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Metagenomic projects using whole-genome shotgun (WGS) sequencing produces many unassembled DNA sequences and small
contigs. The step of clustering these sequences, based on biological and molecular features, is called binning. A reported strat-
egy for binning that combines oligonucleotide frequency and self-organising maps (SOM) shows high potential. We improve this
strategy by identifying suitable training features, implementing a better clustering algorithm, and defining quantitative measures
for assessing results. We investigated the suitability of each of di-, tri-, tetra-, and pentanucleotide frequencies. The results show
that dinucleotide frequency is not a sufficiently strong signature for binning 10 kb long DNA sequences, compared to the other
three. Furthermore, we observed that increased order of oligonucleotide frequency may deteriorate the assignment result in some
cases, which indicates the possible existence of optimal species-specific oligonucleotide frequency. We replaced SOM with growing
self-organising map (GSOM) where comparable results are obtained while gaining 7%–15% speed improvement.
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1. INTRODUCTION

Metagenomics is an emerging area of genome research that
allows culture-independent, functional, and sequence-based
studies of microbial communities in environmental sam-
ples. Whole-genome shotgun (WGS) sequencing has been
applied to most of the metagenomic projects [1–6]. These
projects have unveiled remarkable information on microbial
genomics and also brought an unprecedentedly comprehen-
sive and clearer picture of microbial communities. In the
WGS sequencing approach, random sampling of DNA frag-
ments of all microbes that form a community in an environ-
mental sample is performed. The individual DNA fragments
are sequenced and then assembled into genomes by us-
ing computing techniques. However, a fundamental limit of
WGS sequencing is that only the genomes of high-abundance
species can be completely or near-completely assembled [7]
due to the requirement of multiple overlapping fragments
for a confident assembly. In one of the prominent metage-
nomic studies conducted by Venter et al. [2], about 1 Gb of

DNA sequences has been successfully sequenced from Sar-
gasso Sea samples. This study has clearly indicated the exis-
tence of far more diverse microbial communities than pre-
viously thought. Most of the environmental genomes se-
quenced to date contain only few high-abundance species
but many low-abundance species in the communities that
account for a large portion of the total genome size of an en-
vironmental sample. The presence of large amount of DNA
fragments from the low-abundance species poses a prob-
lem for assembling genomes. In order to infer the biological
functions of a microbial community from sequences, a pro-
cess named “binning” is used to group these unassembled
DNA sequence fragments and small contigs into biologically
meaningful “bins,” such as phylogenetic groups [8].

There are a number of tools currently available for the
binning process. These include Chisel System [9, 10], Meta-
Clust [4, 11], TETRA [12, 13], PhyloPythia [14], and the
combination of oligonucleotide frequency and SOM [15].
The Chisel System helps binning the sequences according to
the identification, characterisation, and comparative analysis
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of taxonomic and evolutionary variations of enzymes. The
remaining above-listed tools use the method of analysing
nucleotide composition of sequences that is considered to
have the potential of working well for the binning process
in WGS sequencing [8]. MetaClust computes different DNA
signatures followed by the use of a clustering algorithm to
assign sequences into bins. TETRA bins the species-specific
sequences by the use of tetranucleotide-derived z-score cor-
relations. PhyloPythia uses a supervised-learning approach
where it trains a multiclass support vector machine (SVM)
classifier using all the known genome sequences in the ex-
isting database then assigns the unknown environmental se-
quences to the closest clade in the selected taxonomic level.
This method has been demonstrated to be able to classify
most DNA sequence fragments with high accuracy. However,
considering the current amount of known genomes which is
far less than 1% of the entire microbial genomes [7], it is rea-
sonable to assume that the currently available training data is
insufficient to represent all the extremely diverse microbial
genomes for supervised-learning methods. Unsupervised-
learning may provide the answer to this problem. The com-
bination of oligonucleotide frequency and the well-known
unsupervised learning method self-organising map (SOM)
was used by Abe et al. [15] to explore genome signatures.
They used the di-, tri-, and tetranucleotide frequencies as the
training features of SOM to cluster the 1 kb and 10 kb DNA
sequence fragments derived from 65 bacteria and 6 eukary-
otes. Clear species-specific separations of sequences were ob-
tained in the 10 kb fragment tests. Their results showed that
the combination of oligonucleotide frequency and SOM can
be used as a powerful tool to cluster or bin the DNA sequence
fragments after WGS sequencing.

