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The force-extension profile of tetrameric spectrin is determined by
using multiscale computer simulation. Fluctuation results of ato-
mistic simulations of double spectrin repeat units (DSRU) are used
to systematically build a coarse-grained (CG) model for the tet-
rameric form of spectrin. It is found that the spectrin tetramer can
be modeled as a soft polymer with a unique flat force-extension
profile over the range of biologically important lengths. It is also
concluded that in the cytoskeletal network of the red blood cell the
tetramer is in an ‘‘overcompressed’’ state. These findings are in
contrast to the commonly used models of spectrin tetramer elas-
ticity, namely the ‘‘entropic spring’’ polymer models. From these
results, it is concluded that stable intact helical linker regions are
needed to maintain the soft elasticity of the spectrin tetramer.

cytoskeleton � elasticity � erythrocyte

Understanding both the resting shape and the associated
large reversible deformations of the red blood cell has long

been a common goal for both cell biologists and physicists (1–3).
It has been found that the red blood cell’s unique shape and
elastic properties are related to the structure of its underlying
cytoskeleton. Although the specific proteins that comprise the
cytoskeleton have long been identified (1), the exact mechanism
by which the red blood cell deforms and maintains its shape is
still a topic of debate. The cytoskeleton of the red blood cell is
a mesh network of spectrin tetramers, where the tetramers form
the vertices that contain a bond to an actin-band 4.1 complex.
The elasticity of the cell is thought to originate from the spectrin
tetramer’s ability to deform easily.

Experimentally, rotary shadowing studies on isolated spectrin
tetramer units in low ionic strength solvents have shown that the
spectrin tetramer can extend into a linear flexible polymer with
an average extension of 194 nm (4). Also, the contour length of
the spectrin tetramer is estimated to be �200 nm. However, the
number of spectrin molecules per area of membrane suggest
that, in the erythrocyte, the end-to-end distance of the tetramer
is �70 nm (5). Furthermore, AFM experiments on erythrocytes
under physiological conditions show the spectrin tetramer to be
in a compressed state in the network, with an average length
between 35 and 100 nm (6, 7). These findings indicate that in the
resting state of the red blood cell the average extension of the
tetramer is only a fraction of its contour length. Also, mechanical
measurements of the shear modulus of the erythrocyte suggest
that the spectrin tetramer is easily expandable (8). The common
explanation for the small extension of the tetramer in the cell and
its accompanying soft elasticity has commonly been that the
helical linkers which connect the modular repeat units of spec-
trin can unfold in the cell upon overstretching and result in the
tetramer behaving as an effective entropic polymer (with free
hinges between repeat units) that prefers to assume compressed
conformations to minimize its entropy. This model of tetramer
elasticity has been supported by in vitro experiments that dem-
onstrate forced unfolding of multiple domains of spectrin with
AFM tips (9–11), along with accompanying atomistic nonequi-
librium molecular dynamics simulations demonstrating the un-
folding events at a molecular level (12–15).

However, there have also been a number of experiments that
contradict the simple entropic elasticity models. One of these is
the finding that the shear modulus of the red blood cell network
can decrease with increasing temperature, which is at odds with
the prediction that the shear modulus of an entropic network
should be proportional to the temperature (16). Other experi-
ments have found that the fluctuations of the spectrin tetramer
can increase in regions of greater deformation in the cell, again
in contradiction to an entropic polymer stiffening upon exten-
sion (17).

In this work, the elasticity of the spectrin tetramer is directly
determined by using coarse-grained (CG) molecular dynamics
(MD) simulations. Importantly, atomistic equilibrium MD has
been used to elucidate the conformational f lexibility of individ-
ual spectrin repeat units and the bending flexibility between
consecutive repeat units (18). Here, information obtained from
these atomistic MD simulations of consecutive spectrin repeat
units is used to parametrize a CG model of the spectrin tetramer
in a multiscale fashion, so that that the much larger length scale
structure of the spectrin tetramer can be accurately simulated
using the resulting CG model. The thermodynamic force-
extension relationship for the resulting CG tetramer model is
consequently determined.

