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Large-scale affinity purification and mass spectrometry studies
have played important roles in the assembly and analysis of
comprehensive protein interaction networks for lower eukaryotes.
However, the development of such networks for human proteins
has been slowed by the high cost and significant technical chal-
lenges associated with systematic studies of protein interactions.
To address this challenge, we have developed a method for
building local and focused networks. This approach couples vector
algebra and statistical methods with normalized spectral counting
(NSAF) derived from the analysis of affinity purifications via
chromatography-based proteomics. After mathematical removal
of contaminant proteins, the core components of multiprotein
complexes are determined by singular value decomposition anal-
ysis and clustering. The probability of interactions within and
between complexes is computed solely based upon NSAFs using
Bayes’ approach. To demonstrate the application of this method to
small-scale datasets, we analyzed an expanded human TIP49a and
TIP49b dataset. This dataset contained proteins affinity-purified
with 27 different epitope-tagged components of the chromatin
remodeling SRCAP, hINO80, and TRRAP/TIP60 complexes, and the
nutrient sensing complex Uri/Prefoldin. Within a core network of
65 unique proteins, we captured all known components of these
complexes and novel protein associations, especially in the Uri/
Prefoldin complex. Finally, we constructed a probabilistic human
interaction network composed of 557 protein pairs.

chromatin remodeling � normalized spectral abundance
factor � multidimensional protein identification technology

The assembly of protein interaction networks provides critical
insight into the interrelationships of multiprotein complexes

and the interconnections of their respective functions. To date,
the study of protein interaction networks has largely been
derived from yeast two-hybrid analyses in model organisms (1, 2)
and higher eukaryotes (3, 4) and from large-scale affinity
purification and mass spectrometry (APMS) analyses in the
model organisms Saccharomyces cerevisiae (5, 6) and in humans
(7). Although all of these approaches and datasets have proven
to be highly valuable sources of information, the large-scale
APMS analyses in yeast and humans were designed to determine
the confidence of protein complex membership (5–7). Binary
interactions, based on the presence and absence of proteins in
purifications, are typically reported (8). In particular in yeast, the
mathematical approaches for assembling protein complexes
relies on very large-scale datasets (9) and on the reciprocity of
bait and prey interactions where as many preys as possible are
also baits (5, 6). Collins et al. (9) reported that applying such
methods to a relatively small dataset resulted in less successful
identification of protein–protein interactions. This raises the
question of whether a human protein interaction network can be
assembled from focused studies if a systematic dataset, which
would require thousands of costly APMS experiments to gen-
erate, is not available. To address this challenge, we have
developed a method for building probabilistic local networks
that will allow focused studies of smaller-scale networks.

The mammalian TIP49a (Rvb1) and TIP49b (Rvb2) proteins
(hereafter refer to as TIP49a/b) belong to an evolutionary
conserved family of AAA� ATPases and are involved in mul-
tiple protein complexes. In S. cerevisiae, TIP49a/b are subunits of
two distinct ATP-dependent chromatin remodeling complexes
SWR1 (10, 11) and INO80 (12, 13). Protein complexes that share
components are difficult to be computationally separated and
analyzed. The complexity of such analysis was shown in yeast,
where, for instance, the portion of the protein interaction
network that includes the SWR1, INO80, and NuA4 complexes
was grouped as one large module by using the Markov Clustering
procedure (14), a key mathematical component used for the
large-scale yeast APMS studies (5). In humans, TIP49a/b are
components of at least four multiprotein complexes that play
roles in chromatin remodeling [SRCAP (15), hINO80 (16),
TRRAP/TIP60 (17), or nutrient sensing (Uri/Prefoldin (18)].
The complexity of the TIP49a/b local network in humans
presents the analytical challenge of distinguishing these
complexes from one another.

Previous protein interaction network analyses have not taken
advantage of quantitative shotgun proteomics technologies like
spectral counting. The total number of peptides identifying a
protein correlates strongly with the abundance of the protein
(19–22). We have shown that the relative abundance of proteins
can be estimated by using normalized spectral abundance factors
(NSAFs) (23, 24), which are calculated from the total number of
spectra identified for each protein, normalized to the protein’s
length and the total number of identified spectra for all proteins
in the sample. Here, we show that NSAFs provide a foundation
for a systematic approach to remove nonspecific interactions,
define core complexes, and build a probabilistic protein
interaction network.