In order to successfully bin the DNA sequence frag-
ments, using an appropriate genome signature as the train-
ing feature is important. In recent years, researchers have
found that, due to oligonucleotide frequency bias in vari-
ous prokaryotic genomes, the oligonucleotide frequency can
be used as a possible genome signature. The di-, tri-, and
tetranucleotide frequencies, which are the frequencies us-
ing two, three, and four nucleotides respectively, have been
well studied. Karlin et al. [16, 17] has shown the compo-
sitional bias of the di- and tetranucleotide contents of 15
prokaryotic genomes. Weinel et al. [18] found that 80% of
Pseudomonas putida KT2440 genome have a similar bias in
GC contents and di- and tetranucleotide contents. Teeling
et al. [12] showed that the tetranucleotide frequency has
a higher discriminatory power than GC content and used
it for the assignment of genomic fragments to the taxo-
nomic group. In addition, Sandberg et al. [19] employed a
Bayesian approach to classify the short sequences and found
that the classification accuracy increases with a higher-order
oligonucleotide frequency. Above-mentioned papers provide
evidences that there is a trend of using oligonucleotide fre-
quency as prokaryotic genome signature, rather than the GC
content. Thus, high-order oligonucleotide frequency may
also be an appropriate training feature for binning DNA se-
quence fragments by unsupervised clustering methods.

Since the combination of oligonucleotide frequency and
SOM appears as a promising binning strategy that can be

further explored, we focus in this paper on improving the
training features and the clustering algorithm. In Abe et al.’s
work [15], there was no systematic way of comparing the
quality of the SOM results. We tested the traditional cluster-
ing evaluation measures (recall, precision, and F-measure)
and discovered the inadequacy of using them for examin-
ing the similarity of phylogenetic levels. Therefore, we in-
troduce a method to quantitatively measure and assess the
results of clustering DNA sequence fragments from a col-
lection of species. In the investigation of evaluating suitable
training features, we attempt to compare results for the di-,
tri-, and tetranucleotide frequencies as well as the pentanu-
cleotide frequency (the frequency usage of five nucleotides)
to test if higher-order oligonucleotide frequency yields better
binning of DNA sequence fragments. We also study the effec-
tiveness and efficiency of the combination of oligonucleotide
frequency and SOM by employing alternative clustering al-
gorithms. We compare SOM with a variant of it called grow-
ing self-organising map (GSOM), which has been success-
fully applied in several different applications [20–25] includ-
ing microarray clustering [26]. These comparisons allow us
to suggest a better compositional binning strategy for WGS
sequencing using the method of combining oligonucleotide
frequency and SOM-based clustering algorithm.

This paper is organized as follows: Section 2.1 gives a
brief introduction to the SOM and GSOM clustering algo-
rithms; Section 2.2 proposes a method of measuring insep-
arable species when DNA sequence fragments are clustered;
Section 2.3 describes the procedures of preparing the three
datasets used in this paper, and the data preprocessing step
for preparing the input vectors; and Section 2.4 shows the
details of the algorithm settings and the experiment set up
for repeatability of the experiments. Section 3 presents the
results of comparing the four orders of oligonucleotide fre-
quencies and the comparison between SOM and GSOM; Fi-
nally, Section 4 gives the discussion, conclusion, and future
work.

2. METHODS

2.1. Growing self-organising map

Growing self-organising map (GSOM) [27, 28] is an exten-
sion of self-organising map (SOM) [29]. GSOM is a dynamic
SOM which overcomes the weakness of a static map structure
of SOM. Both SOM and GSOM are used for clustering high-
dimensional data. This is achieved by projecting the high-
dimensional data onto a two- or three-dimensional feature
map with lattice structure where every point of interest in the
lattice represents a neuron or a node in the map. The map-
ping preserves the data topology, so that similar samples can
be found close to each other on the 2D/3D feature map.

The SOM training consists of three phases: initialisation
phase, ordering phase, and fine-tuning phase. The initialisa-
tion is crucial to achieve a quality-clustering result. The fol-
lowing parameters are determined in this phase:

(i) the map topology (either rectangular or hexagonal);
(ii) the number of nodes which is the resolution of the

map;
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(iii) the weight vector initialization of nodes;
(iv) the width/height (or aspect) ratio of the map.

The user determines the first two parameters and generally
principle components analysis (PCA) is used for setting the
last two parameters. The weight vectors are initialised by the
first two principle vectors of the inputs and the aspect ratio
of the map is determined based on the ratio of magnitudes
of the first two principle components. In the ordering and
fine-tuning phases, each input is presented to the map and
the best matching unit or “winner,” which has the smallest
Euclidean distance to the presented input, is identified. The
weight vector of the winner and its neighbouring nodes are
updated by

w(t + 1) = w(t) + α× h× [x(k)−w(t)], (1)

where w(t) is the weight vector of the node at time t, x(k) is
the kth input vector (w, x ∈ RD where D is the dimensional-
ity of data), α is the learning rate and h is the neighbourhood
kernel function.