From the CG simulations, two defining trends of the tetramer
elasticity emerge. First, the force-extension profile is found to be
flat over an extension range of 120 nm, before starting to stiffen
upon high extensions. Second, in the extension ranges found in
the red blood cell cytoskeleton, the tetrmaer is found to be in a
slightly ‘‘overcompressed’’ state. The present results indicate
that the tetramer can have a force constant close to zero over a
long range of extensions, and that no domain unfolding is
required to achieve a soft elasticity. We do not exclude the
possibility that domain unfolding can still occur at very large
extensions approaching the contour length of the tetramer, but
that these unfolding events can actually be deterrents to the
reversible flexibility of the spectrin tetramer and that a stable
linker region is vital to conferring the high elasticity of the
spectrin tetramer.

Results
Values of Coarse-Grained Parameters. The CG representation of
the double spectrin repeat units (DSRU) is shown Fig. 1. The
internal coordinates (ICs) used in building the CG model of the
DSRU include harmonic bonds, harmonic angles and dihedral
angles. The average values for all of the ICs were derived from
the CG representation of the trajectory produced from atomistic
simulations (CG-A) of the DSRU. The force constants for all of
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the ICs were determined as a self-consistent solution to the
fluctuations derived from the same CG-A trajectory. Once the
solution for all of the IC was determined, the average values and
force constants of equivalent IC from the two repeat units of the
DSRU were assigned the mean value of their solutions (see
Methods). The final IC force constants of the resulting CG model
for a single DSRU are provided in supporting information (SI)
Text.

In coarse graining the spectrin DSRU, the aim is not only to
match the local IC fluctuations to those found in atomistic
simulations, but also to match the vital global f luctuations of the
CG model to the corresponding collective fluctuations of the
atomistic simulation. In the spectrin DSRU, the global f luctu-
ation that is important in building a representative description of
the tetramer is the collective bending fluctuation between the
first repeat unit of the DSRU with respect to the second repeat
unit. The collective bending fluctuation between consecutive
repeat units of the DSRU were determined here in a similar way
to that in our previous work (18). In the present case, the
positions of CG site 1 and CG site 3 (see Fig. 1) are aligned along
the z axis, and the position of the CG site 2 in the xy-plane is
determined for each frame of the trajectory. A plot of the x and
y coordinates of CG site 2 from the atomistic simulation and a
constant temperature simulation of the parametrized CG DSRU
system is shown in SI Fig. 5. The distributions of CG site 2 from
the atomistic and CG simulation (SI Fig. 5) show similar size and
shape, indicating that the ICs used in the coarse-graining
procedure are able to capture the collective fluctuations between
consecutive spectrin repeat units. The collective bending fluc-

tuation is important in determining the overall elasticity of the
CG tetramer because it is the strongest determinant of the
persistence length of the tetramer. In particular, the force
constants of the IC which involve interactions of CG sites
belonging to both repeat units were found to have the most effect
in determining the collective bending fluctuations. All of the ICs
are presented in detail in Methods.

Force-Extension Profile of the CG Tetramer Model. Two spectrin
tetramer models were studied. The interactions within and
between the CG consecutive spectrin repeat units were repre-
sented by the force constants of the specific ICs between CG sites
that were determined from the fluctuation-matching scheme, as
presented in Methods. The details of how a CG-tetramer is built
from the CG-DSRU is also presented in Methods. This tetramer
model, which includes all parametrized interactions, is referred
to as the CG-bend model. For comparative purposes an altered
version of this model was also studied. In this alternate model the
interaction between CG sites belonging to two different repeat
units are ignored and only the parametrized interactions within
the individual repeat units are included. Specifically, a force
constant of k � 0 is used for the bond IC between CG sites 6–5
(see Fig. 1), the bond IC between CG sites 7–4, the angle IC
between CG sites 7–3-4, the angle IC between CG sites 1–3-2 and
the dihedral IC between CG sites 6–5-4–7 (see SI Tables 1–3 for
a complete list of the parametrized ICs and their force con-
stants). This model, which contains no interactions between CG
sites of consecutive repeat units, is referred to as the free angle
model and represents a scenario of the spectrin tetramer in which
the linker regions between all consecutive triple coiled-coil
repeat units have unfolded from an alpha-helical conformation
to a loop conformation.