Results
A High-Quality Dataset of Human TIP49a/b-Associated Proteins. A
total of 27 different proteins were FLAG-tagged (hereafter
referred to as ‘‘baits’’), expressed in and purified by affinity
purification from human tissue culture cells and analyzed by
MudPIT [supporting information (SI) Fig. 5], leading to the
identification of 1,278 nonredundant (NR) proteins (SI Table 1
A and B). Parallel analyses of 35 negative controls (extracts from
untransformed parental cells passed through Flag affinity puri-
fication and analyzed by MudPIT) identified 812 NR proteins
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(SI Table 2 A and B). A crucial step in analyzing proteomics data
is unraveling the subset of specific proteins from the nonspecific
binders, i.e., contaminant proteins. To do so, we represented
each detected protein (hereafter referred to as ‘‘prey’’) as two
vectors consisting of the NSAF values for each of the specific and
the negative purifications, respectively. We calculated the vector
ratio magnitude between the two sets (�) as a way to extract
contaminants. A protein was considered a contaminant if � was
�1, suggesting the protein was more abundant in the negative
controls than in the specific experiments. After purging, the
remaining 945 proteins were used for further analysis. Next, we
constructed a matrix A (27 � 945), with the matrix element Aij
representing the normalized spectral count, i.e., NSAF, for prey
i and bait j, and applied singular value decomposition (SVD) (25)
to extract the proteins enriched from the immunoprecipitations
by using a rank estimated method. The resulting 125 proteins (SI
Table 1C) included all previously reported members of the
SRCAP (15), hINO80 (16), and TRRAP/TIP60 (17) multipro-
tein complexes and were subsequently used to determine the
core complexes.

Determination of Protein Complexes. We first focused our analysis
on a cluster procedure based on reciprocal pull-down of bait
pairs. This resulted in five main groups corresponding to (i) baits
for which there was no or little reciprocal pull-down with other
purifications, (ii) hINO80, (iii) Uri/prefoldin, (iv) SRCAP/
TRRAP/TIP60 complexes, and (v) a cluster containing TIP49a
and TIP49b, which also belong to groups 2, 3, and 4 (Fig. 1A).
To determine the similarity between purifications, we then
calculated Jaccard indices between each of the bait pairs.
Because the Jaccard index is proportional to the number of
overlapping preys between two baits, it is expected that baits
found in the same cluster have a high similarity index. In the
symmetric matrix of Jaccard indices (Fig. 1B), 20 of the baits
were partitioned in four different groups, three of which corre-
spond to the well characterized hINO80 (16), SRCAP (15), and
TRRAP/TIP60 (17) complexes, which function as chromatin-
modifying and remodeling complexes. The fourth group corre-
sponds to the recently described Uri/prefoldin complex, which
has poorly understood roles in nutrient sensing and TOR
signaling (18). The remaining seven baits, KIAA0515, FLJ20436,
FLJ20729, NUFIP, DPCD, ZnF-HIT2, and LIN9, could not be
considered core components of any of these four complexes
according to the clustering procedure used in Fig. 1 A. However,
DPCD, NUFIP, and ZnF-HIT2 had high Jaccard indices with
components of the Uri/prefoldin complex, whereas LIN9,
FLJ20729, and FLJ20436 showed some prey overlap with
elements of the hINO80 complex (Fig. 2).

Next, we predicted that all prey proteins overlapping between
the baits within the same group and lying above a threshold form
the actual complexes, where a prey protein had to appear in at
least half of the baits used to define a given complex. The prey
proteins that belonged to a single complex and were not shared
by the other complexes are defined as the core components of
the corresponding complex. Overall, the results obtained
through this approach were consistent with reports from the
literature (15–17). In addition to already-known components of
the Uri/Prefoldin complex (18), we identified six additional
subunits: HKE2, BC014022, POL3A, PDRG, FLJ21908, and
FLJ20643. H2AZ was also assigned as a bona fide component of
the SRCAP complex (15).