GSOM employs the same weight adaptation and neigh-
bourhood kernel learning as SOM, but has a global param-
eter of growth named Growth Threshold (GT) that controls
the resolution of the map. The Growth Threshold is defined
as

GT = −D × ln (SF), (2)

where SF ∈ [0, 1] is the user defined spread factor with 0 rep-
resenting minimum growth (coarsest resolution) and 1 rep-
resenting maximum growth (finest resolution).

There are three phases in the GSOM training: initialisa-
tion phase, growing phase, and smoothing phase. In the ini-
tialisation phase, the GSOM is initialised with a minimum
single “lattice grid” depending on whether the rectangular
or hexagonal topology is chosen. Due to the small number
of nodes in the beginning of training, the weight vector ini-
tialisation has less effect on the clustering quality and these
weights will be corrected quickly in the growing phase. Dur-
ing the growing phase, every node has an accumulated error
counter and the counter of the winner (Ewinner) is updated by

Ewinner(t + 1) = Ewinner(t) +
∥
∥x(k)−wwinner(t)

∥
∥. (3)

If the winner is at the boundary of the current map and
Ewinner exceeds GT, new nodes will be added to the surround-
ing vacant slots of the winner. In the case when Ewinner ex-
ceeds GT and the winner is not a boundary node, Ewinner

is evenly distributed outwards to the winner’s neighbouring
nodes. The smoothing phase is for fine-tuning the weights of
nodes and no new node will be added to the map.

The major advantages of GSOM over SOM are sum-
marised as follows.

(i) The shape of GSOM represents the hidden data struc-
ture better than SOM that leads to better identifiable
clusters.

(ii) New nodes are added to the necessary regions while
keeping the order of nodes. Therefore, neither PCA
nor ordering phase is required in the training.

(iii) Fewer nodes at the beginning of the training leads to
the speed improvement.

2.2. Quality measurement of the clustering
performance in the mixing region

In our preliminary test, the well-known F-measure [30],
which computes both recall and precision into a single index
from a contingency table, was used to evaluate the clustering
results. However, after examining the cluster contents, it is
apparent that, for binning applications, F-measure does not
provide sufficient insight and description of ambiguities in
terms of phylogenetic relationships (refer to Section 3). More
specifically, one would expect phylogenetically-close groups
as highly likely to be ambiguous, but F-measure does not ac-
count for such likelihoods. Therefore, we propose an alterna-
tive clustering evaluation measure specifically for this appli-
cation.

When an SOM or GSOM is used to group species frag-
ments into clusters on a 2D/3D map, it is often inevitable
that regions with overlapping clusters (mixing regions where
a neuron represents DNA sequence fragments from more
than one species) will exist. To evaluate a clustering al-
gorithm’s ability to group DNA sequence fragments into
species-specific or “pure” clusters, we define two criteria that
measure the clustering quality in the mixing region: inten-
sity of mix (IoM) and level of mix (LoM), where the former
measures the percentage of mixing and the later indicates the
taxonomic level of ambiguity for a given pair of clusters.

The IoM is evaluated based on the concept of mixed pair
described below. Let A and B be sets of vectors belonging to
species A and B, respectively, and n(X) is the number of ele-
ments in set X. If A and B is a mixed pair, then the percent-
age of A in the mixing region of the two classes is n(A ∩ B |
A)/n(A) and the percentage of B is n(A ∩ B | B)/n(B). As
illustrated in Figure 1, 11.6% of A sequences is mixed with B
sequences in the B cluster and the complementary mix indi-
cates that 10.6% of B sequences is mixed with A sequences
in the A cluster. The same concept of mixed pair applies for
B and C. Therefore, there are two mixed pairs in Figure 1,
one is A and B and the other is B and C. For k number
of species, there can be up to k(k − 1)/2 mixed pairs. Ad-
ditionally, a pair of clusters is only considered to be truly
mixed when both clusters are heavily overlapped. Thus, as in
Figure 1, when n((B ∩ C | B)/n(B)) > THRESHOLD (TH)
but n(B ∩ C | C)/n(C) < TH, it indicates that only a small
number of outliers of one species (C) is mixed with the other
species (B). Therefore, this mixed pair is not considered as
truly mixed. We use TH = 5% for the threshold of being truly
mixed meaning that, statistically, we have a nonmixing con-
fidence of 95%. The IoM measures the amount of mixing
sequences and it is nonlinearly categorised into five levels:
low (L) 5%–10%, medium low (ML) 10%–20%, medium
(M) 20%–40%, medium high (MH) 40%–60%, and high
(H) 60%–100%. For example, the IoM is ML for the truly
mixed pair A and B in Figure 1.