The force extension results of both the fully parametrized
CG-bend tetramer model and the free angle model are presented
in Fig. 2. At very large extensions (�180 nm), the two models
show a similar behavior. Namely, they display a sharp increase
in the force with a small increase in the extension. At the high
extensions, the force exerted on both the CG-bend and free angle
tetramer models is positive, meaning that the systems want to
contract to lower extensions. For both systems, upon decreasing
the extension of the tetramer from the highly extended state the
force exerted on the system decreases.

For the free angle model, the force exerted on the tetramer
decreases with decreasing extension, through the entire exten-
sion range sampled, and the slope of this change is greater at

Fig. 1. A ribbon representation of the HE�89 double spectrin repeat unit
(DSRU) crystal structure (Top) with the AB-loop of the first spectrin repeat unit,
the BC-loop of the second spectrin repeat unit and the connecting linker
region marked accordingly. A pictorial representation of the systematic
coarse-graining of the HE�89 DSRU (Middle), along with the numbering
scheme of the resulting coarse-grained (CG) sites (Bottom). The bonding
internal coordinates (ICs) are also shown.

Fig. 2. Force vs. extension length profile of the parametrized CG-bend
tetramer model (solid line) as well as the free angle model (dotted line). (Inset)
A zoomed image of the graph at smaller force values, along with the error
associated with the determination of the average thermodynamic force for
the CG-bend tetramer model at each extension.
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large extensions. In this model, at longer extensions, the tetramer
is more geometrically restricted than at shorter extensions. At
shorter extensions, the geometric confinement of the system is
relaxed in two ways. One way is that the two strands of the
tetramer are able to sample distances further away from each
other. The second way in which geometric confinements are
relaxed at shorter extensions is that the system as a whole can
assume many large collective bent configurations. Both of these
effects contribute to the system being able to sample more
configurations at lower extensions, resulting in the dominant
entropic contribution to the elastic behavior of the free angle
model seen in Fig. 2. This entropic change in the force extension
profile of the free angle model has the same characteristic trend
as found in other entropic polymer models such as the entropic
worm-like chain model (19). In particular, the entropic free
angle tetramer prefers to be in a compressed state and it stiffens
upon expansion.

The fully parametrized CG-bend model, which is used to
represent the spectrin tetramer with no unfolded structural
domains, yields a force-extension profile very distinct from the
entropic behavior of the free angel model. In the CG-bend
tetramer model the force exerted on the system is invariant with
extension up to a length of 160 nm. Hence, the CG-bend model
effectively has a force constant of effectively zero over a large
extension range, particularly from 48 nm to 160 nm (see Fig. 2
Inset). Once the system is expanded beyond 160 nm, the force-
extension profile of the CG-bend model starts to rise with a
higher gradient than its free-angle counterpart, and the two
curves approach each other at large extensions.

To help develop a physical understanding of the force-
extension profile of the CG-bend tetramer model, sample struc-
tures from the simulation of the tetramer at different lengths are
shown in Fig. 3. The tetramer structure at 194 nm shows the
system in a highly extended state of low entropy and high internal
energy, in which its angle and dihedral (as well as bonding)
internal coordinates are being stretched beyond their equilib-
rium values. At the lower extension of 177 nm, the internal
energy of the tetramer has decreased, the entropy has increased
and thermodynamic force being sampled is close to the free
energy minimum of the system. This is indicated by the fact that
the average value of the force sampled at this extension is still
positive but approaching zero (Fig. 2 Inset). Upon further
decreasing the extension of the tetramer to 160 nm, the force
exerted on the system actually decreases to a negative value. This
sign reversal indicates that the tetramer has ‘‘overcompressed’’
and prefers to expand from this extension. The snapshot of the
tetramer at an extension length of 160 nm in Fig. 3 reveals that