Several prey proteins in the dataset were part of more than one
complex and were defined as modules (Fig. 2). A module can be
two or more proteins. Examples of modules in this dataset
include TIP49a/b, which were core components of the four
complexes. BAF53 has been shown to form a complex with
TIP49a/b (26); in the current study, BAF53 is present in SRCAP,
hINO80, and TRRAP/TIP60, and in these complexes likely

forms a module with TIP49a/b. In addition, DMAP1, GAS41,
H2AZ, and YL-1 are present in SRCAP and TRRAP/TIP60 and
may also form a module. Other proteins were strongly associated
with only one bait and were defined as attachments (Fig. 2). Of
particular interest to the local TIP49a/b protein interaction
network is the uncharacterized protein FLJ21945 that we named
as specific interactor with TIP49a/b (SIT49ab). Although
TIP49a/b were detected in most purifications, SIT49ab was
present only in the MudPIT analyses of TIP49a/b affinity
purifications. The baits DPCD, NUFIP, and ZnF-HIT2 recov-
ered most of the URI/Prefoldin complex, although none of them
was ever detected in purifications by using bona fide core
components as baits or in each other preparations. Similarly with
hINO80, FLAG-LIN9 interacted with half of the complex,
FLAG-FLJ20729 specifically pulled-down YY1 and NFRKPB,
and FLAG-FLJ20436 reciprocally associated with FLJ90652 and
MCRS1. This indicates that subassemblies could occur (Fig. 2).

In the analysis of protein complexes, a clear distinction is
sometimes made between core components and modules or
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Fig. 1. Similarity and organization of bait-dependent analyses. (A) A sym-
metrical matrix was constructed based on the reciprocal pull-down for each
baits pair as described in Materials and Methods. Each bait pair is labeled black
(0) for no reciprocal pull-down and yellow (1) for reciprocal pull-down. These
values were then hierarchical clustered by using the Euclidian distance metric
and UPGMA as a method. A total of four clusters were identified correspond-
ing to the SRCAP, hINO80, and TRRAP/TIP60 and Uri/Prefoldin complexes. (B)
The Jaccard index value for each MudPIT analysis of a given bait is shown in a
symmetrical 27 � 27 matrix. As the color progresses from black to maroon, the
similarity between the two baits becomes greater.
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attachments (6). Core components are normally stably associ-
ated with the complex and are experimentally recovered in
reproducible stoichiometric yields. In contrast, modules and
attachments, which may modulate the activity of the core
complex, are often loosely or transiently associated with a
specific protein or module and recovered in substoichiometric
yields (27, 28). To assess these features, we performed hierar-
chical clustering analyses on the 27 immunoaffinity purifications
(Fig. 3). The relative protein abundances expressed as NSAF
values were clustered by using Pearson correlation as a distance
metric and unweighted paired group average linkage (UPGMA)
as a method (see SI Text). The results of the cluster analysis
demonstrate that the core components of the complexes were
well separated and partitioned at the major branches of the
dendrogram (Fig. 3). Interestingly, all of the previously unde-
scribed core components of the Uri/Prefoldin complex showed
similar abundance levels as the known components of the
complex, indicating strong interactions with the complex (Fig. 3).
This analysis strongly suggests that quantitative proteomics
values based on NSAFs can be used to group and order proteins
across multiple experiments and to identify protein interactions.

Probabilistic Network Analysis with the Bayes Classifier. During the
partitioning of the proteins into complexes, 10 other proteins
consistently copurified with only a subset of baits in a complex.
Because these proteins were not contaminants, they could either
be essential for the synthesis/folding/stability/function of one or
more components of the four major complexes or, alternatively,
could represent a physical association outside these complexes.
For instance, both human TIP49a/b and NOP5/NOP58 are
known to interact with U14 snoRNA (29). Likewise, SRCAP is
capable of remodeling chromatin by catalyzing the incorporation
of H2AZ/H2B dimers into nucleosomes, perhaps explaining the
specific presence of H2B in the purifications. Therefore, these 10
proteins, along with the 43 deemed core components of the

complexes (Fig. 2), the six baits that could not be stringently
assigned to the complexes (Fig. 1), and the six proteins that were
considered attachments (Fig. 2), were included in the final
TIP49a/b interaction map containing 65 proteins. The bait
KIAA0515 was clearly not part of the TIP49a/b network and was
not considered any further (Fig. 3). The remaining 59 proteins
that did not pass any of the criteria described above are
considered highly frequent proteins, such as chaperones and
ribosomal proteins, and were deliberately removed.

