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We propose a combination of blind source separation (BSS) and independent component analysis (ICA) (signal decomposition
into artifacts and nonartifacts) with support vector machines (SVMs) (automatic classification) that are designed for online us-
age. In order to select a suitable BSS/ICA method, three ICA algorithms (JADE, Infomax, and FastICA) and one BSS algorithm
(AMUSE) are evaluated to determine their ability to isolate electromyographic (EMG) and electrooculographic (EOG) artifacts
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ated on three BCI datasets as a proof-of-concept of the method.
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1. INTRODUCTION

Since the discovery of the human electroencephalogram
(EEG) activity in 1929 by Hans Berger [1], EEG measure-
ments were mainly used for medical reasons or for research
in the area of brain function. In the past 15 years, applica-
tions have been developed allowing the use of EEG activity
as a nonmuscular communication channel or as an aid in
motor restoration after paralysis, so-called brain-computer
interfaces (BCIs) [2]. The idea is to provide completely par-
alyzed patients with a rudimentary communication chan-
nel by classifying the EEG signal (currently with information
transfer rates between 10–25 bits/min [2]). Further progress
of BCI systems depends on the development of new training
methods for patients, the identification of signals best suited
for voluntary control, and the removal of noise interfering
with these signals.

Noise includes artifacts (we define any noncentral ner-
vous system (CNS) signal recorded by the EEG to be an ar-
tifact) introduced either by the subject himself or by an ex-
ternal source. Artifacts in EEG recordings can be caused by
eye blinks, eye movement, muscle and cardiac noise, as well
as nonbiological sources (e.g., power-line noise). A problem
arises if the artifacts generated by the subject are used to con-
trol the BCI system, because this violates the definition of
a BCI as a nonmuscular communication channel. Further-
more, subjects with degenerative diseases would eventually
lose this ability. For instance, these artifacts could be a volun-
tary or involuntary blinks or muscle contractions when the
task is presented. Additionally, involuntary muscle or ocu-
lar activity might obscure the actual EEG signal, obstructing
measurement of the features used to control the system. Elec-
tromyographic (EMG) activity tends to overlap EEG from
8 Hz upwards, whereas electrooculographic (EOG) activity
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overlaps in the range 0–12 Hz (e.g., the μ-rhythm has a fre-
quency of 8–12 Hz). An overview of the effect of EMG on
BCI training sessions is given in [3].

A supervisor can detect artifacts visually by analyzing
the topographic and spectral properties of a signal. Unfor-
tunately, the contaminated sections cannot just be rejected,
due to the data loss this implies (blinks occur with a fre-
quency of about 20 per minute and a duration between 50
and 500 milliseconds [4, 5]). Additionally, if the recordings
are very long, the process of manual artifact rejection im-
plies a significant increase in the time needed to fully process
a dataset. Automating rejection would speed up this process
but still cause the same amount of data loss. Therefore, the
only feasible approach is to remove artifacts without affect-
ing the remaining EEG data.

A comprehensive review of numerous artifact removal
techniques and their application in BCI studies can be found
in [6]. For example, a simple approach is highpass filtering
the data to remove EOG and lowpass filtering the data to
remove EMG artifacts, see, for example, [7]. This method
will remove any brain signals of interest in the same fre-
quency range. If a reliable reference channel is available, for
example, an EOG recording, regression in the time, or fre-
quency domain can be performed [8, 9]. The disadvantage of
this method is that EOG recordings often contain brain sig-
nals which would inevitably also be removed. Nonetheless, it
has been shown that this is preferable over artifact rejection
methods because of the reduced amount of data loss [10].

An alternative approach is to use blind source separation
(BSS), which is based on estimating the underlying sources
(components) that compose the signals measured with the
EEG. Ideally, the estimated components contain either arti-
facts or EEG activity. It is then possible to remove artifacts by
elimination of the corresponding components. Makeig was
one of the first to demonstrate the possibility of applying ICA
methods to perform BSS on EEG data [11].

