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Exact Interior Reconstruction with Cone-Beam CT
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Using the backprojection filtration (BPF) and filtered backprojection (FBP) approaches, respectively, we prove that with cone-
beam CT the interior problem can be exactly solved by analytic continuation. The prior knowledge we assume is that a volume
of interest (VOI) in an object to be reconstructed is known in a subregion of the VOI. Our derivations are based on the so-called
generalized PI-segment (chord). The available projection onto convex set (POCS) algorithm and singular value decomposition
(SVD) method can be applied to perform the exact interior reconstruction. These results have many implications in the CT field
and can be extended to other tomographic modalities, such as SPECT/PET, MRI.
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1. INTRODUCTION

In 2002, an exact and efficient helical cone-beam reconstruc-
tion method was developed by Katsevich [1, 2], which is a
significant breakthrough in the area of helical/spiral cone-
beam CT. The Katsevich formula is in a filtered backprojec-
tion (FBP) format using data from a PI-arc corresponding to
the so-called PI-segment. By interchanging the order of the
Hilbert filtering and backprojection, Zou and Pan proposed a
backprojection filtration (BPF) formula in the standard heli-
cal scanning case [3]. For important biomedical applications
including bolus-chasing CT angiography [4] and electron-
beam CT/micro-CT [5], our group obtained the first proofs
of the general validities of both the BPF and FBP formulae
in the case of cone-beam scanning along a general smooth
scanning trajectory [6–9]. Other groups also made signifi-
cant contributions along this direction [10–14].

The importance of performing exact image reconstruc-
tion from the minimum amount of data has been recog-
nized for a long time. The first landmark achievement is the
well-known fan-beam half-scan formula [15]. A recent mile-
stone is the two-step Hilbert transform method developed
by Noo et al. [16]. In their framework, an object image on a
PI-line/chord can be exactly reconstructed if the intersection
between the chord and the object is completely covered by a
field of view (FOV). Very lately, Defrise et al. [17] proposed
an enhanced data completeness condition that the image on
a chord in the FOV can be exactly reconstructed if one end

of the chord in the object is covered by the FOV. Inspired
by the tremendous biomedical implications including local
cardiac CT at minimum dose, local dental CT with high ac-
curacy, CT guided procedures, nano-CT, and so on [18], we
recently proved, using analytic continuation, that the interior
problem can be exactly solved if a subregion in an region of
interest (ROI) in the FOV is known [19, 20], while the con-
ventional wisdom is that the interior problem does not have
a unique solution [21].

A natural question is whether our exact interior recon-
struction method [19, 20] can be extended to the interior
reconstruction of a volume of interest (VOI)? Our positive
answers will be provided here. The paper is organized as fol-
lows. In the next section, we summarize the relevant nota-
tions and key theorem. In the third section, we prove the fea-
sibility of the exact 3D interior reconstruction using the BPF
and FBP approaches, respectively. In the fourth section, we
will present further ideas and conclude the paper.

2. NOTATIONS AND KEY THEOREM

The basic setting of our previous work is cone-beam scan-
ning along a general smooth trajectory

Γ = {ρ(s) | s ∈ R}. (1)

As shown in Figure 1, a generalized PI-line of r ∈ R3 is de-
fined as the line through r and is intersecting the scanning
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trajectory at two points ρ(sb) and ρ(st) on Γ with sb < st,
where sb = sb(r) and st = st(r) are the parameter values cor-
responding to these two points. At the same time, the PI-
segment (also called a chord) L is defined as the segment
of the PI-line between ρ(sb) and ρ(st), the PI-arc is the part
of the trajectory between ρ(sb) and ρ(st), and the PI-interval
is [sb, st]. Note that “PI” means “π.” Suppose that an object
function f (r) is constrained in a compact support Ω ⊂ R3.
For any unit vector β, let us define a cone-beam projection of
f (r) from a source point ρ(s) on the trajectory Γ by

Df
(
ρ(s),β

)
:=
∫∞

0
f (ρ(s) + tβ

)
dt. (2)

Then, we define a unit vector β(s, r) as the one pointing to
r ∈ L from ρ(s) on the trajectory:

β(r, s) := r− ρ(s)
∣
∣r− ρ(s)

∣
∣ . (3)

We also need a unit vector along the chord:

eπ := ρ
(
st
)− ρ(sb

)

∣
∣ρ
(
st
)− ρ(sb

)∣∣ . (4)

Note that the unit vector eπ is the same for all r ∈ L. Our
major finding can be summarized as the following theorem.

