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Abstract
Two fundamental properties of stem cells are their ability to self-renew and to differentiate. Self-
renewal is an integration of proliferation control with the maintenance of an undifferentiated state.
Stem cell self-renewal is regulated by the dynamic interplay between transcription factors, epigenetic
control, microRNA (miRNA) regulators, and cell-extrinsic signals from the microenvironment in
which stem cells reside. Recent progress in defining specific roles for cell-intrinsic factors and
extrinsic factors in regulating stem cell self-renewal starts to unfold the multilayered regulatory
networks. This review focuses on cell-intrinsic regulators, including orphan nuclear receptor TLX,
polycomb transcriptional repressor Bmi1, high-mobility-group DNA binding protein Sox2, basic
helix-loop-helix Hes genes, histone modifying enzymes and chromatin remodeling proteins, and
small RNA modulators, as well as cell-extrinsic signaling molecules, such as Wnt, Notch, Sonic
hedgehog (Shh), TGFα, EGF, and FGF. Unraveling the mechanisms by which neural stem cells
renew themselves will provide insights into both basic neurosciences and clinical applications of
stem cell-based cell replacement therapies for neurodegenerative diseases.
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1. Introduction
One of the most important issues in stem cell biology is to uncover molecular mechanisms
underlying stem cell self-renewal. Self-renewal is essential for stem cells because it is required
for all stem cells to perpetuate themselves. Neural stem cells are a subset of undifferentiated
precursors that retain the ability to proliferate and self-renew, and have the capacity to give
rise to both neuronal and glial lineages [1-4]. Although the functional properties of neural stem
cells have been studied extensively, we have just begun to understand how self-renewal of
neural stem cells is regulated. A complete understanding of neural stem cells requires the
identification of molecules that determine the self-renewal character of these cells. This review
touches on some of the recently characterized pathways that are involved in regulating this
process.

2. Transcription Regulators
Batteries of transcription factors have been proposed to control neural stem cell self-renewal
(Fig. 1). Orphan nuclear receptor TLX is an essential transcriptional regulator of neural stem
cell maintenance and self-renewal in the adult brain [5]. Although TLX knockout mice are
viable and appear normal at birth, the TLX gene has been shown to be required for the formation
of superficial cortical layers and the zinc-containing cortical circuits in embryonic brains [6,
7], to regulate the timing of neurogenesis in the cortex [8], and to control patterning of lateral
telencephalic progenitor domains during development [9]. Mature TLX knockout mice have
significantly reduced cerebral hemispheres [10,11] and severe retinopathies [12-15].
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Behaviorally, adult TLX mutants exhibit increased aggressiveness, decreased copulation,
progressively violent behavior, late onset epilepsy and reduced learning abilities [10,11,16,
17].

We have shown that TLX is an essential regulator of neural stem cell self-renewal [5]. TLX
maintains adult neural stem cells in an undifferentiated and self-renewable state (Fig. 1). The
TLX-expressing cells isolated from adult TLX-heterozygote brains can proliferate, self-renew
and differentiate into all neural cell types in vitro. By contrast, TLX-null cells isolated from
the brains of adult TLX-mutant mice fail to proliferate. Reintroducing TLX into TLX-null cells
rescues their ability to proliferate and self-renew [5]. In vivo, TLX mutant mice show a loss of
cell proliferation and reduced neural precursors in the neurogenic areas of adult brains. TLX
represses the expression of astrocyte markers, such as GFAP, and tumor suppressor gene, pten,
in neural stem cells, suggesting that transcriptional repression is crucial in maintaining the
undifferentiated state of neural stem cells [5,14]. Similarly, the Drosophila tailless acts as a
dedicated repressor in the early Drosophila embryo to support normal embryonic development
and establish accurate patterns of gene expression [18]. TLX could be a key regulator that acts
by controlling the expression of a network of target genes to establish the undifferentiated and
self-renewable state of neural stem cells. Elucidation of the network regulated by TLX in
producing these outcomes would be a significant advance in understanding neural stem cell
self-renewal and neurogenesis.