Artifacts were successfully isolated into a few output
components and removed from the data. Advantages of us-
ing ICA to remove EOG artifacts from EEG data, instead of
rejection- or regression-based techniques, have been shown
in several studies, indicating that the percentage of brain
signal that is removed with the EOG is reduced [12, 13].
EOG artifact removal on the basis of isolation into indepen-
dent components (ICs) using BSS has been demonstrated in
[14]. Another approach employs the second order statistics
based “algorithm for multiple unknown signals extraction
(AMUSE)” to detect EEG artifacts in sleep studies [15, 16].

In this paper, we propose an artifact removal method
that removes artifacts whilst causing only minimal data loss
and it is applicable in online environments and has no need
for user interaction. This filter is implemented by using
BSS/ICA algorithms in conjunction with support vector ma-
chine (SVM) classification and is based on an online capable
design. The use of BSS/ICA algorithms minimizes data loss
as the artifacts are isolated into ICs, automatic classification
of these ICs with SVMs makes user interaction unnecessary,
and the online capable design of the artifact filter provides a
continuous stream of data in online settings. To make an ob-
jective selection of the algorithm being in the filter, possible,

three ICA algorithms and one BSS algorithm are evaluated
to determine their artifact isolation capabilities. An SVM is
trained to classify artifacts on the basis of ICs extracted from
data recorded for this purpose. Finally, we demonstrate the
functionality of the filter using existing BCI data recorded
from healthy and paralyzed participants.

2. METHODS

As a data model we assume a linear mixture of brain signals
and artifact signals. This model corresponds to the model
underlying BSS/ICA algorithms. As far as this model is ac-
curate, artifacts can be removed from the EEG signal with an
artifact removal matrix. This matrix is continuously updated
and is calculated from SVM classification results on ICs de-
termined with BSS/ICA.

A comparison to determine the best algorithm for the
isolation of artifacts was conducted before training the
SVMs. This comparison was limited to four algorithms
which were selected because they cover the various principles
of IC estimation employed in BSS algorithms. AMUSE [16] is
a BSS method restricted to second-order statistics, JADE [17]
a tensorial ICA method, Infomax [18] is based on maximum
likelihood estimation, and FastICA [19] on the maximization
of nongaussianity. After the selection of the best performing
algorithms, SVMs were trained with artifact data recorded
specifically for this purpose. A discussion of the filter design
and the methods to achieve online functionality follows.

All of the BSS/ICA algorithms are contained in EEGLAB
[20] and/or ICALAB [21].

2.1. BSS evaluation

2.1.1. Method of BSS evaluation

The method that was used to evaluate the performance of
the four BSS algorithms is discussed here. All algorithms
were evaluated by mixing a known artifact component with
an artifact-free background EEG signal, re-extracting the
known component and measuring the correlation of the ex-
tracted components and the introduced artifact components,
as done in [24].

EEG data recorded while the subject was performing no
particular task was cleaned of blinks and other obvious arti-
facts by removing the corresponding sections using EEGLAB
and then used as background Borig. To obtain the first artifact
source, an EMG recording was made on the forearm of a sub-
ject. This ensures that no CNS signals are contained in this
artifact component. We assume that the spectral properties
of an EMG signal generated at the forearm are comparable to
those generated by muscles located on the head, for example,
jaw muscles. This assumption seems to be a feasible trade-
off considering that it ensures that no CNS signals are con-
tained in the EMG signal. The mixing matrix is constructed
from jaw muscle recordings so that the spatial pattern is also
as similar as possible to a real-jaw muscle recording. To en-
sure the availability of an EOG artifact component free of
CNS signals, 20 blinks from channel Fp1 (see Figure 2 for
electrode location) of an artifact recording were extracted,
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Table 1: EEG recording parameters.

EEG recording parameters

Amplifier 16 channel biosignal (gtec, Graz, Austria)

Sampling frequency 160 Hz

Highpass filter 0.01 Hz

Lowpass filter 70 Hz

Notch filter 50 Hz

Electrode placements 16 channel subset of 10–20 systems (see Figure 2) [22]

Ground Left mastoid (A1)

Reference Right mastoid (A2)

Electrode material Ag/AgCl

Recording software BCI2000 [23]

averaged, and then added to a zero baseline signal with vary-
ing gaps and a random multiplication factor ranging from
0.5 to 1.5.

