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We propose a semi-automatic thalamus and thalamus nuclei segmentation algorithm from diffusion tensor magnetic resonance
imaging (DT-MRI) based on the mean-shift algorithm. Comparing with existing thalamus segmentation algorithms which are
mainly based on K-means algorithm, our mean-shift-based algorithm is more flexible and adaptive. It does not assume a Gaussian
distribution or a fixed number of clusters. Furthermore, the single parameter in the mean-shift-based algorithm supports hierar-

chical clustering naturally.
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1. INTRODUCTION

Thalamus is the relay center for nerve impulses in the brain.
It mediates communication among sensory, motor, and as-
sociative brain regions. Axons from almost every sensory
system connect here as the last site before the information
reaches the cerebral cortex. Information received from the
diverse brain regions is passed on to the cortex through the
thalamus. Anatomically, thalamus is the largest, most inter-
nal structures of the diencephalon consisting of dual lobe
masses of gray matter. It is located at the rostral end of the
mid brain on each side of the third ventricle. Each lobe is
about 4 centimeters. Motor nuclei of the thalamus receive
signals from the striatum, cerebellum, project into the mo-
tor, and premotor areas of the cerebral cortex. The thalamus
play a major role in the regulation of consciousness, alert-
ness, arousal, and attention and is thus considered part of
the limbic system.

Thalamus and thalamus nuclei segmentation have be-
come more and more essential for a wide range of clinical
and research applications. For example, thalamus changes
in terms of volume and intensity are involved in a large
number of diseases, such as schizophrenia, Parkinson’s dis-
ease, and multiple sclerosis. Conventional imaging modal-
ities such as computerized tomography (CT) or magnetic
resonance imaging (MRI) however, do not provide the nec-
essary image contrast to differentiate the individual thala-
mic nuclei. On the other hand, a new noninvasive imaging
modality diffusion tensor magnetic resonance imaging (DT-

MRI) can relate the image intensities to the relative mobility
of tissue water molecules [1]. In DT-MRI, a tensor describ-
ing local water diffusion is calculated for each voxel from
measurements of diffusion in several directions. Since wa-
ter diffusion along neural fiber tracts of the brain is highly
anisotropic, DT-MRI had been used to study the brain con-
nectivity by extracting the fiber tracts from the brain white
matter. Most recently, researchers have started to use DT-
MRI for segmentation purposes. Wiegell et al. [2]among of
the first to segment thalamic nuclei directly from the DT-
MRI data by using a k-means algorithm. Behrens et al. [3]
proposed an algorithm to identify the thalamic nuclei by
mapping the connections between the thalamus and the cor-
tex. Jonasson et al. [4] presented a method for segmenting
the thalamus and its subnuclei by propagating a set of cou-
pled level sets through a region-based force defined from the
similarity measure between the most representative tensor of
each level sets and its neighboring voxels.

In this paper, we propose a semi-automatic thalamus and
thalamus nuclei segmentation algorithm from diffusion ten-
sor magnetic resonance imaging (DT-MRI) based on the
mean-shift algorithm [5]. Comparing with existing thala-
mus segmentation algorithms which are based on K-means
algorithm [2] or use K-means as an initialization [4], our
mean-shift-based algorithm is more flexible and adaptive. It
does not assume a Gaussian distribution or a fixed number
of clusters. Furthermore, the single parameter in the mean-
shift-based algorithm supports hierarchical clustering nat-
urally. We will briefly review the background on diffusion
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tensor magnetic resonance imaging and mean shift clustering
in Section 2. The main algorithm for thalamus and thalamus
nuclei segmentation will be described in Section 3. Experi-
mental results are shown in Section 4. Finally, the conclusion
and some future work directions are discussed in Section 5.

2. BACKGROUND
2.1. Diffusion tensorimaging

Diffusion tensor magnetic resonance imaging (DT-MRI) is a
recent MR imaging modality. In diffusion tensor MRI, a ten-
sor describing local water diffusion is acquired for each voxel.
The geometric nature of the diffusion tensors can quantita-
tively characterize the local structure in tissues such as bone,
muscles, and white matter of the brain. A good review on
DT-MRI can be found in [1, 6].