the tetramer assumes a collectively bent conformation in its
over-compressed state. Upon further decreasing, the extension
length of the tetramer, the system responds by forming more
bent conformations, as shown in Fig. 3 for extension lengths of
100, 82, and 67 nm. By forming these large-scale bent structures,
the system is able to find a balance between trying to maximize
the number of conformations and at the same time wanting to
minimize its internal energy from bending. Below the zero force
length, the combination of the entropy change and energy
change with length are able to maintain a delicate balance upon
decreasing length, so as to maintain a unique relatively ‘‘f lat’’
thermodynamic force profile. The zero force length predicted by
the CG-bend model is between 160 and 180 nm (see Fig. 2). This
finding is consistent with the finding from rotary shadowing
studies of the tetramer that determine an equilibrium length of
194 nm, close to the contour length of the spectrin tetramer (4).

Discussion
Various causes of hereditary elliptocytosis have been tied to
pathogenic mutations of residues in the linker region connecting
consecutive spectrin repeat units (20). Many of these mutations
are proline, and subsequent experiments and MD simulation
have shown that this proline mutation leads to the unfolding of
the helical structure of the spectrin linker region and subsequent
unfolding of adjacent triple coiled-coil repeat units (21). Our
results suggest that a stable helical linker region is vital to
conferring the high elasticity of the spectrin tetramer. Our
earlier atomistic MD simulations have shown that the helical
linker and its interactions with the AB-loop and BC-loop
residues of the repeat units determine the collective bending
fluctuations of the consecutive repeat units (18). The present CG
simulation studies of the CG-bend tetramer, which has been
parameterized directly from the above mentioned atomistic
simulations, reveals that these bending fluctuations are vital to
having a soft elastic tetramer that slightly favors expansion over
a wide range of its length.

The ‘‘f lat’’ and negative force-extension profile calculated for
the CG-bend model of the tetramer in Fig. 2 is similar to the
isometric force-extension profiles predicted for semiflexible
polymers which have persistence lengths that are comparable to
their contour lengths (19, 22). For such polymers, the resulting
force-extension can depend on which variable (force or length)
is allowed to fluctuate. In the real cell, both the extension length
of spectrin and the force along that length are under fluctuations,
hence the exact length at which the force of the tetramer reaches
zero and then becomes negative may be shifted from the value
that is predicted in the isometric studies here. Future detailed
studies of nonequilibrium simulations of the CG-bend tetramer
model may be insightful.

The elastic behavior of the spectrin tetramer presented here
is a very different description of the elastic spectrin tetramer
tether of the red blood cell cytoskeletal network from other
elasticity models previously considered for this system. These
results warrant revisiting the interpretation of some of the
elasticity experiments conducted on red blood cells, as they may
help to explain some of the conflicting conclusions on the
elasticity behavior of the tetramer. Ultimately, a direct experi-
ment measure of the mechanical force of the tetramer as a
function of its extension by experiments similar to those done for
single strands of multiple spectrin domains would be very
valuable.

Methods
The multiscale procedure for developing the coarse-grained model for the
spectrin tetramer is described. The method for calculating the force-extension
profile for the CG spectrin tetramer is also presented.

Fig. 3. Snapshots from the equilibrium simulations of the CG-bend tetramer
model at various extension lengths. All lengths are shown in nanometers.
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The CG Model. The CG model in Fig. 1 has 11 sites for a DSRU. Each site
corresponds to a particular structural domain of the DSRU. CG site 3 (CG3) is
constructed from the center of mass of the helical linker region of the DSRU.
CG sites 1 (CG1) and 2 (CG2) incorporate the triple helical cores of the two
repeat units. The BC-loop of the second repeat unit are incorporated into CG
site 5 (CG5) and the AB-loop of the first repeat unit is incorporated into CG site
4 (CG4). CG site 6 (CG6) and CG site 7 (CG7) represent the helical regions
directly preceding and following the helical linker region of the DSRU, re-
spectively. CG site 9 (CG9) and CG site 8 (CG8) in the first repeat unit are the
equivalent of CG7 and CG5 in the second repeat. Also CG6 and CG4 in the first
repeat unit are equivalent to CG site 10 (CG10) and CG site 11 (CG11) in the
second repeat unit.