To evaluate clustering results of species, we use LoM to
describe the taxonomic level of the mixed species. For ex-
ample, as in Figure 1, Bacillus subtilis is classified in King-
dom Bacteria and Phylum Firmicutes. Acinetobacter is clas-
sified in Kingdom Bacteria but Phylum Proteobacteria. Then
the two species are mixed at the Phylum level. Because of the
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10.6 % of B

11.6 % of A 1 % of C

6.9 % of B

A B C

A: Acinetobacter sp.
B: Bacillus subtilis
C: Treponema pallidum

Figure 1: Concept of mixed pair: the mixed pair between A and
B is truly mixed (IoM = ML and LoM = Phylum). The mixed pair
between B and C is not truly mixed because n(B∩C |C)/n(C)<5%.

evolution of organisms, nucleotide composition of genomes
belonging to the same lower taxonomic levels can be very
similar. Clustering organisms at higher level of taxonomy
should be easier than at lower level of taxonomy. Therefore,
if truly mixed pair occurs, lower LoM (e.g., Species) is more
acceptable and more desirable than higher LoM (e.g., King-
dom).

In summary, the proposed two measures are defined as

IoM ∈ {L, ML, M, MH, H},
LoM ∈ {Species, Genus, Family, Order, Class,

Phylum, Kingdom}.
(4)

The two proposed measures, IoM and LoM, are only de-
fined for truly mixed pairs to evaluate the clustering quality
in the mixing regions of a map by the following steps.

(i) Find truly mixed pairs for all pairs of species where if
n(X ∩ Y | Y)/n(Y) ≥ TH and n(X ∩ Y | X)/n(X) ≥
TH, then X and Y is a truly mixed pair.

(ii) If X and Y are truly mixed, determine IoM according
to min{n(X ∩ Y | Y)/n(Y),n(X ∩ Y | X)/n(X)}.

(iii) Identify LoM of X and Y.

Clustering results can now be assessed based on three cri-
teria: number of truly mixed pairs, IoM, and LoM. How-
ever, which criterion should have higher priority may vary
between applications. Therefore, in our assessment, one re-
sult is better than another only when it is superior on at least
two of the three measures.

2.3. Dataset preparation and data preprocessing

The NCBI database (http://www.ncbi.nlm.nih.gov) contains
370 completed microbial genomes in early 2006, which in-
cludes 28 Archaea and 342 Bacteria. As the investigation
seeks to cluster sequences of species, genomes are filtered so
that there is no duplicating species. One strain was arbitrar-
ily chosen if the same species genome contains more than one
strain. After this process, there were 283 genomes remaining.
Considering the available computing resources and the algo-
rithm comparison focus of this paper, two artificial sets of
prokaryotic DNA sequences (each of 10 different species out
of the 283 species) were randomly sampled from the NCBI
database.

In addition, three simulated metagenomic datasets were
created by Mavromatis et al. [31] to facilitate benchmark-
ing of metagenomic data processing methods, which include,
but not limited to, binning methods. The three datasets vary
in relative abundance and number of species that repre-
sent different complexity levels of real-world microbial com-
munities. The sequence fragments in the simulated datasets
were assembled using three commonly used sequence assem-
bling programs: JAZZ, Arachne, and Phrap at U.S. Depart-
ment of Energy (Wash, USA), DOE Joint Genome Institute
(Calif, USA). In this paper, we tested one of the three sim-
ulated datasets named simMC and was assembled by Phrap
(http://www.phrap.com). For simplicity, this dataset will be
represented as simMC Phrap throughout the paper.

The taxonomic distributions of the three sets of species
are displayed graphically in Figure 3. Each letter represents
a single species and species within a single rectangle have
the same taxonomy at the specific level. The names of the
species can be found in Section 1 of the supplementary
material which consists of 6 sections showing the species
names in Section 1, clustering evaluation methods in Sec-
tions 2 and 3, and the labelled cluster maps in Section 4 to
6 (http://www.mame.mu.oz.au/∼ckkc/Binning). The num-
bers below the taxonomic levels in Figure 3 indicate the max-
imum possible number of mixed pairs at that taxonomic
level. For example, in Figure 3(a), the maximum number of
mixed pairs at taxonomic level of Class is 12, which consists
a mixed pair each from (a,j) and (c,e) and 5 pairs each from
(c,{b,d,g,h,i}) and (e,{b,d,g,h,i}).