Recently, other nuclear receptors such as estrogen receptors (ER), thyroid hormone receptors
(TR), and peroxisome proliferator-activated receptor γ (PPARγ), have also been shown to
regulate neural stem cell proliferation and differentiation [19-24]. Significant neuronal loss has
been detected in adult brains of ERβ knockout mice, suggesting an important role of ERβ in
neuronal maintenance in the central nervous system [25]. Knockout of TRα inhibits progression
of neural stem cells through cell cycles, suggesting a critical role of TRα in neurogenesis of
mammalian adult brains [26]. Neural stem cells prepared from heterozygous PPARγ-deficient
mouse brains have significantly reduced cell growth, which is also seen in PPARγ short hairpin
RNA silenced or dominant negative PPARγ-treated neural stem cells, suggesting that
PPARγ plays a role in neural stem cell proliferation control [27]. N-CoR, a nuclear receptor
co-repressor, also plays a role in neural stem cell self-renewal. Deficiency in N-CoR leads to
reduced neural stem cell self-renewal and premature differentiation into astrocytes [28].

Bmi1 is a polycomb family transcriptional repressor that has been shown to be required for
post-natal maintenance of neural stem cells in the peripheral and central nervous system [29].
Deficiency in Bmi1 leads to progressive postnatal growth retardation and neurological defects
[30]. Bmi1-null mice exhibit a post-natal self-renewal defect that leads to the depletion of stem
cells by early adulthood [29]. One way in which Bmi1 promotes the maintenance of adult stem
cells is by repressing the cyclin-dependent kinase inhibitors, p16Ink4a and p19Arf [31,32].

The Sox family of high-mobility-group (HMG) DNA binding proteins plays a role in
maintaining the undifferentiated state of neural stem cells in a context-dependent manner. In
vertebrates, SoxB1 factors (Sox1, Sox2, and Sox3) are widely expressed in proliferating neural
stem/progenitor cells, throughout development and adulthood [33-35]. SoxB1 factors have
been shown to play a role in maintaining the undifferentiated state of embryonic neural
progenitors [36]. Overexpression of Sox2 and/or Sox3 inhibits neuronal differentiation of
neural progenitors and causes them to retain undifferentiated properties. In contrast, expression
of a dominant negative form of Sox2 and/or Sox3 results in premature exit of neural progenitors
from cell cycle and onset of neuronal differentiation [37,38]. In addition to its function in early
brain development [37-40], Sox2 is also necessary for the maintenance of neural stem cells in
adult neurogenic areas [41,42]. Regulatory mutations of Sox2 cause neurodegeneration and
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impaired adult neurogenesis [41]. In parallel, Sox10, a member of the Sox E subfamily,
maintains the multipotency of neural crest stem cells in the peripheral nervous system [43].

Multiple basic helix-loop-helix (bHLH) genes also play a critical role in regulation of neural
stem cell maintenance and differentiation [44-46]. Hes genes, homologs of Drosophila hairy
and enhancer of split, are repressor-type bHLH genes. Among seven members of the Hes
family, Hes1 and Hes5 are essential effectors of Notch signaling, the expression of which is
upregulated by Notch activation [47,48]. Hes1 and Hes5 are highly expressed by neural stem
cells [49-51], mis-expression of which inhibits neuronal differentiation and maintains neural
stem cells in the embryonic brain [52-54]. In contrast, neural progenitors underwent premature
neuronal differentiation in Hes1 and Hes5 double knockout mice [48,55-57], suggesting that
Hes1 and Hes5 are essential for the maintenance and self-renewal of neural stem cells. Hes
genes regulate neural stem cell self-renewal by repressing premature onset of the activator type
bHLH genes such as Mash1, Math, and Neurogenin [46]. Hes-related bHLH genes, Hesr1 and
Hesr2 are also expressed by neural stem cells in the embryonic brains and act as Notch signaling
effectors. Hesrs regulate neural stem cell maintenance and self-renewal too, possibly through
cooperative action with Hes [46]. Together, these data suggest that intrinsic transcription
factors can work together to coordinate neural stem cell maintenance and self-renewal.