In general, the symmetric 3 by 3 diffusion tensor matrix
D has six degrees of freedom (number of independent coef-
ficients in a matrix representation). To estimate the tensor,
then, at least six measurements (taken from different non-
collinear gradient directions) are needed, in addition to the
baseline image data Sy. Thus for each slice in the data set,
seven images need to be collected with different diffusion
weightings and gradient directions. Let Sy represents the sig-
nal intensity in the absence of a diffusion-sensitizing field
gradient and Sk the signal intensity in the presence of gradi-
ent gp = (gkx,gky,gkz),k = 1,...,6. The equation for the loss
in signal intensity due to diffusion is given by the Stejskal-
Tanner formula:

In(Sx) = In(Sy) — y*&” (A - §>ngng, (1)

where y is the gyromagnetic ratio of hydrogen H (protons),
0 is the duration of the diffusion sensitizing gradient pulses,
and A is the time between the centers of the two pulses. The
tensor D can then be computed by solving this system of six
equations (1).

2.2. Mean shift clustering

Mean shift is a powerful general purpose technique for clus-
tering scattered data [5]. Instead of assuming a fixed number
of clusters as is common with other clustering methods (e.g.
K-means), mean shift extracts the modes of the density func-
tion. We will review briefly the mean shift algorithm in the
following. For a complete description of mean shift, please
refer to the original paper [5].

Given an arbitrary set of n points y = xy,...,x, in the
d-dimensional Euclidean space R?. The multivariate kernel
density estimate obtained with kernel K(x) and window ra-
dius i, computed in the point x, is defined as

fuw:Jﬂiyix;”), o)

where K(x) is the spherically symmetric kernel function sat-
isfying

K(x) >0, JRdK(x)dx _1, 3)

and h is a smoothing parameter called the bandwidth.
We can further define a profile function k(x) for the ker-
nel function K(x) of (2) such that

K(x) = cea k(lIxN1?), (4)

where ¢k 4 is the normalized constant. The density estimator
of (2) can then be rewritten as

2

)- (5)

Assume now that we are interested in subdividing scat-
tered data y into a set of clusters. It is natural to consider the

X — Xi

h

fXx)-,dﬂ;;k(

points where f defined by (5) have local maxima as centers
of the clusters. The simplest method to find the local max-
ima of the f is to compute the gradient of f and use a hill-
climbing process to map each input point to its local maxima
(i.e., mode) defined by f These resulting modes can then be
used to select cluster shapes using basins of attraction, and
can have very nontrivial shapes unlike k-means clustering
where points are simply assigned to the nearest cluster cen-
ter. The single bandwidth parameter 4 allows the number of
clusters to be chosen in terms of a length scale in the input
point space.

From (5) we can compute the gradient of ]?:

2
X — X

h

Vit = 2k Zg< )m(x), )
i-1

where g(x) = —k’(x). m(x) is the mean shift vector and is
given by

X xg (|G = x)/mlh)
Sy gl = x)/mll)

X, (7)

m(x) =

for example, the difference between the weighted mean, us-
ing the kernel g for weights, and x, the center of the kernel
(window). The general mean shift clustering procedure con-
sists of the following two steps:

(1) initialize: yo = x;
(2) update by hill climbing: y;+1 = y; + m(y;) until con-
vergence.

3. THALAMUS AND THALAMUS NUCLEI
SEGMENTATION BY MEAN SHIFT

In this section, we will describe our framework for thalamus
and thalamus nuclei segmentation from DT-MRI data based
on the previously described mean-shift algorithm. There are
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two different domains of similarity: spatial and tensor in the
DT-MRI image data, for example, each point x; in the data
set x of the joint spatial-tensor domain has two components
of different nature, x; = (x{,x] ), where x; is the spatial com-
ponent, and x] is the tensor component. The mean shift al-
gorithm can be employed by extending the density estimator
of (5) with the following separable kernels:

2

), (8)

)l

here k; is the kernel profile in the spatial domain with band-
width parameter A, k, is the kernel profile in the tensor do-
main with bandwidth parameter h,, and C is the correspond-
ing normalization constant. As suggested by [5], an Epanech-
nikov kernel with profile kg(x),

S
1

x" — x!