In the experiments of Abe et al. [15] that attempts to sep-
arate 1 kb and 10 kb DNA sequence fragments of 65 bacteria
genomes containing 54 different species, it is visually shown
that 1 kb DNA sequence fragments do not carry enough dis-
criminatory information and hence could not completely
separate the fragments into species-specific groups. There-
fore, a sequence fragment length of 10 kb is used for the
analysis in the two artificial datasets to ensure appropriate
separation of species-specific groups. Sequences used in the
two artificial datasets are produced from complete genome
sequences to simulate the environment of WGS sequencing.
Such a complete genome sequence is segmented into 10 kb
nonoverlapping fragments. A sliding window with the size n
is used for counting the oligonucleotide frequency for each of
the fragments in which n is the nucleotide length. For exam-
ple, the dinucleotide frequency (n = 2) for a short sequence
“AATACTTT” is shown graphically in Figure 2. The oligonu-
cleotide frequency count for each of the fragments yields a
single input vector for clustering. The input vectors to the
clustering algorithm will have 4n dimensions.

Whereas, the simMC Phrap was preprocessed by extract-
ing all sequences with contig length ≥ 8 kb. The oligonu-
cleotide frequency count is applied to these sequences to gen-
erate the input vectors for clustering. Finally, each input vec-
tor is normalised by the sequence length.

2.4. Algorithms parameters and experiment details

In order to avoid the algorithm implementation bias, an
in-house clustering program was developed consisting a

http://www.ncbi.nlm.nih.gov
http://www.phrap.com
http://www.mame.mu.oz.au/${\sim }$ckkc/Binning
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Figure 2: Dinucleotide frequency counting for the short sequence “AATACTTT.”
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Figure 3: The taxonomy distribution of the 10 species in (a) Set 1, (b) Set 2, and the 4 species in (c) simMC Phrap. Each letter represents a
single species. The numbers below the taxonomic levels indicate the maximum number of mixed pairs at that taxonomic level. For example,
in (a), the maximum number of mixed pairs at taxonomic level of Class is 12, which consists (a,j), (c,e), (c,{b,d,g,h,i}), and (e,{b,d,g,h,i})
mixed pairs.

Table 1: Training parameters used for the SOM and GSOM train-
ing.

Training parameter Phase 2 Phase 3

Learning length 15 epochs 70 epochs

Learning rate 0.1 0.05

Neighbourhood size 3 1

data preprocessor, both SOM and GSOM algorithms, and
a graphical neuron-map output. The program is written in
C# with a Windows form interface. This program can be re-
quested from the author for academic use. Since the hexag-
onal topology has better topology preservation [26, 29], it is
used in both SOM and GSOM. In addition, the tests were
conducted on a Pentium 4 3.2 GHz desktop PC running
Windows XP and the same parameter settings are used in
both algorithms for a fair computational speed comparison
(as listed in Table 1).

To compare results from the 4 orders of oligonucleotide
frequencies, we obtain similar map resolution (number of
nodes) for both algorithms and for all nucleotide frequen-
cies. Since the GSOM algorithm automatically determines
the number of nodes, it can be used to determine the total

number of nodes of SOM. This can be achieved by train-
ing GSOM with a specified resolution (we used SF = 0.4) for
the dinucleotide frequency then the final number of nodes in
GSOM is used to set the number of nodes in SOM, as well
as determine the SF for other nucleotide frequencies. Using
this scheme, we set SF = 0.4 for dinucleotide frequency (for a
higher-resolution map) and experimentally determined that
SF = 0.6 for trinucleotide frequency, SF = 0.8 for tetranu-
cleotide frequency and SF = 0.9 for pentanucleotide fre-
quency will result in similar map resolution. The SOM also
requires setting the aspect ratio of the map and initializing
the weight vectors. These two parameters are set by using
PCA. The schematic diagram of this approach is shown in
Figure 4.

3. RESULTS

The proposed binning method is tested on two ar-
tificial datasets and a simulated metagenomic dataset
(simMC Phrap) which was created and published for bench-
marking the metagenomic data processing methods. The two
artificial datasets of prokaryotic DNA sequences (each of
10 different species out of the 283 species) were randomly
sampled from the NCBI database. Each set of the genome
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Figure 4: Illustration of method used to compare SOM and GSOM.

Table 2: The evaluation of clustering results using F-measure.

Set 1 Set 2 simMC Phrap

SOM GSOM SOM GSOM SOM GSOM

Di 0.95 0.95 0.94 0.94 0.92 0.91

Tri 0.97 0.97 0.98 0.98 0.90 0.90

Tetra 0.97 0.97 0.98 0.98 0.92 0.90

Penta 0.97 0.97 0.99 0.99 0.89 0.89

sequences was preprocessed to obtain the 4 orders of
oligonucleotide frequencies (di-, tri-, tetra-, and pentanu-
cleotide frequencies) to form 4 datasets. This data prepro-
cessing involves segmenting each genome sequence in the set
into 10 kb lengths then produce input vectors by calculating
the specific oligonucleotide frequency. After preprocessing,
each of the 4 datasets from species Set 1 contains 4,145 input
vectors. Whereas, each of the 4 datasets from Set 2 contains
2,398 input vectors. The simMC Phrap was preprocessed by
extracting all sequences with contig length ≥ 8 kb then ob-
taining the 4 orders of oligonucleotide frequencies to form 4
datasets. The produced input vectors were normalised by the
sequence length. After preprocessing, each of the 4 datasets
contains 401 input vectors. The details of preparing these
three datasets can be found in Section 2.