Although binary representation of APMS data has been
successfully used to predict protein complexes and protein
interactions, quantitative information based on NSAF could be
a useful alternative to ascertain these predictions. Therefore, we
used a probabilistic model for a protein interaction network that
provides quantitative information for each interaction. In this
model, each pair of proteins (bait–prey) received a probability
computed only from the observed experimental NSAF values by
using a Bayesian approach. For a bait–prey pair, the resulting
probability quantifies the preference of the prey to associate with
the bait.
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Fig. 3. Hierarchical clustering. A hierarchical cluster using the UPGMA
algorithm and Pearson correlation as distance metric was performed on the
relative proteins abundances expressed as NSAFs. Each column represents an
isolated purification (bait), and each row represents an individual protein
(prey). The color intensity represents protein abundance, with the brightest
yellow indicating highest abundance and decreasing intensity indicating
decreasing abundance. Black indicates that the protein was not detected in a
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As suggested (30, 31), we used these probabilities to construct
a probabilistic network of human TIP49a/b-containing com-
plexes. To visualize our complexes, probabilistic networks were
displayed in Fig. 4 by using the Cytoscape software environment
(32). We used a posterior probability cutoff of 0.1 to define
relatively high probability for two proteins to associate (black
dashed lines), 0.01 for relatively moderate probability (green
dashed lines), and 0.001 for relatively low probability (yellow dashed
lines) (Fig. 4 A and C–F). The complete set of protein pairs and
their corresponding probabilities is reported in SI Table 3. The
plot of node degree distribution P(k) of human TIP49a/b-
associated complexes generated by our core data of 557 protein
interactions between 65 different human proteins followed an
exponential decay (Fig. 4B).

Validation of Predicted Interactions. In vivo coimmunoprecipita-
tion assays were conducted to test several interactions within the
TRRAP/TIP60 complex (SI Fig. 6). This orthogonal analysis
confirmed the interactions between MRGBP and TRCp120,
DMAP, MRG15, TIP60, and YL1 (SI Fig. 6 A–E), which were
all predicted with medium to high probabilities in our analysis (SI
Table 4). The distinct interaction between SIT49ab (FLJ21945)
and TIP49a/b was also confirmed in two separate experiments
(SI Fig. 6 F–G). In addition, we systematically analyzed the
human protein reference database (33) for additional confirma-
tions of high-probability protein associations (SI Text). For
instance, our analysis predicted strong association between YL-1
and H2AZ, which is supported by the demonstrated interaction

between the S. cerevisiae orthologs of YL-1 (Swc2) and H2AZ
(Htz1) (34). In TRRAP/TIP60, MRGBP has the highest prob-
ability of interaction with MRGX followed by MRG15–1, and
these probabilities were the eighth and ninth highest in the entire
dataset. Cai et al. (35) have shown that MRGBP-MRGX het-
erodimers, MRGBP-MRG15 heterodimers and MRGBP-
MRG15-MRGX heterotrimers can be resolved by analytical
superpose 6 gel filtration of a FLAG-MRGBP eluate.

Discussion
In this study, we have demonstrated the value of quantitative
proteomics for organizing proteins into complexes and for
generating probabilistic interaction networks. To begin, NSAF
values are valuable for the extraction of contaminants. Many
proteins known to be part of complexes can also be found in
negative control purifications. By comparing the level of protein
abundance between samples and an equal number of negative
control purifications, we are able to separate those proteins that
are quantitatively enriched in the samples over the negative
controls. Indeed, all known components of each of the com-
plexes were faithfully recovered among the putative true positive
sets. Other large-scale studies, which did not use negative control
runs, removed only those proteins that appear in more than a
certain percentage of the purifications (5, 6, 36). If we were to
take this approach with the current dataset, we would have to
remove TIP49a and TIP49b from the datasets, even though these
proteins are the foundation of this network.
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probability, green dashed lines represent interactions with a moderate probability, and yellow dashed lines represent interaction with the lowest probability.
Solid lines represent protein–protein interactions validated by the literature or the present study. (B) The node degree connectivity of the overall network.
Focused probabilistic displays of the human INO80 (C), SRCAP (D), TRRAP/TIP60 (E), and the Uri/Prefoldin F complexes are shown with the same color coding as
in A.
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We devised a strategy that uses normalized spectral counts to
generate a probabilistic measure of the preference of proteins to
interact with one another. The probability between two proteins
is calculated from the bait-to-prey relationship alone, whereas
other methods require reciprocal bait–prey interactions or co-
purification of preys by a third bait (5, 6). By using this approach,
we assigned probabilities not only to the interactions inside the
complexes but also to the interactions outside the complexes. For
instance, for SIT49a/b, which is not part of the four complexes,
we were able to assign a high probability to TIP49a/b that was
experimentally verified. The same holds true for FLJ20436,
which forms an external interaction with the MCRS1 component
of hINO80 complex.