3. Epigenetic Control
Stem cell self-renewal and differentiation are the result of transcription control in concert with
chromatin remodeling and epigenetic modifications. During central nervous system
development in vertebrates, neural stem cell fate are strictly controlled under regional and
temporal manners [58], accompanied by precise epigenetic control, including covalent histone
modification and DNA methylation of CpG dinucleotides.

Histone modification includes histone acetylation, methylation, phosphorylation
ubiquitylation, sumolyation, and ADP-ribosylation [59]. Histone acetylation, which is
regulated by histone acetylases (HATs) and histone deacetylases (HDACs) (Fig. 2), has been
best studied. HDACs can deacetylate the conserved acetylated lysine residues in histone tail,
resulting in local condensation in chromatin and block access of transcriptional factors to their
target genes. Mammalian HDACs can be classified based on their structure and homology to
yeast HDACs. Class I HDACs (HDAC1, 2, 3, 8, and 11) are ubiquitously expressed, whereas
Class II HDACs (HDAC4, 5, 7, and 9) display tissue-specific expression. Class II HDACS
contain an amino-terminal extension that interacts with other transcriptional cofactors and
confers responsiveness to extracellular signals. We have shown that HDAC-mediated
transcriptional repression is essential for the maintenance and self-renewal of neural stem cells
(Sun et al. unpublished results). In addition to self-renewal, HDACs also regulate neural cell
differentiation. Treatment of adult neural stem cells with HDAC inhibitors induced neuronal
differentiation [60], due in part to upregulating REST (RE1 silencing transcription factor, or
NRSF)-regulated neuronal-specific genes. REST is a key transcriptional regulator of many
neuronal genes through binding to a conserved 21 bp RE1 binding site [61,62]. In non-neuronal
cells, REST interacts with its co-factors, including Co-REST, N-CoR, and mSin3A, which
then recruit HDAC complexes to repress neuronal gene expression through epigenetic
regulation [61,63,64].

More recently, histone methylation has gained attention as an epigenetic marker [65,66].
Unlike histone acetylation, which only occurs on lysine (K) residues and is generally related
with active transcription, methylation was detected on both lysine and arginine (R) residues
and is linked to both transcriptional activation and repression [66]. For instance, histone H3
K9 methylation is associated with transcriptional silencing (Fig. 2). In contrast, methylation
of histone H3 K4 and arginine residues of H3 and H4 leads to transcriptional activation [67].
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Recent identification of LSD1 as a histone demethylase [68] indicates that similar to histone
acetylation, histone methylation is also a dynamic process subject to regulation by both methyl
transferases and demethylases. The degree of lysine methylation (mono-, di-, or trimethyl
histones), as well as the residues modified, is tightly associated with neural cell differentiation
[69]. For example, histones H3 trimethyl K9 and H4 monomethyl K20 were detected in
proliferating neural stem cells, whereas histone H4 trimethyl K20 was enriched in
differentiating neurons (Fig. 2).