Let W be the unmixing matrix obtained using BSS/ICA,
and the mixing matrix A its inverse. A mixing matrix A was
created for each of the two artifact signals yart by averaging
over the mixing matrices calculated by the four algorithms
for each artifact type. Thus, the mixing matrix for the EMG
artifact was created by averaging mixing matrices calculated
using BSS/ICA for jaw muscle artifacts and the mixing matrix
for the EOG artifact by averaging mixing matrices calculated
using BSS/ICA for eye blinks. The artifact signals yart were
multiplied with the corresponding column i of these matri-
ces and then added back to the background data Borig, which
yields the mixed signal B′:

B′ = Borig + Aiyart. (1)

After re-extraction, the component yextr, showing the maxi-
mum correlation with the introduced signal, was assumed to
be the introduced artifact signal. This component was then
removed from B′ to obtain Bclean. The correlation between
Borg and Bclean as well as yart and yextr was calculated as per-
formance measure. For space reasons and because both mea-
sures allowed the same conclusions, only the results for the
correlation between yart and yextr are shown in detail. The
background signal had a length of 16714 samples recorded
with the settings shown in Table 1. A sliding window was
moved over the data with a length of 480 and an overlap of
240 samples. Each of these 480 sample segments was tested
with the above procedure.

AMUSE and JADE were run with default parameters. In-
fomax was run with a limit of 32, 64, and 128 iterations to
restrict runtime to less than two seconds and to analyze the
influence of the number of iterations on runtime and qual-
ity. The weight matrix computed in the previous step was
passed to the algorithm as an initial guess. A learning rate
of 0.001 was used. FastICA was run with a maximum num-
ber of iterations of 100, 200, and 400. “Approach” was set to
“symmetric,” as described in [25]. This causes the program
to calculate all components in parallel, which is faster than
a serial calculation if all components are to be estimated.
The hyperbolic tangent function was chosen as “nonlinear-
ity.” “Stabilization” was turned on, which prevents the pro-

gram from getting stuck at certain points by halving the step
size μ. Again the previous weight matrix was used as an ini-
tial guess. Without a restriction on the number of iterations,
Infomax and FastICA tended to have a very high variance in
computation time to convergence.

2.1.2. BSS evaluation results

The performance of Infomax, JADE, AMUSE, and FastICA,
determined using the evaluation method presented in the
previous section, is shown here. The parameters stated in
Section 2.1.1 were used.

Runtimes are shown only for the EOG signal because
they did not differ for the two artifact types (see Figure 1).
AMUSE has a runtime lower by a factor of 50 compared to
the second fastest algorithm, which is Infomax (with 32 iter-
ations). JADE is the slowest algorithm and also exhibits the
greatest variance. This excludes it from any application in on-
line environments where a reliable runtime is vital to achieve
optimal performance. The extraction of the artificially gen-
erated EOG artifact is also performed best by the AMUSE
algorithm and worst by the JADE algorithm. Infomax does
not perform as well as AMUSE, but it is clearly better than
FastICA.

The performance of AMUSE drops for the extraction of
the EMG signal. Infomax performs best with this type of ar-
tifact.

The data shows that no algorithm is optimal for both
types of artifacts. Since the runtime of AMUSE is lower by
a factor of 50, it is possible to employ both algorithms. This
has the additional advantage that only AMUSE will run if
EOG artifacts only are to be removed. Therefore, we decided
to use AMUSE in combination with Infomax. This is realized
by creating an R (4) for each of the algorithms. These matri-
ces are then combined by multiplication and applied to the
data.

2.2. Support vector machine training

2.2.1. Training data

The artifacts recorded for SVM training and how the training
of the SVMs was conducted are discussed in this section.
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Figure 1: Boxplots showing times needed for extraction and EOG/EMG artifact extraction performance.

Four kinds of artifacts (jaw muscles, forehead movement,
eye blinks, and eye movement), each recorded with four dif-
ferent subjects, were recorded to train the SVMs to classify
various EEG artifacts. All recordings were made with the set-
tings shown in Table 1.

