 1 B) and is indicative for drugs
that preferentially block open channels. Also, the re-
duction in the peak current is greater at �30 mV than
that at �50 mV for lidocaine, but the difference is not
very large (40% vs. 30%; Fig. 8 C, square, n � 5). None-
theless, the largest deviation in the block of peak vs.
late currents is at �50 mV (30% vs. 80%), as for ben-
zocaine (20% vs. 65%; Fig. 7 C). Possible explanations
for these differences are addressed in discussion.

Apparent Shift in the Steady-state Inactivation Curve 
by Benzocaine and Lidocaine

The results shown in Figs. 7 and 8 suggest that LAs may
block the mutant channels during activation even when
the channel is not yet open. To test this possibility, we
applied a conventional two-pulse protocol with various
conditioning voltages (Fig. 2). The superimposed cur-
rent traces using this pulse protocol are shown in Fig. 9
A after the application of 300 �M benzocaine. The
peak currents were measured in the absence of exter-
nal Na� ions, normalized with respect to the value with
a conditioning pulse at �160 mV and plotted against

Figure 6. Block of rNav1.4-WCW
Na� currents by lidocaine or by
benzocaine without external Na�

ions. Cells were depolarized by a
50-ms test pulse at �30 mV. Pulses
were delivered at 60-s intervals.
Holding potential was set at �140
mV. (A) Dose–response curve of
lidocaine is shown without external
Na� ions. Peak currents from the
beginning of the test pulse and
maintained late currents at the
end of the pulse were measured as
described in Fig. 3. Data were
normalized to the control, plotted
against lidocaine concentration,
and fitted with the Hill equation.

The IC50 value for the peak current was 324 � 26 �M (Hill coefficient, 0.97 � 0.07) (�, n � 5). The IC50 for the maintained late current
was 17.6 � 3.2 �M (0.63 � 0.07) (�, n � 5). (B) Dose–response curve of benzocaine is shown without external Na� ions. Peak and main-
tained late currents were measured as described in Fig. 4, normalized, plotted against benzocaine concentration, and fitted with the Hill
equation. The IC50 for the peak current was 1.45 � 0.07 mM (0.86 � 0.03) (�, n � 5). The IC50 for the maintained late current was 107 �
6 �M (0.88 � 0.04) (�, n � 5).
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the conditioning pulse (h
 curve). At �60 mV, where
few channels were activated or inactivated (Fig. 9 B,
square), �60% of channels were inhibited by ben-
zocaine at 300 �M (Fig. 9 B, triangle). Even at �80 mV,
a significant fraction of mutant Na� channels were
blocked by benzocaine without channel opening. The
shift in the midpoint voltage by benzocaine was �34
mV, providing additional evidence that benzocaine also
blocks most, if not all, of the intermediate closed states

during channel activation. Similar results were obtained
for lidocaine at 300 �M (Fig. 9, C and D). The shift in
the midpoint voltage by lidocaine was �27 mV. Evi-
dently, a significant intermediate closed-channel block
by benzocaine and lidocaine can occur in inactivation-
deficient Na� channels.

D I S C U S S I O N

We created a HEK293 cell line expressing robust inac-
tivation-deficient rNav1.4-WCW mutant Na� currents

Figure 7. Current–voltage relationship in the presence of 300 �M
benzocaine. (A) A representative family of Na� currents were
evoked by 50-ms test pulses increasing in 10-mV increments from
�100 to �50 mV (pulse protocol shown in inset) in the presence
of 300 �M benzocaine. Holding potential was set at �140 mV.
Control data similar to those illustrated in Fig. 1 A in the absence
of drug were not shown. (B) Peak currents for control (�) and
300 �M benzocaine (�) were plotted against membrane voltage.
(C) Both peak (�, n � 4) and persistent (�, n � 4) late currents
at the end of the test pulse as shown in A were measured, normal-
ized to peak currents measured from the same cell in control
saline (Idrug/Icontrol), and plotted against membrane voltage.