The epigenetic state can also be regulated at the DNA level by DNA methylation. The most
prominent form of DNA methylation in mammals is the symmetric methylation of cytosine in
the 5’ position in CpG dinucleotides. DNA methylation and its related chromatin remodeling
play critical roles in regulating gene transcription in response to neuronal activity [70]. For
example, DNA methylation can repress astrocytic GFAP expression by preventing the binding
of a transcription factor, signal transducer and activator of transcription 3 (STAT3), to the
GFAP gene promoter at early stages of brain development [71]. The gene silencing effect of
DNA methylation is mediated by a family of methyl-cytosine-binding proteins, including
MeCP2, which is abundantly expressed in the central nervous system [72,73]. MeCP2 is a
member of a group of methylated-CpG binding proteins and is expressed at high levels in the
postnatal brain. Mutations in the Mecp2 gene have been linked to a neurodevelopmental
disorder, Rett syndrome [74], suggesting that MeCP2 may play a role in regulating neuronal
function. MECP2 has been shown to be critical for embryonic neurogenesis for Xenopus
[75]. Recent studies demonstrated that Mecp2 is involved in the maturation and maintenance
of neurons at late stages of neuronal differentiation but not critical for embryonic neurogenesis
in mammalian brains [76], consistent with the postnatal onset of symptoms in Rett Syndrome
patients. Methyl-CpG binding protein MBD1 is also crucial for normal neural stem cell and
brain functions. MBD1-/- neural stem cells exhibited reduced neuronal differentiation and
increased genomic instability [77]. DNA methyltransferases are also expressed in the central
nervous system and have a role in neurogenesis [78,79]. DNA methyltransferase 1 (Dnmt1)
deficiency mice displayed decreased neurogenesis. Conditional knockout of Dnmt1 in neural
progenitor cells results in DNA hypomethylation and precocious astroglial differentiation
[80]. Multiple layers of epigenetic modifications, therefore, regulate key transitions in the
regulation of neural stem cell self-renewal and their differentiation.

4. miRNA Regulators
Many different classes of small non-coding RNAs are present in the brain, with diverse roles
including RNA modification and chromatin remodeling [81]. Small double-stranded
modulatory RNAs have been proposed to regulate the generation of neurons from adult neural
stem cells by binding to REST [82]. miRNA is another recently identified large family of small
non-coding RNAs, which are likely key post-transcriptional players in stem cell self-renewal
and differentiation (Fig. 3). miRNAs are short 20-22 nucleotide RNA molecules that are
expressed in a tissue-specific and developmentally-regulated manner and function as negative
regulators of gene expression in a variety of eukaryotes. miRNAs are involved in numerous
cellular processes including development, proliferation, and differentiation [83,84].

miRNA genes belong to class II genes, which are transcribed by RNA polymerase II. A majority
of miRNA loci are found in intronic regions of protein-coding or non-coding transcription
units; others are found in exonic regions of non-coding transcription units [85]. The primary
transcripts of miRNAs (normally > 1kb), called pri-miRNAs, are processed in the nucleus by
RNase III endonuclease, Drosha, into 60 to 75 neocleotide hairpin-like precursors (pre-
miRNAs). Pre-miRNAs are subsequently exported to the cytoplasm by exportin-5, a member
of the Ran-dependent nuclear transport receptor family. In the cytoplasm, the hairpin precursors
are cleaved into mature miRNAs by Dicer, a cytoplasmic RNase III-type protein. Mature
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miRNAs are then transferred to Argonaute proteins in the RNA-induced silencing complex
(RISC), which direct the miRNAs to their target transcripts [86]. By base pairing with the target
mRNA, miRNA functions as a guide molecule in post-transcriptional gene silencing, leading
to mRNA cleavage or translational repression (Fig. 3).

miRNAs are especially attractive candidates for regulating stem cell self-renewal and cell fate
decisions because of their ability to simultaneously regulate many target genes. Studies based
on expression patterns, predicted targets, and overexpression analyses suggest that miRNAs
are key regulators in stem cell biology. Distinct sets of miRNAs have been shown to be
specifically expressed in embryonic stem cells [87,88]. Loss of Dicer1 causes embryonic
lethality and loss of stem cell populations [89,90]. Argonaute family members, key components
of RISC complexes, are required for maintaining germline stem cells in various species [91].
These observations together support a role for miRNAs in stem cell self-renewal.