,

ﬂm:th(
i=1

x5 —x
S

h
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0 otherwise,

or a (truncated) normal kernel with profile kn(x) =
exp((—1/2)x),x > 0, always provides satisfactory perfor-
mance, so the user only has to set the bandwidth parameter
h = (hs, h,), which, by controlling the size of the kernel, de-
termines the resolution of the mode selection. For DT-MRI
data, we have tried both kernels and found no significant dif-
ference. In our experiment we choose the Epanechnikov ker-
nel because of its simplicity. The distance metric in the spatial
domain is the Euclidian distance metric, the distance metric
in the tensor domain is the following Frobenius norm:

T
I8t = ]| = VTrace((Dy, = Do) (D = D)), (10)
Dy, Dy, are the tensor matrices at points x;, x,, respectively.

4. EXPERIMENTAL RESULTS ON REAL AND
SYNTHETIC DATA

4.1. Synthetic data

To validate our method, we have applied our method on
some synthetic data. For comparison purpose, we use the
same synthetic data used in [4]. A slice of the synthetic tensor
field is shown in Figure 6. In Figure 7, the regions have been
segmented on the synthetic field without any noise added.
In Figure 8, noise is added into the same synthetic field at
signal-to-noise-ratio (SNR) level 32. In both of these two
examples, our algorithm obtained much better results than
both the K-means algorithm and the method of [4].

4.2. Realdata

In this section, we will show some of the experimental re-
sults of thalamus and thalamus nuclei segmentation from
DT-MRI data. Figure 1 illustrates the thalamus segmenta-
tion process. The initial thalamus segmentation is conducted

Figure 1: Thalamus segmentation. (a) The initial thalamus seg-
mentation is conducted interactively, that is, the user need to iden-
tify the pair of symmetric clusters (left thalamus and right thalamus,
marked by circles in the figure for illustration) from other clusters.
Since the thalamus is bounded by relatively homogenous structures
such as the fiber tract and Cerebrospinal fluid (CSF), this step can
be done quite easily. (b) Extracted pair of thalamus. (c) Extracted
pair of thalamus superimposed on the original DT-MRI image.

interactively, for example, after applying the mean shift al-
gorithm with a bigger bandwidth parameter, the user needs
to identify the pair of symmetric clusters (left thalamus and
right thalamus, marked by circles in Figure 1(a) for illustra-
tion) from other clusters. Since the thalamus is bounded by
relatively homogenous structures such as the fiber tract and
Cerebrospinal fluid (CSF), this step can be done quite easily
(Figure 1(b)). In this example, the bandwidth parameter is
setas h = (hs, h,) = (7,13).

The initially segmented thalamus will then serve as the
mask for the subsequent thalamus nuclei segmentation,
which will be conducted automatically with a smaller band-
width parameter. The parameter chosen will determine the
scale of features detected, so different values may be desired
based on the data set quality, features of interest, and so forth.
Figure 2 shows the thalamus nuclei segmentation results of
the left thalamus. To illustrate the hierarchical nature of the
mean-shift-based algorithm, we fixed the spatial bandwidth
hs as 7, and gradually reduced the tensor bandwidth ki, from
13 (Figure 2(a)) to 11 (Figure 2(b)), 10.5 (Figure 2(c)), 10
(Figure 2(d)), and 8 (Figure 2(e)). By gradually reducing the
bandwidth, more and more detailed nuclei structures can be
seen.

We conducted similar hierarchical segmentation for the
right thalamus as well and is shown in Figure 3. We again
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(a) (b) (c)

(d) (e)

FiGURE 2: Mean shift based hierarchical thalamus nuclei segmentation results of the left thalamus. (a) The segmented left thalamus by
setting the bandwidth parameter as h = (hg, h,) = (7,13). (b) The segmented anterior and posterior parts of the left thalamus by setting the
bandwidth parameter as h = (hs, h,) = (7,11). (c) The segmentation result by setting the bandwidth parameter as h = (hy, h,) = (7, 10.5).
(d) The segmentation result by setting the bandwidth parameter as h = (hy, h,) = (7,10). (e) The segmented thalamus nuclei by setting the

bandwidth parameter h = (h;, h,) = (7,8).