Figure 8. Current–voltage relationship in the presence of 100 �M
lidocaine. (A) A representative family of Na� currents were evoked
by 50-ms test pulses increasing in 10-mV increments from �100 to
�50 mV (inset) in the presence of 100 �M lidocaine. Control data
similar to those illustrated in Fig. 1 A without drug were not
shown. (B) Peak currents for control (�) and 100 �M lidocaine
(�) were plotted against membrane voltage. (C) Both peak (�,
n � 5) and persistent (�, n � 5) late currents as shown in A were
measured, normalized to peak currents measured from the same
cell in control saline (Idrug/Icontrol), and plotted against membrane
voltage.
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and demonstrated that both lidocaine and benzocaine
blocked the open state of WCW mutant channels with
high affinities. The IC50 values for such open-channel
block were comparable to those for the inactivated-
channel block. The external Na� ions did not signifi-
cantly affect the open-channel block by benzocaine
or lidocaine. In addition, we provided evidence that
benzocaine and lidocaine blocked intermediate closed
states during channel activation, probably via their
hydrophobic pathway. The term “high-affinity” in LA
binding is only a relative term for closed intermediate
and open states with respect to the “low-affinity” LA
binding for the resting state. The significance of these
findings is discussed below.

Robust Expression of WCW Mutant Na� Channels in 
HEK293 Cells

The high expression of rNav1.4-WCW mutant muscle
Na� channels in stably transfected HEK293 cells is un-
usual, since a previous report showed rather poor ex-
pression of inactivation-deficient hNav1.5-IFM/QQQ
mutant cardiac Na� channels in HEK293 cells (Grant
et al., 2000). Evidently, the inactivation-deficient phe-
notype alone cannot explain the limited expression of
IFM/QQQ cardiac mutant channels in HEK293 cells.
Regardless the reasons for this robust expression, our
cell line will be useful for the study of the open-channel
block by LAs and by class 1 antiarrhythmic agents. In
addition, this cell line can be used for the investiga-

tion of the possible involvement of intermediate closed
states in drug binding during channel activation as
shown in this report. Such a cell line should also be
suitable for the high throughput screening of novel
open-channel blockers (Sanguinetti and Bennett, 2003;
Wang et al., 2004a).

Open-channel Block of WCW Mutant Channels by Lidocaine 
and Benzocaine

The time-dependent inhibition of WCW mutant cur-
rents by lidocaine, benzocaine, and class 1 antiarrhyth-
mic agents (Wang et al., 2003b, 2004b) was taken as evi-
dence for the open-channel block. This phenotype is
consistent with the location of the LA receptor within
the pore-forming S6 segments. Such a phenotype was
found in the block of K� channels by internal TEA ions
and various homologues (Armstrong, 1971). The dose–
response curves show that this open-channel block by
benzocaine and lidocaine is nearly as potent as the in-
activated-channel block (Meeder and Ulbricht, 1987;
Wright et al., 1997). In addition, lidocaine, but not ben-
zocaine, elicited an additional use-dependent block
(Fig. 5 B) because of the slow recovery of the open-
channel block by lidocaine. Our findings imply that the
open-channel block by lidocaine may also play an im-
portant role in vivo, particularly during ectopic high-
frequency firings when Na� channels open repetitively
(�20 Hz; Devor et al., 1992). Furthermore, the IC50