Thus far, there is no precise way to predict direct interaction
based on APMS data. Nonetheless, there is a possibility that
some pairs with high probability could form a direct contact.
This information is particularly important when designing fo-
cused experimentation to disrupt particular interactions within
a network. For example, the highest-probability pairs predicted
for subunits of hINO80 were IES2/YY1 and IES2/FLJ20309
(Fig. 4C). The portion of the network containing the transcrip-
tion factor YY1, a member of the hINO80 complex, is especially
important, because overexpression of YY1 is strongly implicated
in cancer development (37). In fact, although YY1 is clearly a
member of hINO80, YY1 is linked to the Prefoldin complex via
the protein DPCD and the SRCAP complex via ZnF-HIT1 (Fig.
4). As could be the case for therapeutic targeting of YY1
involvement in cancer (37), calculating probability-based inter-
action networks should result in superior model building. This is
an advantageous starting point before chemical modulation of
protein interaction networks when targeting specific protein–
protein interactions for disruption, potentially improving
treatments of human disease.

Materials and Methods
Identification of Proteins by MudPIT. The cloning, expression, and purification
of the human TIP49a, TIP49b, Arp8, PAPA-1 (hIES2), C18orf37 (hIes6), TCF3-
Amida, and FLJ90652 full-length proteins and a fragment of FLJ20309 (resi-
dues 106–544) were reported by Jin et al. (16). N-terminally FLAG-tagged
human MRGBP, YL-1, ZnF/HIT1, and H2AZ were obtained as described by Cai
et al. (17). SCRAP-associated proteins were purified as described by Ruhl et
al. (15).

Full-length cDNAs encoding the human ZnF/HIT2, ARP5, ARP6, PDRG, UXT1,
BC014022, FLJ20643, FLJ20436, FLJ21908, NUFIP, LIN9, FLJ20729, and DPCD
proteins were obtained from the American Type Culture Collection (ATCC),
subcloned with FLAG tags into pcDNA5/FRT, and introduced into HEK293/FRT
cells by using the Invitrogen Flp-in system as reported (17). Next, TIP49a- and
TIP49b-associating proteins were purified by anti-FLAG agarose immunoaf-
finity chromatography as described by Jin et al. (16). As a control for the
specificity of immunoaffinity purifications, extracts prepared from untrans-
formed parental cells (23 independent preparations from HeLa and 12 from
HEK/293 cells) were subjected to the same procedure (SI Fig. 5). Identification
of proteins was accomplished by Multidimensional Protein Identification
Technology (MudPIT) as described (38), and details are provided in SI Text.
Protein spectral counts were converted to the NSAF for subsequent analysis
(SI Text).

Contaminant Extraction. In this study, we define contaminants as follows: for
M purifications and N identified proteins, let xij be the NSAF value of ith
identified protein and jth purification. The vector [xi1 xi2. . . xiM] represents the
protein vector with 1 � i � N, and 1 � j � M. Similarly, let yij represent the NSAF
value of ith identified protein in the negative controls and jth control purifi-
cation. The vector [yi1 yi2. . . yiM] represent the negative control protein vector.
For each protein with two vectors x and y, the vector magnitude (�) is
calculated as:

� � �� y, y �

� x, x �
� � yi1

2 � yi2
2 � . . . yiM

2

xi1
2 � xi2

2 � . . . xiM
2 [1]

� � 1 indicates that the value expected as y is a ‘‘greater’’ vector. The symbols
�, � represent the inner product or simply norm of a vector and are defined

as the root-square of the sum of each term of the vector taken at square (39).
A protein with a value of � � 1 was considered contaminant and was excluded
from the data, leading to the removal of 336 proteins. A visual examination
was performed to ensure that the removed proteins were nonspecific. The
remaining 945 proteins were subjected to SVD analysis.