To evaluate the clustering performance, we used well-
known clustering evaluation measure F-measure. The results
for the three datasets are shown in Table 2. A summary of
F-measure calculation can be found in Section 2 of the sup-
plementary material.

From these results, we can observe that F-measure does
not distinguish the clustering quality clearly enough for this
species separation application. For example, in the results of
Set 1 using GSOM, F-measure equals 0.97 for the tri-, tetra-,
and pentanucleotide frequencies. However, by using the pro-
posed evaluation, more details of the ambiguities can be seen.
It shows that there are only two mixed pairs with low taxo-

nomic level in the mixing region when using the pentanu-
cleotide frequency. However, there are four mixed pairs with
two of them having higher taxonomic levels when using the
tri- and tetranucleotide frequencies (as shown in Table 3).
This suggests that the pentanucleotide frequency provides
a higher level of phylogenetic resolution, which cannot be
detected via F-measure because the numbers of incorrectly
assigned sequence fragments are similar for these three nu-
cleotide frequencies.

We use two approaches to evaluate the performance of
clustering DNA sequence fragments of species. The first ap-
proach is to observe the cluster formation of species se-
quences to verify the cluster formation similar to the method
used by Abe et al. [15]. The second approach is to compare
the LoM and IoM in the mixing region. A simple example
is given in Section 3 of the supplementary material. It high-
lights the difference between the calculation of F-measure
and IoM.

After the training is completed, for display purpose, we
use the label information of the input data to display the la-
belled cluster map. The labelled cluster maps from the train-
ing of SOM and GSOM for the pentanucleotide frequency of
species Set 1 are shown in Figure 5. The following points can
be observed from this labelled cluster maps.

(i) All species are clearly clustered and are marked in the
figures.

(ii) The nodes that contain more than 2 species (which are
coloured in grey) are mostly located at the border of
the clusters.

(iii) Species “d” is clustered as one group in GSOM, but
separated by species “c” into two groups in SOM.

These observations show that the GSOM have better clus-
ter formation in terms of cluster identification than the
SOM due to the flexibility of feature map shape. The la-
belled cluster maps for other datasets also show a clear cluster
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Table 3: Training results in the mixing regions for species Set 1.

Algorithm SOM GSOM

Nucleotide Freq. Di Tri Tetra Penta Di Tri Tetra Penta

Kingdom — — — — — — — —

Phylum — — — — — — — —

Class ML, ML, L — — — ML, ML, L — — —

Order ML, ML ML, L ML L M, L ML, L L, L —

Family — — — — — — — —

Genus — — — — — — — —

Species M, L M, L ML ML M, L M, L ML, L ML, L

(a)

(b)

Figure 5: The labelled cluster maps for clustering species Set 1
by (a) SOM, (b) GSOM with the pentanucleotide frequency. Each
hexagon represents a single node. If a node contains input samples
from only a single species, it is displayed with a letter that uniquely
identifies the species. Grey colour nodes correspond to two or more
species in the node and the number of species is displayed on the
node. A node without label means that there is no input sample
“hits.”

formation and can be found in Sections 4, 5, and 6 of the
supplementary material.

We also interpret the clustering results of the species mix-
ing regions by summarising the IoM and LoM in Tables 3, 4,
and 5 for Set 1, Set 2, and simMC Phrap, respectively.

By comparing the results of the four orders of oligonu-
cleotide frequencies for Set 1, the number of truly mixed
pairs for dataset that uses the dinucleotide frequency is al-
most twice the number of truly mixed pairs of the higher-
order oligonucleotide frequencies as shown in Table 3. In ad-
dition, the LoM is also high for the dinucleotide frequency.
Similarly in Table 4, there are three to four truly mixed pairs
when using the dinucleotide frequency, but no more than
one truly mixed pair when higher-order oligonucleotide fre-
quencies are used. All four truly mixed pairs are of a very

high LoM at the Phylum level. Since there are only very few
species and number of sequence fragments in simMC Phrap,
the difference of using different nucleotide frequencies is not
obvious. Nevertheless, the results of our two artificial sets in-
dicate that dinucleotide frequency is not a strong signature
for clustering the 10 kb fragments of species.