value for the open-channel block by lidocaine is near

Figure 9. Conventional h
 measurement of
rNav1.4-WCW Na� channels with LAs presence.
(A) Superimposed current traces were evoked
by a 5-ms test pulse to �30 mV in the presence
300 �M benzocaine. Test pulses were preceded by
100-ms conditioning pulses, ranging from �160
to �15 mV in 5-mV increments (inset). Notice
that Na� currents were activated at the condition-
ing pulse ��50 mV. (B) Peak currents at the test
pulse of �30 mV were measured, normalized,
and plotted as a function of the conditioning
voltage. The plot was fitted with a Boltzmann
function (1/[1 � exp((V0.5 � V)/k)]). The aver-
age midpoint (V0.5) and slope (k) for the control
were �36.0 � 1.77 mV and 8.2 � 1.2 mV, respec-
tively (�, n � 5), and for the cells treated with
benzocaine were �70.5 � 0.4 mV and 11.3 � 0.3
mV, respectively (�, n � 5). (C) Currents were
evoked as described (A) in the presence of 300 �M
lidocaine. (D) Normalized Na� current availability,
plotted as in B, and fitted with a Boltzmann
function. The average midpoint (V0.5) and slope
(k) for the control were �35.3 �1.5 mV and
7.3 � 1.0 mV, respectively (�, n � 6), and for
cells treated with lidocaine were �62.3 � 0.3 mV
and 8.2 � 0.3 mV, respectively (�, n � 6). All cells
were perfused with external solution containing
no Na� ions.
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the therapeutic plasma concentration range for its anti-
arrhythmic action (Roden, 2001) and for its treatment
of neuropathic pain (Boas et al., 1982), implying that
ectopic hyperexcitability and/or persistent late Na�

currents found under pathological conditions are sus-
ceptible for LA open-channel block, as also recently
demonstrated for LQT-3 syndromes (An et al., 1996;
Wang et al., 1997; Nagatomo et al., 2000).

The results described above, however, remain incom-
patible with the observations that show (a) the lack
of open-channel block by QX-314 in pronase-treated
squid axon and (b) the absence of the high-affinity
block by LAs in IFM/QQQ mutant Na� channels (see
introduction). One interpretation is that WCW mu-
tations at D1-S6 fortuitously modify the LA receptor,
which is different from that in normal wild-type Na�

channels. The argument against this view is that LAs
also potently block the open state of normal Na� chan-
nels treated with chloramine-T (Ulbricht and Stoye-
Herzog, 1984; Wang et al., 1987, 2004b). Alternatively,
the discrepancy may be due to differences in expres-
sion systems, mutation sites, and/or pulse protocols.
This discrepancy is yet to be resolved.

Lack of Na� Ion Effects in Lidocaine and Benzocaine Block

External Na� ions significantly antagonize binding
of QX-314, a quaternary ammonium derivative of
lidocaine (Cahalan and Almers, 1979). This antago-
nism was due to repulsion between the Na� ion and the
positive charge carried by QX-314 within the pore re-
gion. As anticipated, we did not observe antagonism
between external Na� ions and bound neutral ben-
zocaine (Fig. 6 B). However, since lidocaine can also
carry a positive charge when protonated, the lack of an-
tagonism between the external Na� ions and lidocaine
block is unexpected (Fig. 6 A). Barber et al. (1992) re-
ported a similar negative result by external Na� ions for
lidocaine block of normal cardiac Na� channels. The
reason for this phenomenon is unclear. One possibility
is that H� dissociated from lidocaine when Na� ions
are approaching the LA receptor. This could not occur
for QX-314 because it carries a permanent charge.
Yeh and Tanguy (1985) showed that unlike QX-314,
lidocaine in its neutral form leaves the closed channel
rapidly through the hydrophobic pathway. This hydro-
phobic pathway could also in part provide unproto-
nated lidocaine with an LA block that is not antago-
nized by external Na� ions. This possibility is discussed
next.

Direct Intermediate Closed-channel Block of WCW Mutant 
Channels by LAs

At �30 mV, the time-dependent block by 300 �M ben-
zocaine is rapid, with a time constant of �0.8 ms,
whereas at �30 mV, there is no evidence of a time-

dependent benzocaine block. Closer examinations of
benzocaine block revealed a slow activation time course
at �30 mV as compared with the rapid time course of
benzocaine block at �30 mV (Fig. 7). Could block of
Na� channels by benzocaine occur during transitions
to the intermediate closed states before Na� currents
reach their peak (i.e., first latency distribution; Aldrich
et al., 1983)? If so, the peak current at �30 mV should
be reduced more than that at �30 mV. A much greater
reduction in peak currents by benzocaine was indeed
observed at �30 mV (Fig. 7, B and C). By the same to-
ken, this result suggests that the rapid open-channel
block by neutral benzocaine at �30 mV does not re-
quire that benzocaine come exclusively via the hydro-
philic pathway.