The instructions to generate artifacts were presented to
the subjects in random order, 40 times for each artifact type.
Each presentation lasted 3 seconds. In total, this resulted in
19200 samples per artifact. These recordings were then split
into blocks of 480 samples (i.e., 3 seconds), which were used
to train the SVMs (at lengths lower than 300 samples, the
classification rates began to deteriorate probably due to the
fact that this is not sufficient for the BSS/ICA algorithms to
perform separation on). This resulted in a training dataset
with 2560 components per artifact. Every component was la-
beled by hand as either “artifact” or “nonartifact” by an ex-
pert. ICs containing EOG artifacts were mostly unambigu-
ous. EMG artifacts tended to contaminate most ICs with
varying degrees of intensity. Labeling every IC with only
traces of EMG as artifact would result in too much of the
nonartifact EEG data being removed. Therefore, only those

ICs with strong EMG or no EEG were labeled as artifacts.
The SVMs were all trained with an equal number of artifacts
and nonartifacts (which were randomly selected from the set
of available nonartifacts).

An RBF kernel [26] was used to classify the data based
on their power spectral density (PSD) and the topography
of the ICs (based on elements of the mixing matrix calcu-
lated with BSS/ICA). The PSD was calculated using Welch’s
method [27] and split into 16 frequency bins ranging from
1.6 Hz to 80 Hz. The corresponding columns in the mixing
matrix were used as the remaining 16 elements. This results
in a feature vector which is the concatenation of spectrum
and topography.

Figure 2 shows the difference between the topography
of eye blinking and horizontal eye movement ICs. The eye
blinking artifacts project most strongly on the frontal elec-
trodes Fp1 and Fp2, whereas horizontal eye movement arti-
facts have a very distinct projection, in which electrodes on
different hemispheres have a different polarity. The topogra-
phy of EMG artifacts depends strongly on the muscles used,
but they all show a characteristic power spectrum. An EMG
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Figure 2: Topographic plots illustrating the differences in the features used for classification. The topographies of two ICs containing eye
blinks (left) and eye movement (right) are shown.
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Figure 3: Power spectra showing the differences in the features used for classification, in this case of an IC containing jaw muscle contraction
(a) and eye movement (b).

power spectrum of a jaw muscle artifact is shown next to an
eye movement power spectrum in Figure 3.

2.2.2. Support vector machine classification performance

Classification rates of the SVMs for EOG and EMG artifacts
using the features discussed in the previous section are briefly
presented in the following section. The most apparent differ-
ence between EOG and EMG artifacts is that EMG artifacts
contaminate a much higher percentage of the ICs than EOG
artifacts (see Table 2). This is due to the fact that EMG arti-
facts are composed of multiple sources. These sources tend
to be isolated into individual ICs, which leaves fewer compo-
nents for the signal of interest. Additionally, traces of muscle
activity remain in most of the components, varying in their
intensity. That means that there is no hyperplane that clearly

separates EMG and non-EMG components. This is reflected
in the percentage of contaminated ICs and the percentage of
correctly classified ICs during 20-fold cross validation (CV).
Nevertheless, all classification rates lie above 90%, even above
99% in the case of EOG artifacts.

2.3. Implementation

The artifact filter is implemented using Matlab and inte-
grated into the BCI2000 [23] software using an available
Matlab interface. It consists of two major components. The
first uses the signal data contained in buffer ZICA and applies
BSS/ICA to calculate the unmixing matrix W. Application of
W to ZICA yields the corresponding sources S:

S = WZICA. (2)
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Table 2: SVM training summary showing the percentage of independent components (ICs) that are contaminated by artifacts in the par-
ticular artifact dataset and the percentage of ICs classified correctly as artifact and nonartifact when using 20-fold crossvalidation (CV).
Additionally, channel capacity calculated using the Blahut-Arimoto algorithm [28, 29] and the parameters C (error penalty) and γ (kernel
parameter of RBF kernel) used to train the SVMs are shown.