Theorem 1. Assume that there are three points a, b, c on
the chord L with b situating between a and c. Suppose
that (i) the projection data Df (ρ(s),β(r, s)) are known and
Df (ρ(s),−β(r, s)) ≡ 0, both for any s ∈ [sb, st] and for any
r on the line-segment ac (and its small neighborhood), and (ii)
f (r) is known on the line-segment ab. Then, the function f (r)
can be exactly and stably reconstructed on the line-segment bc.

We have several remarks on Theorem 1. Our condition
(i) implies that the cone-beam projection data are both
longitudinally and transversely truncated but the derivative
(∂/∂q)Df (ρ(q),β(r, s))|q=s is available for any s ∈ [sb, st] and
for any r on line-segment ac . This is the 3D interior recon-
struction problem which does not have a unique solution
according to the conventional wisdom [21]. Our condition
(ii) demands prior information for the interior reconstruc-
tion which regularizes the ill-posedness of the interior re-
construction and make its solution accurate and robust. As
discussed in our earlier paper [19], we may assume that the
known data are on another subinterval of the line-segment
ac, or a union of such intervals. In practice, we may find that
the function f (r) is known inside a subregion of the VOI,
such as air around a tooth, water in a device, or metal in
a semiconductor. Then, the exact interior reconstruction of
the unknown parts of the VOI becomes feasible if their cor-
responding chords intersect with the known VOI.

3. PROOF OF THEOREM 1

3.1. Proof in the BPF framework

Our generalized BPF algorithm [6, 7] requires the backpro-
jection of projection data derivative (∂/∂q)Df (ρ(q),β)|q=s on

a
b

c
f (r)

r

eπ

ρ(sb)
β

γ
e

Θ
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Chord L
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Γ

Figure 1: Basic setting for exact 3D interior reconstruction.
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Figure 2: Setting for Theorem 2, where f (x) is supported on [e1, e2]
and known on (a, b), while its Hilbert transform is known on (a, c).

a fixed chord and the inverse Hilbert transform along the 1D
chord. Recall that the backprojection at r ∈ L can be ex-
pressed as [6, 7]

g(r) :=
∫ st

sb

∂

∂q

(
Df
(
ρ(q),β(r, s)

)

−Df
(
ρ(q),−β(r, s)

))
∣∣
∣
∣
q=s

ds
∣
∣r− ρ(s)

∣
∣ .

(5)

Condition (i) implies that g(r) is available on the line-
segment ac. If we setup a local 1D coordinate system on the
chord L, Theorem 1 can be reduced to the following 1D case.

Theorem 2. As shown in Figure 2, assume that e1 < a < b <
c < e2 and the 1D function f (x) is supported on the interval
[e1, e2]. f (x) can be exactly reconstructed on (b, c) if (i) the
Hilbert transform g(x) of the function is known on (a, c); (ii)
f (x) is known on (a, b); and (iii) the constant

∫ e2

e1
f (x)dx is

known.

Theorem 2 is exactly what we proved in our previous pa-
per [19]. Hence, we complete the proof of Theorem 1 in the
BPF framework.

3.2. Proof in the FBP framework

For an arbitrary smooth scanning curve ρ(s) on the PI-
interval [sb, st] and any point r on the chord L from ρ(sb) to
ρ(st), the exact FBP reconstruction formula can be expressed
as [8]

f (r) = − 1
2π2

∫ st

sb

ds
∣
∣r− ρ(s)

∣
∣PV

×
∫ 2π

0

∂

∂q
Df
(
ρ(q),Θ(s, r, γ)

)
∣
∣
∣
∣
q=s

dγ

sin γ
,

(6)

where “PV” represents a principal value integral, and
Θ(s, r, γ) represents the filtering direction which is taken in
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the PI-segment direction and defined as cosγβ + sin γe with
the unit directions β = β(r, s) and e = ((eπ − (eπ·β)β)/|eπ −
(eπ·β)β|), that is, Θ(s, r, γ) supposes a clockwise rotation in
the plane determined by L and β(r, s), centered at ρ(s) with
Θ(s, r, 0) = β(r, s) (see Figure 1).