Furthermore, from Set 1, we can see that IoM and LoM
tend to decrease as the order of oligonucleotide frequency
increases. One would naturally suspect that higher-order
oligonucleotide frequencies may carry more information so
they can be used to achieve better clustering results. How-
ever, it is not the case for Set 2 and simMC Phrap. In Set
2, there is a truly mixed pair in the tetranucleotide frequency
but no mixed pair in the tri- and pentanucleotide frequencies
when using SOM. For the GSOM algorithm, a truly mixed
pair appears in the pentanucleotide frequency but not in the
tri- and tetranucleotide frequencies. A detailed examination
shows that they are the same pair, Acinetobacter sp.ADP1 and
Bacillus subtilis subsp. subtilis str. 168, in both cases. Both of
the IoM is low indicating a much better result than the din-
ucleotide frequency. As in Table 5 for simMC Phrap, GSOM
performs well for all four orders of nucleotide frequencies,
whereas SOM shows inconsistent clustering quality for dif-
ferent nucleotide frequencies. There are two mixed pairs in
the di- and pentanucleotide frequencies but only one mixed
pair in the other two nucleotide frequencies. The mixed pair
in the tetranucleotide frequency has the lowest IoM (IoM =
M). These results also do not support the hypothesis that
higher-order oligonucleotide frequencies are better cluster-
ing features. Therefore, we can only conclude that higher-
order oligonucleotide frequencies are better features for clus-
tering the species than using dinucleotide frequency. How-
ever, the optimal oligonucleotide frequency may vary in dif-
ferent species.

In terms of clustering quality, both SOM and GSOM have
similar results. However, besides the mixing quality compar-
ison, we also compare the training speed of them. The speed
comparisons for the first two training phases and the overall
training time of both algorithms for all 12 datasets are shown
in Tables 6 and 7, respectively.

Comparing the time taken for SOM and GSOM to fin-
ish the first two training phases (as in Table 6), GSOM has
more than 37% speed improvement than SOM. This speed
improvement can be explained by considering the initial for-
mation of the map structure. As discussed in Section 2, PCA
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Table 4: Training results in the mixing regions for species Set 2.

Algorithm SOM GSOM

Nucleotide Freq. Di Tri Tetra Penta Di Tri Tetra Penta

Kingdom — — — — — — — —

Phylum MH, ML, ML — L — H, ML, L, L — — L

Class — — — — — — — —

Order — — — — — — — —

Family — — — — — — — —

Genus — — — — — — — —

Species — — — — — — — —

Table 5: Training results in the mixing regions for the contigs ≥
8 kb from simMC Phrap.

Algorithm SOM GSOM

Nucleotide Freq. Di Tri Tetra Penta Di Tri Tetra Penta

Kingdom — — — — — — — —

Phylum — — — — — — — —

Class — — — — — — — —

Order — — — — — — — —

Family — — — — — — — —

Genus MH MH M MH MH MH MH MH

Species — — — — — — — —

Strain L — — L — — — —

is used to initialise SOM. However, it increases the computa-
tional cost exponentially when the data dimension and size
increases. Therefore, even though time consumed for PCA
initialisation in this experiment is negligible, it is expected
to be significant in large-scale metagenomic analysis. In ad-
dition, SOM starts with all nodes fully covering the whole
input space then adjusts the weights of all nodes to repre-
sent the input data better. On the other hand, GSOM starts
with the minimum number of nodes and grows more nodes
in the required direction to get an abstract representation of
the input data while still correcting the weights of existing
nodes. At the end of the second phase, both algorithms will
be roughly representing the abstraction of the data. However,
GSOM saves time by avoiding PCA calculation and operates
on fewer numbers of nodes in the first two phases. Although
the last training phase is basically identical for both algo-
rithms and the learning length of the last training phase is
much longer than the first two phases, GSOM still has 7%–
15% of speed improvement for the overall training. It was re-
ported that the use of this strategy involving SOM was used
for analysing a large amount of eukaryote genomes and one
of the highest performance supercomputers in the world was
required [32]. For the large-scale analysis, which can take
weeks to complete, 7%–15% of speed improvement means
1-2 days of time saving for a two-week computation.

Besides using Tables 6 and 7 to compare the training
speed of SOM and GSOM, the tables also show that the train-
ing time grows exponentially from one order of oligonu-
cleotide frequency to the higher-order oligonucleotide fre-

quency. It is because of the rapid increment of dimensions
when the order of oligonucleotide frequency increases.