Artifact % ICs % correct (CV) Channel capacity C /γ

Eye blink 6.40 99.39 0.8141 2000/0.0005

Eye movement 5.15 99.62 0.9373 2/0.5

Jaw muscle 52.34 92.26 0.6308 8/0.5

Forehead 19.34 91.51 0.6043 2/0.5

Then the SVMs are used to classify the sources S. We use the
probability estimates p (values between zero and one, i.e., the
probability that a component is not an artifact) of the SVM
instead of classification results (zero or one) to construct a re-
moval matrix. Probability estimates are calculated according
to [30]. This avoids oscillation between removal and retain-
ment in case of ambiguous components. Especially muscle
artifacts are not cleanly isolated into single components, and
those which contain only weak contamination might suffer
from this problem when binary classification is used. p is
used to construct a diagonal matrix D using the output of
the SVMs for each of the four artifact types:

Dii = pi, i = 1, . . . ,N ,

Dij = 0, ∀ i�= j, i = 1, ...,N , j = 1, . . . ,N ,
(3)

with N being the number of ICs.
D is combined with the unmixing matrix W and the mix-

ing matrix A, as shown in (4), to create the removal ma-
trix R that is applied to the current output sample σi from
buffer Zsig in the second component of the artifact filter (5)
which yields a sample σ ′i reconstructed out of BSS/ICA com-
ponents weighted according to the probability estimates p of
the SVM:

R = ADW, (4)

σ ′i = Rσi. (5)

The matrix R must be applied to every sample that passes
through the filter. In a sequential approach in which the cal-
culation of R takes tR > 0 this will prevent continuous out-
put in online scenarios. Therefore the calculation of R and
the application of R to the current output sample σi must be
performed in separate threads.

R must include mixing and unmixing matrices from
AMUSE and Infomax. D must be calculated for each of the
four SVMs (eye movement, eye blinks, jaw muscle and fore-
head muscle artifacts). All matrices are then combined by
multiplication as shown in (6) and applied to the data.

R = AAMUSEDEOG1DEOG2WAMUSE

× AInfomaxDEMG1DEMG2WInfomax.
(6)

Additionally, it must be taken into account that the calcula-
tion of the unmixing matrix W using the BSS/ICA algorithm
is based on more than one sample. Therefore, the data that
are used for the calculation, that is, ZICA, must be represen-
tative of the sample σi that the removal matrix R is applied

to. If simply the last n samples of the data are used, newly oc-
curring artifacts might not have a strong enough impact on
the SVM to be classified as such, which would lead to the ar-
tifact not being removed from σi. Conversely, artifacts in the
buffer which contaminate most of the samples, but not the
newest sample, will cause the SVM to classify a component
of σi as an artifact which is in fact artifact-free. Hence, the
incoming samples have to be delayed by half of the number
of samples kZICA in buffer ZICA that contains the data for the
BSS/ICA. This does not mean that a new sample arrives only
every kZICA /2 samples but that the whole recording is shifted
by this amount and the samples still arrive with the same in-
terval.

It is inevitable that the same matrix is used for several
samples as the time tR, needed for the calculation of R, is
greater than the time represented by one sample of the data.

3. RESULTS

The artifact filter is applied offline to three BCI datasets to
evaluate the effect on determination coefficient plots and
subject performance. It is shown that application of the fil-
ter increases performance in cases where artifacts randomly
interfere with the control signal and decreases performance
when artifacts are used to control the BCI. Additionally, the
online functionality of the filter is discussed.