For a fixed ρ(s), the filtering plane remains unchanged for
all r ∈ L. As shown in Figure 3, we can change the variable γ
to γ̃ so that the direction for γ̃ = 0 now points to the direction
eπ , and the filtering direction is still specified clockwise. Let
θ(r, s) denote the angle from eπ (γ̃ = 0) to β(r, s). Then, (6)
can be rewritten as

f (r) = − 1
2π2

∫ st

sb

ds
∣∣r− ρ(s)

∣∣PV

×
∫ π

−π

∂

∂q
Df
(
ρ(q),Θ(s, γ̃)

)
∣
∣
∣∣
q=s

dγ̃

sin
(
γ̃ − θ(r, s)

) .

(7)

Note that Θ(s, r, γ) now is changed to Θ(s, γ̃) which is inde-
pendent of r ∈ L, and the value of θ(r, s) is negative. Our
condition (i) implies that

PV
∫ θ(c,s)

θ(a,s)

∂

∂q
Df
(
ρ(q),Θ(s, γ̃)

)
∣∣
∣
∣
q=s

dγ̃

sin
(
γ̃ − θ(r, s)

) (8)

is known for any s ∈ [sb, st] and for any r on the line-segment
ac.

To reconstruct f (r) on the line-segment bc, we need to
know that

h(r) = − 1
2π2

∫ st

sb

ds
∣
∣r− ρ(s)

∣
∣PV

×
∫

γ̃ ∈ [−π,π], γ̃ �∈ [θ(a, s), θ(c, s)]

× ∂

∂q
Df
(
ρ(q),Θ(s, γ̃)

)
∣
∣∣
∣
q=s

dγ̃

sin
(
γ̃ − θ(r, s)

)

(9)

for r on the line-segment bc. In fact, the inner integral of
(9) is an ordinary integral for r on the line-segment ac. Let
rp(s) denote the point on L such that (rp(s)−ρ(s)) is perpen-
dicular to L, as shown in Figure 4. Then, sin (γ̃ − θ(r, s)) =
sin γ̃ cos (θ(r, s))− cos γ̃ sin (θ(r, s)) with

sin
(
θ(r, s)

) = −∣∣rp(s)− ρ(s)
∣
∣

∣
∣r− ρ(s)

∣
∣ ,

cos
(
θ(r, s)

) = ε
∣
∣r− rp(s)

∣
∣

∣
∣r− ρ(s)

∣
∣ ,

(10)

where ε = 1 if r is on the ρ(st) side of rp(s) and ε = −1 if r is
on the ρ(sb) side of rp(s). If we use complex plane coordinates
(see Figure 4) with the origin ρ(sb) and the positive direction
from ρ(sb) to ρ(st), then we have

cos
(
θ(r, s)

) = r− rp(s)
∣
∣r− ρ(s)

∣
∣ . (11)

Then, h(r) in (9) becomes

h(r) = − 1
2π2

∫ st

sb
ds
∫

γ̃ ∈ [−π,π], γ̃ �∈ [θ(a, s), θ(c, s)]

× ∂

∂q
Df
(
ρ(q),Θ(s, γ̃)

)
∣
∣
∣∣
q=s

× dγ̃

sin γ̃
(

r− rp(s)
)

+ cos γ̃
∣
∣rp(s)− ρ(s)

∣
∣ .

(12)

Note that the denominator under dγ̃ is nonzero for r on ac
in the real axis. Therefore, if we replace r by z in (12), h(z)
is an analytic function on the complex plane with cuts along
the real axis from −∞ to a and from c to +∞. As a result, we
can always take derivatives with respect to z under integra-
tion on the right side of (12), and the proof follows the same
arguments as in the proof of Cauchy’s integral theorem.