The results for lidocaine were less clear-cut than
those for benzocaine but the trend with respect to in-
termediate closed-channel block appears the same
(Fig. 8). This ambiguity could be due to (a) differences
in size and hydrophobicity of lidocaine and benzo-
caine, (b) the protonation/deprotonation of lidocaine
within the aqueous pore, or (c) differences in open
times of mutant channels at various voltages. These fac-
tors will likely affect the kinetics of the access/exit of
the drug via hydrophobic and hydrophilic pathways
(Hille, 1977).

Vedantham and Cannon (1999) recently hypothe-
sized that transitions to intermediate closed states,
rather than transitions to inactivated states as stated in
the classic modulated receptor hypothesis, play a cru-
cial role in the shift of the h
 curve by lidocaine. As-
suming that intermediate closed state interacts with
benzocaine or lidocaine, a significant block by LAs
should develop during the 100-ms conditioning pulse
because of the significant increase in the availability of
intermediate closed states along the activation pathway
(e.g., at �70 mV conditioning pulse). Our experimen-
tal data from inactivation-deficient Na� channels (Fig.
9) strongly support such a hypothesis for LA block by
benzocaine and lidocaine.

It is worth noting that we make no distinction be-
tween the high-affinity LA binding among closed or
closed/inactivated channels. Perhaps fast inactivation
in normal Na� channels masks the high-affinity LA in-
teractions with intermediate closed and the final open
states. Slow-inactivated Na� channels may also display
high-affinity binding with LAs as residual slow inactiva-
tion is evident for the open and intermediate preopen
mutant Na� channels (Figs. 1 and 2). Transient inter-
mediate “activated” states will in time enter the absorb-
ing inactivated state (Aldrich et al., 1983). Inactivated
Na� channels are likely to bind to lidocaine with a high
affinity albeit more slowly (Wright et al., 1997) than
open Na� channels. A similarly high-affinity LA recep-
tor should be present in the intermediate closed, in-
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termediate closed/inactivated, open, and open/inacti-
vated channels. If so, the use-dependent action of
LAs during depolarization does not require inactivated
states but may simply be explained by higher affinity for
intermediate closed and open states (Vedantham and
Cannon, 1999).

In molecular terms, the formation of a high-affinity
LA receptor during activation gating could well be due
to the rearrangement of S6 segments. This is feasible
considering that S6 segments are structurally analo-
gous to the pore-forming inner helices of K� channels
(Yarov-Yarovoy et al., 2002). These inner helices con-
tain a gating hinge (glycine) that bends �30
 in K�

channels upon activation (Jiang et al., 2002). In the
straight configuration, four inner helices form a bun-
dle, closing the channel near its intracellular surface,
whereas in the bent configuration, the inner helices
splay open, creating a wide pathway. Thus, Na� channel
activation could easily modulate the configuration of
the LA receptor situated at pore-forming S6 segments.
In contrast, the movement of the intracellular fast-inac-
tivation gate (IFM motif) is not involved in the forma-
tion of a high-affinity lidocaine receptor as inferred by
Vedantham and Cannon (1999). Nonetheless, fast inac-
tivation may play an important but indirect role for the
LA binding since (a) the activation and inactivation
gating processes are coupled and (b) the inactivation
gate, if docked within the pore region near the LA re-
ceptor (Yarov-Yarovoy et al., 2002; Wang et al., 2003b),
will likely limit the LA access/exit via the hydrophilic
pathway.
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