Because four of the 11 CG sites are duplicates, as stated above, each strand
of the CG spectrin tetramer is constructed by translating CG site 1 through CG
site 7 along a five-pitch helix 37 times, with each translation corresponding to
the creating of another spectrin repeat unit, as shown in Fig. 4. At each
translation step the position of CG3 is determined along the contour of a
five-pitch helix representing the length of a single strand of the tetramer. The
position of CG2 is then placed along the vector connecting the positions of
CG3 from the first repeat unit and CG3 of the next repeat unit. The positions
of CG5 and CG7 are then determined by RMS best fitting to the average
structure of the DSRU using the positions of CG1 to CG7 determined from
atomistic simulations (Fig. 1 Bottom). The final best-fitted internal coordinates
of the CG repeat units are presented SI Tables 1–3. Two antiparallel inter-
wound helices of five pitches are constructed in this way and linked to their
images in the periodic boundaries.

The CG potential for the tetramer is a sum of pair-wise additive harmonic
bonding interactions, harmonic angle interactions, CHARMM dihedral inter-
actions (23), and nonbonding Weeks–Chandler–Anderson interactions (24)
between various CG sites, such that

VCG�r� t�� � �
k�1

2 �
i

�
j

Vij
Bond � �

i

Vi
Angle � �

i

Vi
Dihedral

� �
i

�
j

Vij
WCA. [1]

The details of how the force constants for the first three terms (bonding
interaction) of the CG potential were determined from atomistic MD simula-
tions is discussed in the following section. Here the actual internal coordinates
used are presented.

The harmonic bond interaction between any two CG sites in the tetramer
(and a CG DSRU) is given by

Vij
Bond �

1
2

kij
Bond�r ij � r ij

0�2, [2]

where rij is the distance between CG site i and CG site j. Fig. 1 explicitly shows
the bonding interactions between various CG sites that are included within
individual repeat units and between two repeat units (with 37 individual
repeat units in each single strand of the tetramer). The bonds CG4–CG3 and
CG6–CG3 are between CG sites of the first repeat unit and the CG site
representing the connecting linker region between the two repeat units
(CG3). Likewise the bonds CG5-CG3 and CG7-CG3 are between CG sites of the
second repeat unit and the CG site representing linker region (CG3). There are
two bonds between CG sites of the first repeat unit and the CG sites of the
second repeat unit, namely CG5–CG6 and CG7–CG4. The values for the all of
the force constants of the bonding potentials of the coarse-grained HE�89
spectrin DSRU are given in SI Table 1.

The harmonic angle interaction between any designated three CG sites in
the tetramer (and a CG DSRU) is given by

Vi
Angle �

1
2

ki
Angle�� i � � i

0�2, [3]

where �i is the bending angle between three CG sites defining the ith bending
internal coordinate. There are various bending interaction included between
CG sites within an individual repeat unit that are explicitly listed in SI Table 2.
There are also two bending interaction involving CG sites of both repeat units.
These are the interactions of the bending angles defined by CG7–CG3–CG4
(see Fig. 1) and the bending angle defined by CG1–CG3–CG2 (see Fig. 1). The
values for the force constants of the bending potentials of the coarse-grained
HE�89 spectrin DSRU are given in SI Table 2.

The single well CHARMM dihedral interaction between any four CG sites in
the tetramer (and a CG DSRU) is given by

Vi
Dihedral � ki

Dihedral�1 � cos�� i � ��� , [4]

where �i is the dihedral angle between four CG sites defining the ith dihedral
internal coordinate and � is the phase input parameter (� � �i

0 	 180). Two
of the five dihedral interactions in the DSRU considered are defined by
CG2–CG5–CG7–CG3 of the second repeat unit (see Fig. 1) and CG1–CG4–CG6–
CG3 of the first repeat unit (see Fig. 1). There are two identical dihedral
interactions, one in the first repeat unit defined by CG8–CG9–CG6–CG4 (see
Fig. 1) and one in the second repeat unit defined by CG5–CG7–CG10–CG11 (see
Fig. 1). There is one additional dihedral interaction which involves CG sites of
both repeat units and is defined by CG6–CG5–CG4–CG7 (see Fig. 1). The values
for the force constants of the dihedral potentials of the coarse-grained HE�89
spectrin DSRU are given in SI Table 3.