4. DISCUSSION, CONCLUSION, AND FUTURE WORK

We have investigated four orders of oligonucleotide frequen-
cies: di-, tri-, tetra-, and pentanucleotide frequencies on two
artificial sets of species and a published simulated metage-
nomic dataset. Each of the two artificial sets contains 10 ran-
domly selected species from NCBI database. We noticed that
the F-measure can not distinguish the clustering quality for
this application. Therefore, two methods have been defined
for evaluating the performance of clustering DNA sequence
fragments of species. This is done by observing the cluster
formation with the labelled cluster map and then qualita-
tively and quantitatively comparing the LoM and IoM in the
mixing region.

The results have shown that dinucleotide frequency is not
a sufficiently strong signature for the tested 10 kb DNA se-
quences on the SOM-based algorithm. Similar to other re-
ports, we also found that higher-order oligonucleotide fre-
quencies, such as tri-, tetra-, and pentanucleotide frequen-
cies, are carrying reasonably adequate genomic information
to group intraspecies sequences and separate interspecies se-
quences [12, 19]; but the required computational power in-
creases exponentially for each increased order of oligonu-
cleotide frequency. Additionally, we noticed that increase
of the order of oligonucleotide frequency may deteriorate
the assignment of DNA sequence fragments to classes in
some cases, which indicates the possible existence of optimal
species-specific oligonucleotide frequency. For example, the
trinucleotide frequency has a better discrimination power for
Acinetobacter sp. ADP1 and Bacillus subtilis subsp. subtilis str.
168 then the tetra- and pentanucleotide frequencies. There-
fore, analysts are recommended to start with trinucleotide
frequency in large-scale projects and higher-order oligonu-
cleotide frequencies may not always be better.

We also compare the SOM and GSOM algorithms for
clustering the DNA sequence fragments of species. Both
SOM and GSOM have shown similar results. However, in
term of speed comparison, GSOM has more than 37% speed
improvement over SOM in the first two training phases and
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Table 6: Speed comparisons for the first two training phases of SOM and GSOM, in which the improvement columns represent the per-
centage of speed improvement for GSOM comparing to SOM.

Species Set 1 Species Set 2 simMC Phrap

SOM (sec) GSOM (sec) Improvement SOM (sec) GSOM (sec) Improvement SOM (sec) GSOM (sec) Improvement

Di 54 34 37% 24 15 38% 2 1 50%

Tri 188 115 39% 74 45 39% 7 4 43%

Tetra 779 475 39% 236 147 38% 31 18 42%

Penta 3031 1847 39% 878 518 41% 144 80 44%

Table 7: Speed comparisons for the overall training time of SOM and GSOM, in which the improvement columns represent the percentage
of speed improvement for GSOM comparing to SOM.

Species Set 1 Species Set 2 simMC Phrap

SOM (sec) GSOM (sec) Improvement SOM (sec) GSOM (sec) Improvement SOM (sec) GSOM (sec) Improvement

Di 313 274 12% 133 121 9% 11 10 9%

Tri 1048 942 10% 427 387 9% 39 36 8%

Tetra 4639 3932 15% 1297 1203 7% 173 158 9%

Penta 16839 15709 7% 4702 4387 7% 720 662 8%

7%–15% speed improvement in the overall training. There-
fore, GSOM is potentially a better alternative clustering tool.
As a result of this study, we would suggest to use GSOM
and a higher-order oligonucleotide frequency (at least trinu-
cleotide frequency) to improve the strategy proposed by Abe
et al. [15] for the binning process after WGS sequencing.

The method of combining oligonucleotide frequency and
the SOM-based algorithm has provided a promising way of
binning after WGS sequencing. However, there are limita-
tions with this method. Since SOM-based algorithms are es-
sentially data visualisation techniques, it is difficult to iden-
tify the exact cluster boundaries when clusters severely over-
lap with each other. The overlapping cluster can often be
misinterpreted as a single cluster when no label is available.
Therefore, a further development to overcome this cluster-
overlapping problem is necessary for such SOM-based bin-
ning method to be fully practical. Additionally, at the cur-
rent state, due to the high diversity of microbial communities
and the nature of WGS sequencing, most of the unassem-
bled sequences are less than 10 kb. In order to maximize the
use of this binning strategy, more investigation on the opti-
mal sequence length will need to be performed in the future
work. On the other hand, the rapidly advancing sequencing
technology and techniques that are capable of faster sequenc-
ing, higher coverage, and longer contig length are continu-
ously being developed [33, 34]. The length of the unassem-
bled fragment is expected to increase in the near future.
Therefore, this binning strategy is useful for the analysis af-
ter WGS sequencing. Alternatively, when one is attempting
to identify a specific species in the metagenome, which has
already been sequenced, supervised learning methods can be
applied. While PhyloPythia employs SVM as its supervised
learning classifier, one can opt for other well-known super-
vised learning methods that has been used in other various
applications [35, 36].
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