(a) (b) (c)

Fi1GURE 3: Hierarchical thalamus nuclei segmentation results of the
right thalamus. (a) The right thalamus, h = (hs,h,) = (7,13). (b)
The segmented anterior and posterior parts of the right thalamus,
h = (hy,h,) = (7,11). (c) The segmentation result by setting the
bandwidth parameter as h = (hs,h,) = (7,7). (d) The segmented
thalamus nuclei by setting the bandwidth parameter h = (hs, h,) =
(1, 1.5).

(d)

fixed the spatial bandwidth hs; as 7, and gradually re-
duced the tensor bandwidth A, from 13 (Figure 3(a)) to 11
(Figure 3(b)), and 7 (Figure 3(c)). However, quite different
settings of the bandwidth parameter need to be chosen h =
(hg, h,) = (1, 1.5) to obtain the desired final thalamus nuclei
segmentation (Figure 3(d)). We do not know the exact rea-
son of this (the different parameter setting for the left and
right thalamus), one of the possible reasons might be the
artifact during the image acquisition process (e.g., the im-
age slice is not totally orthogonal across the thalamus), or
the nuclei structures between the left and the right thalamus
are not symmetrical indeed. More experiments and research
are certainly needed in the future to answer these questions.
Nonetheless, if we compare Figure 2(e) and Figure 3(d) with
Figure 4, which is the histological atlas of the human thala-
mus with nuclei outlined by black lines [3], we can see they
are very close. Finally, a 3D rendering of the thalamus nuclei
segmentation result is shown in Figure 5.

F1GURE 4: The histological atlas of the human thalamus with nuclei
outlined by black lines (Image courtesy of Behrens et al. [3]).

FIGURE 5: A 3D view of the thalamus nuclei segmentation results.

5. DISCUSSION

The main contribution of the paper is the application of
the powerful mean shift clustering algorithm for thalamus
segmentation from the DT-MRI data. Comparing with ex-
isting thalamus segmentation algorithms ([2, 4]) which are
based on K-means algorithm, our mean-shift-based algo-
rithm has several potential advantages. (1) Since the mean
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FIGURE 6: A slice of the synthetic tensor field used to test the seg-
mentation method. (Image courtesy of Jonasson et al. [4].)

(®)

FIGURE 7: Segmentation results on a synthetic field, without any
noise added. (a) Results of [4] displayed on the results obtained with
the K-means algorithm. (b) Results from our algorithm.

shift algorithm is based on nonparametric density estima-
tion, it does not assume the data is always Gaussian, hence it
is more generic and flexible. (2) Unlike K-means algorithm,
the mean-shift algorithm does not assume a fixed number
of clusters, hence it is more adaptive to the diversity of the
dataset. (3) There is only one parameter in the mean-shift-
based algorithm, the bandwidth parameter, which controls
the scale of the features detected. (4) And by setting the band-
width parameter from large to small, mean shift naturally
supports hierarchical clustering, as shown in this paper on
thalamus and thalamus nuclei segmentation.

There are two main directions to further improve the
thalamus segmentation results: (1) currently, the thalamus
segmentation is conducted semi-automatically, that is, the
user has to pick the pair of distinct clusters (left and right
parts of the thalamus) from other neighboring clusters such
as the fiber tracts and CSFE. Although this is quite easy to
do, it would be even better if the thalamus can be automati-
cally segmented; moreover, a postprocessing active-contour-
based diffusion step (as is done in [4]) might be able to fur-
ther smooth the nuclei boundary obtained from the cluster-
ing algorithm. (2) We would like to work closely with do-
main specialists such as neurobiologists to verify and vali-
date the segmentation results, and to identify the thalamus
nuclei structures. The collaboration with domain specialists
will also help us to choose the best bandwidth parameter for

(a) (b)

FIGURE 8: Segmentation results on a synthetic field, with SNR =
32. (a) Results of [4] displayed on the results obtained with the K-
means algorithm. (b) Results from our algorithm.

the mean shift algorithm to create clinically most meaningful
segmentation results.
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