The self-avoidance between the two strands of the tetramer and the
effective excluded volume arise from the Weeks–Chandler–Anderson
interaction,

Vij
WCA � 4�� � �

r ij
� 12

� � �

r ij
� 6� � � r ij 	 r ijmin

� 0 r ij 
 r ijmin

[5]

between two CG sites belonging to different strands. The parameter � is
chosen in such a way as to make rijmin equal to the cross-sectional area diameter
of a single spectrin repeat unit, through the relation rijmin � 21/6�. The param-
eters used are rijmin � 11 Å and � � 2 kcal/mol.

Determining the CG Parameters. Internal coordinates of the CG representation
of the DSRU are used to build an effective CG model based on atomistic MD
simulations of double spectrin repeat units. The details of the atomistic MD
simulations of the DSRU containing the eighth and ninth repeat units of the
beta polypeptide of the human erythroid spectrin (HE�89) are given in ref. 18.
The center-of-mass of the subdomains of the HE�89 DSRU were obtained from
the last 45 ns of the all-atom trajectory. The CG representation of the atomistic
trajectory (CG-A) then provides the target data for developing the coarse-
grained models of the spectrin DSRU. The equilibrium values of the internal
coordinates were obtained from the corresponding averages determined
from the coarse-grained atomistic trajectory. The fluctuations for each inter-
nal coordinate were also calculated from the coarse-grained atomistic trajec-
tory and used to determine the effective force constants of the CG model (25,
26). Because the fluctuations of the internal coordinates of the CG model can
be calculated by normal mode analysis (NMA) (27), the effective force con-

Fig. 4. Schematic diagram showing the CG spectrin tetramer built from the
CG representation of two consecutive repeat units.
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stants in the CG model are determined by matching the fluctuations com-
puted from the NMA to that observed from the coarse-grained atomistic
trajectory. Because the fluctuation of a given IC depends on its force constant
as well as the force constants of all of the other internal coordinates, an
iterative relationship is used to determine a self-consistent solution for all of
the force constants of the CG model. Particularly the relation

kj
n
1 � kj

n � ���ICj
n � �ICj

CG	A� [6]

is used, where kj is the force constant of the jth IC in the CG model, �ICj is the
corresponding fluctuation of the jth IC as computed with the NMA, and
�ICj

CG–A is the fluctuation of the jth IC determined from the atomistic MD
trajectory. The self-consistent approach to determining the set of CG param-
eters described above is based on the parameterization scheme previously
used to construct CG models of F-actin filaments (26). It is important to note
here that the effective force constants calculated by using the fluctuation
matching approach described above implicitly incorporate the effects of
viscous behavior of the underlying atomistic system, particularly due to elec-
trostatic interactions.

Determination of Force–Extension Profile. The goal of the CG simulations is to
map out the elasticity of the tetrameric spectrin, by establishing its thermo-
dynamic force-extension relationship under isothermal (constant tempera-
ture) conditions. By thermodynamic force it is meant that

fint � 	� A
L� N,T

. [7]

Here, A is the Helmholtz free energy, L is the extension length, fint is the force
exerted by the tetramer, and the subscript ‘‘N, T’’ denote that isothermal
conditions are maintained. To evaluate the thermodynamic force at each
extension length, the free energy derivative is calculated with respect to L.