Among miRNAs identified, around 70% of them are found to be expressed in mammalian
brains [92,93], suggesting possible roles of these miRNAs in neural function [94-97]. Indeed,
miRNAs have been shown to regulate the development of chemosensory system of C.
elegans [98] and brain morphogenesis of zebrafish [99]. Study of a set of highly expressed
neural miRNA during mammalian brain development revealed significant differences in the
onset and magnitude of induction for individual miRNAs and marked lineage specificity of
the miRNAs [100]. During differentiation, progenitor cells express families of miRNAs
sequentially, resulting in expression of lineage-specific genes. The most highly expressed
miRNAs in adult brain, miR-124 and miR-128, were preferentially expressed in neurons; while
miR-23 was restricted to astrocytes; miR-26 and miR-29 have stronger expression in astrocytes
than neurons; whereas miR-9 and miR-125 were fairly evenly distributed [100].
Overexpression of miR-124, miR-128, and miR-9 in neural precursors decreased astrocyte
differentiation. In contrast, inhibition of miR-9 expression alone or in combination with
miR-124 led to reduced neurogenesis [101]. The regulation mediated by miR-9 and miR-124
is at least partly through modulating the STAT3 signaling pathway [101]. Let-7 family
members are also highly represented in libraries of brain miRNAs, although not restricted to
the nervous system [102]. Let-7 family members are highly expressed in nervous tissues of
zebrafish [92] and in the developing mouse brains [103]. Both transcriptional activation and
increased precursor processing activity led to significant induction of mature forms of let-7
family members during neural differentiation, suggesting a role of let-7 in neural cell
specification [103].

Target prediction of miRNA indicates that more than one-third of animal genes may be
regulated by miRNAs [104]. Each miRNA may suppress multiple targets, and one mRNA can
be targeted by many miRNAs [84]. So far, some of mRNA targets have been validated and
shown to control over a broad spectrum of cellular process [83]. MiR-124, the most abundant
miRNA in adult mammalian brains [102], has its binding motif in more than 1100 genes as
predicted computationally [104]. Introduction of miR-124 into HeLa cells down-regulated
more than 100 genes [105] and promoted a neuronal-like mRNA profile [106]. Recently
laminin gamma 1 and integrin beta1 were identified as targets of miR-124 in chicken neural
tube, both of which are highly expressed in neural precursor cells and repressed upon neuronal
differentiation [107]. In addition, miR-124 binds to 3’UTR of small C-terminal domain
phosphatase 1 (SCP1), a phosphatase that plays a role in neural developement, to suppress its
expression, further supporting a role of miR-124 in neurogenesis [108]. Senseless, a binary
switch during sensory organ precursor selection in flies [109], has been identified as a target
gene of miR-9 [110]. Loss of miR-9 in flies induced extra sense organs, whereas overexpression
of miR-9 led to massive loss of sensory organ precursors [110]. Hunchback, a gene regulates
the temporal identity of neuroblasts [111], is regulated by let-7 miRNA as a target gene [112,
113]. Identification of comprehensive miRNA targets in the neural system remains an
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important and non-trivial task that will help us to better understand the regulation of neural
stem cell self-renewal and differentiation.

5. Cell-extrinsic signaling
Stem cell self-renewal and differentiation is also regulated by the specialized
microenvironment, or niche, in which these cells reside [114-117]. Direct physical interactions
between stem cells and their niches are critical for maintaining stem cell characters. Signaling
molecules in the niche are composed of soluble factors, membrane bound molecules, and
extracellular matrix, including Wnt, Notch, and Sonic hedgehog (Shh) [114]. Receptor tyrosine
kinase (RTK) signaling has also been implicated in regulation of neural stem cell proliferation
and self-renewal.