3.1. Offline analysis of BCI data

The data analyzed originate from μ-rhythm (i.e., a BCI con-
trolled using imagined movement/planning) training ses-
sions recorded with the settings shown in Table 1 during a
BCI evaluation project [31] (none of the datasets was used
during the training of the SVMs). The control a user has
over the BCI can be evaluated with determination coeffi-
cient (Pearson product-moment correlation coefficient, r2)
values as those plotted in Figure 4. A higher value indicates
modulation of the signal in a certain channel at a certain
frequency in correspondence with the required task. In this
case, the modulation of the signal was used to control the
movement of a cursor to either the top or the bottom of the
screen. Artifacts either increase or decrease the determina-
tion coefficient value at certain frequency ranges. If the ar-
tifact correlates with the task (mostly due to the attempt to
control the BCI with muscle activity or an involuntary mus-
cle contraction while trying to perform the mental task), it
will increase the value, and if it does not (due to involuntary
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Figure 4: Determination coefficient (r2) plots showing the correlation with a given task before (left) and after (right) filtering the signal.
The first pair of plots (a) and (b) shows the effect of removing eye blinks uncorrelated with the task. The second pair (c) and (d) shows the
removal of correlated muscle activity. The third pair (e) and (f) shows the effect of removing uncorrelated muscle activity. Regions of interest
are marked with yellow boxes.
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muscle spasms), it will decrease the determination coeffi-
cient value. In the former case, removal can be expected
to decrease performance; in the latter, an increased or un-
changed performance can be expected. This is what is in-
tended since using artifacts to control a BCI violates the defi-
nition of it as being a nonmuscular communication channel.
Plots 4(a) and 4(b) in Figure 4 show the effect of EOG ar-
tifact removal on data, which were recorded from a healthy
subject presented 23 targets over 120 seconds, 22 of which
were correctly chosen. Both of the frontal channels, Fp1 and
Fp2, were contaminated with eye blinks. Since the blinks
are uncorrelated with target location, this will have a nega-
tive influence on the determination coefficient value. As ex-
pected, the right plot, which shows the determination coef-
ficient plot of the filtered data, has a visibly increased de-
termination coefficient value on the frontal channels. On
Fp1 the r2 value increased from 0.0772 to 0.4539, and on
Fp2 from 0.0929 to 0.4775. The maximum r2 value increases
from 0.7006 to 0.7585. This increase occurs in the same fre-
quency range as the horizontal band of high determination
coefficient values which existed previously, which is an indi-
cation of identical source (see box in 4(a) and 4(b)). Such
a horizontal pattern is typical of successful μ-rhythm mod-
ulation. Because the control signal was not influenced sig-
nificantly on the other electrodes, no increase in hit rate oc-
curred.

In contrast to the top two plots, plots 4(c) and 4(d) show
data from a subject that used muscle artifacts to control the
BCI. This is reflected in the plot by the vertical structures
(which indicate signals with a broad spectrum) that correlate
with the task (which indicates that these signals were gener-
ated intentionally). Such patterns are visible on channels 2,
3, 4, 9, and 10 (see box in 4(c) and 4(d)). In total, 34 tar-
gets were presented, 29 of which were hit (85%). The filter
does not entirely remove the EMG artifacts due to the pre-
viously described problem of muscle artifacts contaminating
too many ICs. Nevertheless, the effect of the artifacts is sig-
nificantly reduced, in particular below 20 Hz. Additionally,
the absolute amplitude of the correlation of the EMG sig-
nals with the task was decreased visibly by the application
of the filter (the maximum r2 value decreases from 0.6777
to 0.5208). The removal led to a decrease of the simulated
hit rate from 85% to 73%. The final case that is presented
(see Figures 4(e) and 4(f)) also shows some contamination
by EMG artifacts, even though not as strongly as the previ-
ous data. The subject was presented 34 targets, 17 of which
were hit resulting in a hit-rate of 50%. The interesting fact
about this dataset is that the removal of the EMG artifact re-
veals a horizontal structure in the range of 20 Hz (see box
4(e) and 4(f)). This indicates that there was some brain ac-
tivity that was superimposed by EMG and could therefore
not be used to control the BCI. The strongest increase of
the determination coefficient value is based around electrode
CP3 (channel 11), supporting this claim. On this channel,
the maximum r2 increases from 0.1204 to 0.2598. Addition-
ally, this electrode was determined to be the most discrimi-
native in initial screening sessions with the subject. The sim-
ulated performance of the subject increased from 50% to
74%.

3.2. Online functionality

The performance of the filter was tested by applying it to raw
data and classifying it again. The data obtained are identical
to the data that would have been obtained if the filter had
been used in an online recording with the same settings. Of
course, an arbitrary amount of time is available for the arti-
fact filter in an offline setting. Therefore, the quality of arti-
fact removal is potentially higher. Thus, the interval at which
the removal matrix is updated was set to 5 sample blocks,
which would be realistic in an online environment. Since the
data was recorded with 8 samples per block at 160 Hz, this
allows for 250 milliseconds per update.