From a statistical mechanical perspective this is the derivative of the natural
logarithm of the canonical partition function Q(N, L, T),

�A
L�N,T

� � kBT


L
lnQ�N , L , T� . [8]

With the length L taken to be in the z-direction, the evaluation of this
derivative yields an expression for the thermodynamic force,

fint �
1
Lz� �

i�1

N

�mi� z
i2 � f z

i � � z
i �� , [9]

which can be evaluated from the CG molecular dynamics simulations. Equi-
librium isothermal simulations were carried out at different periodic box
lengths and the instantaneous value of the force was calculated from the
positions, velocities and forces of each particle in the system via Eq. 9. The CG
MD simulations were carried out using the CHARMM simulation package (28).
A Nosé–Hoover thermostat was used to maintain a constant temperature of
310 K (29). At each length an initial structure of the tetramer was equilibrated
for 20 ns, following sampling of the thermodynamic force for at least 100 ns.
The results presented earlier report the force exerted on the polymer system,
where force � 	fint.
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8. Lenormand G, Hénon S, Richert A, Siméon J, Gallet F (2003) Elasticity of the human red
blood cell skeleton. Biorheology 40:247–251.

9. Rief M, Pascual J, Saraste M, Gaub HE (1999) Single molecule force spectroscopy of
spectrin repeats: low unfolding forces in helix bundles. J Mol Biol 286:553–561.

10. Law R, et al. (2003) Cooperativity in forced unfolding of tandem spectrin repeats.
Biophys J 84:533–544.

11. Law R, et al. (2003) Pathway shifts and thermal softening in temperature-coupled
forced unfolding of spectrin domains. Biophys J 85:3286–3293.

12. Sotomayor M, Schulten K (2007) Single-molecule experiments in vitro and in silico.
Science 316:1144–1148.

13. Paramore S, Ayton GS, Voth GA (2006) Extending a spectrin repeat unit. II: rupture
behavior. Biophys J 90:101–111.

14. Paramore S, Voth GA (2006) Examining the influence of linkers and tertiary structure
in the forced unfolding of multiple-repeat spectrin molecules. Biophys J 91:3436–3445.

15. Ortiz V, Nielsen SO, Klein ML, Discher DE (2005) Unfolding a linker between helical
repeats. J Mol Biol 349:638–647.

16. Waugh R, Evans EA (1979) Thermoelasticity of red blood cell membrane. Biophys J
26:115–131.

17. Lee JC-M, Discher DE (2001) Deformation-enhanced fluctuations in the red cell skele-
ton with theoretical relations to elasticity, connectivity, and spectrin unfolding. Bio-
phys J 81:3178–3192.

18. Mirijanian DT, Chu J-W, Ayton GS, Voth GA (2007) Atomistic and coarse-grained
analysis of double spectrin repeat units: The molecular origins of flexibility. J Mol Biol
365:523–534.

19. Keller D, Swingon D, Bustamante C (2003) Relating single-molecule measurements to
thermodynamics. Biophys J 84:733–738.

20. Giorgi M, Cianci CD, Gallagher PG, Morrow JS (2001) Spectrin oligomerization is
cooperatively coupled to membrane assembly: a linkage targeted by many hereditary
hemolytic anemias? Exp Mol Pathol 70:215–230.

21. Johnson CP, et al. (2007) Pathogenic proline mutation in the linker between spectrin
repeats: disease caused by spectrin unfolding. Blood 109:3538–3543.

22. Chaudhuri D (2007) Semiflexible polymers: Dependence on ensemble and boundary
orientations. Phys Rev E 75:021803.

23. MacKerell AD, et al. (1998) All-atom emipical potential for molecular modeling and
dynamics studies of proteins. J Phys Chem B 102:3586–3616.

24. Weeks JD, Chandler D, Anderson HC (1971) Role of repulsive forces in determining the
equilibrium structure of simple liquids. J Chem Phys 54:5237–5247.

25. Chu J-W, Voth GA (2005) Allostery of actin filaments: Molecular dynamics simulations
and coarse-grained analysis. Proc Natl Acad Sci USA 102:13111–13116.

26. Chu J-W, Voth GA (2006) Coarse-grained modeling of the actin filament derived from
atomistic-scale simulations. Biophys J 90:1572–1582.

27. Brooks BR, Janezic D, Karpulus M (1995) Harmonic analysis of large systems. I. Meth-
odology. J Comput Chem 16:1522–1542.

28. Brooks BR, et al. (1983) CHARMM: A program for macromolecular energy, minimiza-
tion, and dynamics calculations. J Comput Chem 4:187–217.
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