Genetic studies have implicated the Wnt/β-catenin pathway in neural stem cell self-renewal.
In mice that express a stabilized β-catenin, the central nervous system is greatly enlarged.
Progenitors exit the cell cycle less frequently and continue to proliferate in the brain [118]. In
contrast, ablation of β-catenin results in a marked decrease of the overall size of the nervous
system [119]. Mice with null alleles of LRP6, a required co-receptor for Wnt signaling, also
showed reduced dentate granule cell production and failed expansion of a defined dentate
granule precursor cell pool [120]. These studies indicate that the Wnt/β-catenin signaling plays
an important role in the proliferation and self-renewal of neural precursors, presumably through
its downstream target genes, such as cyclin D1 [121]. On the other hand, Wnt proteins have
been shown to promote neuronal differentiation in neural stem cell culture and in adult
hippocampus [122-124], suggesting that signaling by the canonical Wnt pathway has multiple
functions in stem cells. Indeed, recently it has been shown that Wnt3a and Wnt5a could both
increase proliferation and stimulate neuronal differentiation of neural progenitor cells isolated
from postnatal mouse brains [125]. Thus, Wnt pathways are critical regulators of both neural
stem cell self-renewal and neurogenesis.

Notch signaling is activated when a Notch receptor on one cell interacts with Notch ligands,
such as Delta, on an adjacent cell. This interaction triggers proteolytic release of the Notch
intracellular domain and its translocation to the nucleus, where it binds to transcriptional
regulator CSL and induces downstream effector expression [126]. The best known Notch
effectors are members of the Hes families, including Hes1 and Hes5 [47,48,127]. Studies using
mouse models of the Notch pathway led to a prevailing view that Notch maintains the self-
renewable state of neural stem cells [128]. One of the first Notch pathway genes to be knocked-
out was Notch1 [129,130]. Consistent with the view that Notch activity is needed for stem cell
maintenance, increased neuronal differentiation was detected in Notch1 mutant brains.
Conditional deletion of Notch1 in the neural progenitor pool was also found to result in
precocious neuronal differentiation and earlier neural progenitor pool depletion [131,132]. In
addition to the receptor mutations, many Notch ligand mutations have been examined. One
such study found that deleting Delta-like 1 (Dll1) led to a decrease in the radial glia progenitor
marker RC2 and an increase in neuronal marker expression in embryonic brains, supporting
the traditional view that Notch signaling inhibits neuronal differentiation in the developing
central nervous system [128]. Notch pathway components are also expressed in postnatal and
adult mouse brains, both in germinal zones and in neurons [133]. Notch signaling can be
context-dependent. In addition to maintaining stem cell state in germinal regions, Notch can
also promote terminal glial differentiation [134].

Shh is an important morphogen in development. In Shh null mice, the telencephalon is greatly
dysmorphic and much reduced in size. Both dorsoventral patterning and general brain
proliferation are significantly affected [135,136]. Shh is also a potent mitogen for neural
progenitor cells of adult brains [137]. Over-expression of Shh near the dentate gyrus increases
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proliferation and neurogenesis of hippocampal subgranular zone cells [137]. In vitro, Shh
maintains proliferation of adult hippocampal neuronal progenitors [137] and increases
subventricular zone cell proliferation [138]. The hedgehog signaling is mediated by the zinc
finger-containing transcription factor Gli1, a direct transcriptional target of Shh signaling
[139,140], acting to both promote proliferation and maintain populations of neural progenitors
in postnatal brains [141].

Epidermal growth factor (EGF), transforming growth factor α (TGFα), and fibroblast growth
factor (FGF) are all extracellular ligands of RTKs and play critical roles in the proliferation of
neural stem cells [142-145]. EGF and TGFα bind preferentially to the EGFR [146,147], a
member of the RTK family. EGFR is expressed in neurogenic regions such as the adult
subventricular zone (SVZ) [148-150]. Targeted disruption of EGFR causes forebrain cortical
dysgenesis at late embryonic and postnatal ages [151-153]. TGFα is considered the
predominant endogenous EGFR ligand [150], the expression of which is temporally and
spatially coordinated with EGFR expression. TGFα null mice exhibit decreased proliferation
within the SVZ [154]. In vivo administration of EGF and TGFα via intraventricular infusion
increased neural stem cell proliferation in the adult brain. In vitro experiments have also shown
that SVZ-derived progenitor cells can be expanded by EGF and FGF administration [143].
FGF acts primarily through FGF receptors (FGFR), members of the RTK family also (Johnson
and Williams 1993). Targeted deletion of FGFR1 causes defects in cell proliferation and
embryonic lethality [155-157]. FGF2, the first member of the FGF family, is expressed in the
dorsolateral cortical neuroepithelium of the forebrain and acts primarily through FGFR1. FGF2
null mice show significant reduction in cortical progenitor cell proliferation before
neurogenesis begins [158]. Intraventricular delivery of FGF2 increased cell proliferation within
the adult SVZ [159,160]. Cyclin D2 has been recently suggested to be an effector of the FGF
signaling [161], which promotes early G1 cell cycle progression, a function relevant to neural
stem cell proliferation.