The application of the removal matrix takes about
2.6 milliseconds per sample block. The calculation of a new
removal matrix takes 145 milliseconds using both AMUSE
and Infomax on the basis of 480 samples1. This is fast enough
to update the removal matrix every five sample blocks with
the above settings.

Using the BCI2000, several P300 recordings were made
to ensure that running the filter would not have a negative
impact on performance.

4. DISCUSSION

A filter that removes artifacts from EEG signals used in
BCI systems was described. The data presented in this pa-
per shows that the implementation of an online artifact fil-
ter using blind source separation and support vector ma-
chines is possible. This is achieved by delaying output by a
constant amount between one and two seconds and by cal-
culating and applying the removal matrix in two separate
threads. Infomax was found to be the best ICA method to
decompose EEG signals contaminated with myographic ar-
tifacts, but it had problems producing components which
were completely free of contamination (especially if the myo-
graphic artifacts were very strong, as jaw muscle contrac-
tion). The second-order statistics-based algorithm AMUSE
produced a very clean decomposition of recordings contain-
ing ocular artifacts, both eye movements and blinking. In
turn, it was possible to train SVMs to recognize these arti-
facts with very high accuracy, because no contamination re-
mained in the other components, making it easier to deter-
mine a separating hyperplane. Correspondingly, muscle arti-
facts could not be classified with such a high accuracy. The
application of our artifact filter to BCI data demonstrates
the usefulness of the technique. Performance increases were
achieved in the case of uncorrelated muscle and ocular ac-
tivity task. Additionally, a decrease in performance was ap-
parent if the filter was applied to data in which the subject
used muscle artifacts to control the BCI. Unfortunately, the
removal was not complete, allowing some control of mus-
cles of the BCI to remain. In future experiments, this might
be improved by using more EEG channels which increase
the number of ICs and therefore the chance that an EMG

1 Using an AMD Athlon X2 4400+ with 2 GB RAM.
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subspace can be isolated from the EEG subspace. Addition-
ally, the method could be adapted for use with alternative
BSS methods which are particularly suited to isolate EMG ar-
tifacts, for example, the canonical correlation analysis (CCA)
method demonstrated in [32]. The CCA would be used in-
stead of one of the ICA algorithms employed in this paper
and be automated by using the available SVMs.

The feasibility of using ICA as a preprocessing technique
for artifact detection has been shown in [33]. Performance
increased for all presented artifact detection types after ICA
preprocessing. It was noted though, that no performance in-
crease was found when applying ICA to data contaminated
with muscle artifacts. This is another indication that an al-
ternative BSS or ICA algorithm should be used before classi-
fying the data with SVMs.

Automated artifact removal techniques have been pre-
sented previously. For example, an automated regression
analysis-based EOG removal method was presented in [34].
While being easy to apply it still suffers from the drawbacks
of EEG-contaminated EOG channels (even though this was
addressed by mounting the EOG electrodes in the proxim-
ity of the eyes and only calculating the regression coefficients
from large EOG artifacts). Moreover, it is not possible to ex-
tend such a method to remove EMG artifacts.

Artifact isolation and removal using BSS/ICA algorithms
automated by combination with SVMs or some other auto-
matic classifier were already shown in [35]. While the ap-
plicability of the method presented in [35] is also restricted
to ocular artifacts, we demonstrated a method based on the
combination of BSS/ICA algorithms and SVMs that uses ar-
tifact features (topography and spectrum) that are available
for all artifact types. Furthermore, we presented a design for
online settings. A comparable method suitable for online use
presented in [36], also not applied to EMG artifacts, depends
on static models of artifact and brain signal topographies that
do not adapt if the artifact changes, as the unmixing matrix
calculated with BSS/ICA does. The method presented in [36]
offers the advantage of having no delay and a reduced com-
putational complexity.

We demonstrated that it is possible to implement an
online-automated artifact removal technique on the basis of
BSS/ICA and SVMs and illustrated the ameliorating effect on
BCI performance.
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