SVD. SVD is an established method (25, 39–41), and a mathematical definition
is provided in SI Text. Here, we used SVD to find a group of proteins in the
dataset that contributes most to the matrix by using a ranking estimation
method. SVD analysis revealed that the first singular value and associated
singular vectors contribute the most to the matrix, restricting our subsequent
analysis to the first left singular vector (lsv). The first lsv represents a weighted
average and distinguishes proteins by their averaged overall expression. The
coefficients of the first lsv were sorted based on their magnitudes. In this
analysis, coefficients were retained if their magnitudes were larger than a
cutoff �0.002. The significance of the cutoff is that it provides a scale-
independent way to determine the proteins that were enriched from the
immunoprecipitation experiments while reducing the excess noise. Using this
cutoff, 125 proteins were found corresponding to the most essential proteins
in the dataset. More importantly, these 125 proteins contained all reported
members of the SRCAP (15), hINO80 (16), and TRRAP/TIP60 (17) multiprotein
complexes.

Definition of Protein Complexes. A symmetric binary matrix was constructed
based on reciprocal pull down of the baits. For two baits, a value of 1 was
assigned if they copurify in both direction (i.e., if one protein is prey in the
purification by using the second protein as a bait and vice versa) and 0
otherwise. Hierarchical clustering was then applied to the binary matrix.
Based on the resulting matrix (Fig. 1A), TIP49a and TIP49b copurify bidirec-
tionally with the majority of the remaining baits and accordingly were as-
signed to all of the complex clusters; similarly H2AZ was assigned to the two
clusters corresponding to SRCAP and TRRAP/TIP60 complexes.

Assuming that the baits belonging to the same cluster should generally
pull-down common proteins, we verified this by calculating a similarity value
defined by the Jaccard index to each of the bait pairs. Given two sets of
purifications A and B, na and nb count the number of proteins in individual
purifications A and B, and ni is the number of proteins present in both
purifications. The Jaccard index is defined as the ratio between the number of
proteins present in both sets of purifications and the number of proteins
present in either one:

J�A, B� �
�A � B�
�A � B� �

ni

na � nb � ni
[2]

When two baits share a large number of proteins, the coefficient shows a
value close to 1. By contrast, it has a value close to 0 if the two baits do not
copurify with many common proteins. The pairs of baits with high indices are
more likely to be part of the same cluster. The overlapping proteins between
the baits found in the same group are sorted based on the number of times
they are detected out of n bait purifications. In each complex, the bait that
pulls down the lowest number of shared proteins determines the threshold
below which prey proteins are not considered subunits of the complex.

Derivation of the Posterior Probabilities. Our goal was to compute a proba-
bility for each bait–prey interaction pair based on the NSAF (SI Text).

To quantify the association preference between an affinity candidate
protein i (i � 1,. . . , N) and a protein bait j (j � 1,. . . , M), we first estimated the
conditional probability by:

P�i� j� �
P�i, j�
P�j�

, [3]

where P(i,j) is the joint probability of association involving protein i and
protein j and is defined as:

P�i, j� �
Ci, j�

i	�j	

Ci	j	
, [4]

where Ci,j is the NSAF value of protein i in bait j, whereas ¥i	 � j	 Ci	j	 sums the
total NSAFs.
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P( j ) is the likelihood that protein j participates in an association and is
estimated by:

P� j� �

�
i

Ci, j

�
i	�j	

Ci	j	
, [5]

where ¥i Cij sums the NSAF values of protein i in the bait j. When the
conditional probability is known, we can calculate next the probability of
protein i by using:

P�i� � �
j

P�i� j�P�j�, [6]

where the summation is over all possible values of j.

For a bait, l, j, and prey, i, the posterior probability P(j�i) defined by Bayes’
rule:

P� j�i� �
P�i� j�P� j�

P�i�
[7]

quantifies the preference of a prey to associate with a bait. Because of the lack
of previously published human protein interaction data for some of the
proteins, no prior knowledge was incorporated in our analysis. Similarly to
previous studies, in which external prior information is avoided (5, 42), we
assumed that each of the proteins i in the dataset occurred with equal
probability of 1/N. The posterior probability was calculated in house by using
a computing C language. The program implementing the method described,
and the source code is freely available from the authors upon request.
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