Neural stem cells in the brain are likely to be influenced by a convergence of extracellular
signals, such as Wnt, Notch, and Shh, from many neighboring cell types, including astrocytes,
neuroblasts, ependymal cells, and endothelial cells [117,162,163]. These extrinsic factors may
interact with intrinsic regulators by various signaling cascades, including Wnt/β-catenin-cyclin
D1 [121], Notch-Hes1/5 [47,48,127], and Shh-Gli1 [139,140]. Understanding more about these
signaling pathways will help reveal how the niches influence neural stem cell self-renewal and
tissue development [164].

6. Conclusion
An emerging regulatory network controlling stem cell self-renewal and differentiation is
defined by integration of cell-intrinsic regulators, including transcription factors, epigenetic
controls, and small RNA regulators, with cell-extrinsic signals from stem cell niches. These
mechanisms are coordinated to regulate the development, maintenance, self-renewal, and
differentiation of stem cells. Unraveling how individual signaling cascades integrate into the
global regulatory networks will be essential to better understand stem cell biology. It will also
facilitate the development of new and targeted therapies using neural stem cells for a host of
neurological disorders, including brain injuries, brain tumors, and neurodegenerative diseases
such as Huntington’s, Alzheimer’s and Parkinson’s disease.
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Fig. 1.
Transcriptional regulators of neural stem cell self-renewal. Transcription factors that are
expressed in neural stem cells can potentiate cell proliferation and repress cell differentiation
to maintain the undifferentiated and self-renewable state of neural stem cells. Due to space
limitations, not all related transcription factors are listed here.
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Fig. 2.
Epigenetic control of neural stem cell self-renewal. Maintenance of neural stem cells is
normally associated with the repressive status of chromatin, which is represented by
deacetylation of histones and methylation of histone H3 lysien 9 (K9). The repression is
presumably resulted from recruitment of transcriptional corepressor complexes, including
HDACs, MecP2, MBD, CoREST, to transcription factors at the promoter of target genes.
Histone acetylation and methylation of histone H3 lysine 4 (K4) and lysine 20 (K20) are, on
the other hand, involved in relaxation of chromatin structures and activation of lineage-specific
gene expression, which in turn leads to differentiation of neural stem cells into mature neuron,
astrocyte or oligodendrocyte. NSC stands for neural stem cells; Ac stands for histone
acetylation.

Shi et al. Page 18

Crit Rev Oncol Hematol. Author manuscript; available in PMC 2009 January 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 3.
A model for miRNA action in neural stem cells. Molecules that are expressed in neural stem
cells to maintain their self-renewable state are collectively referred to as stem cell maintenance
factors. miRNAs are initially transcripted in the nucleus as pri-miRNAs. The pri-miRNAs are
processed into pre-miRNAs (hairpin) and transferred to the cytosol, where it is processed into
22-24 nucleotide mature miRNAs. Upon differentiation, miRNAs, such as miR-124 and
miR-128, are highly expressed in the neuronal lineage, whereas miR-23, miR-26, and miR-29
are upregulated in glia. MiR-9 and miR-125 are expressed in both neurons and glia. These
miRNAs form incomplete base paring with their target mRNAs and direct the cleavage of these
mRNAs or inhibit their translation, thus preventing the expression of the stem cell maintenance
factors and enabling rapid neural differentiation.
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