By condition (ii), f (r) is known on the line-segment ab.
Hence,

f (r) = − 1
2π2

∫ st

sb

ds
∣
∣r− ρ(s)

∣
∣PV

×
∫ θ(c,s)

θ(a,s)

∂

∂q
Df
(
ρ(q),Θ(s, γ̃)

)
∣
∣∣
∣
q=s

d γ̃

sin
(
γ̃−θ(r, s)

)+h(r)

(13)

is known for r on the line-segment ab. Assumption (i) and
(8) imply that the first term on the right side of (13) is
also known. Therefore, h(z) is known for any z on the line-
segment ab. Then, by analytic continuation, h(z) on the line-
segment bc can be uniquely determined by its value on the
line-segment ab. That is, (9) is known for r on the line-
segment bc. By assumption (i), (8) is known for r on the line-
segment bc. This gives us the exact and stable reconstruction
of f (r) on the line-segment bc by (7). That is, Theorem 1 is
proved in the FBP framework.

We have two remarks for the above proof. First, these ar-
guments work for the generalized PI-line filtering direction
only. If the filtering direction is not in the PI-line direction,
neighboring points on the same PI-line will require different
filtering integrals. In this case, currently we do not know how
to link a filtering integral to another filtering integral for the
interior reconstruction. Second, the translation from θ(r, s)
to r − rp(s) is a crucial step. Without such a step, one can-
not deal with the effect of the outer integral in (9). With that
change, (12) becomes manageable because r only appears in
the inner integral.

4. DISCUSSIONS AND CONCLUSION

While we have proved that the exact and stable 3D interior re-
construction is feasible from data focusing on a VOI and col-
lected along a general smooth scanning trajectory, we believe
that our results can be also extended to the case of discontin-
uous scanning trajectories. The general exact cone-beam re-
construction results were reported for both continuous and
discontinuous trajectories [6–8, 12, 13]. Similarly, we can use
the same tricks such as in [12, 13] to formulate more general
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Figure 3: Variable change from γ to γ̃.
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Figure 4: Complex coordinate system for the analytic continuity.

results. We will elaborate this type of ideas further in the fu-
ture, such as for triple-source cone-beam CT [22, 23].

Because the closed-form method for analytic continu-
ity is unavailable, we adapted a projection onto convex set
(POCS) method [19] and a singular value decomposition
(SVD) [20] method for exact 2D interior reconstruction, and
these methods can be further adapted for exact 3D interior
reconstruction and should have the same noise character-
istics. Moreover, the BPF and FBP formulations will lead
to different numerical implementations for exact 3D inte-
rior reconstruction when an analytic continuity method is
given. According to our theorem, the function value of f (r)
must be known in some subregions of a VOI to be recon-
structed. For practical applications and further research, we
may use and add other constraints or prior information into
the interior reconstruction process such as an iterative recon-
struction procedure. These additional constraints may be in-
cluded but not be limited to mean and other moment val-
ues, histogram features, maximum/minimum values of sub-
regions or involved components, and low-resolution images
related to the VOI (subregions or neighbors). Even if we do
not know the exact function value of f (r) in a subregion or
we do not necessarily need exact reconstruction, we can still
utilize our analytically obtained guidelines to construct ap-
proximate reconstruction algorithms.

In addition to CT-specific interior reconstruction tech-
niques, we recognize that our approach for interior recon-
struction can be readily applied for MRI, SPECT, PET, and
other geometric optic-based imaging modes. Furthermore,
we feel that our exact interior reconstruction results can be
extended into the case of the exponential attenuated radon
transform [24, 25]. Specifically, we can use iterative algo-
rithms to produce superior images in the same spirit of the
exact interior CT reconstruction. Our general hypothesis is

that we can start with a generalized Hilbert transform of at-
tenuated radon data and reach similar conclusions by ana-
lytic continuation. While analytic algorithms may be devel-
oped for the uniformly attenuation SPECT/PET, iterative al-
gorithms (e.g., POCS) should be feasible for exact 3D inte-
rior SPECT/PET reconstruction in the case of non-uniformly
attenuation background.

In the CT field, the most popular imaging model as-
sumes a monochromatic source and a motionless subject.
Theorem 1 in this paper is also based on the same assump-
tion. However, our results are also relevant to polychromatic
and/or dynamic imaging. By utilizing truly local data instead
of global data, we may achieve better temporal resolution,
higher image contrast, less image artifacts, and so on. This
aspect seems deserving more research efforts as well.

In conclusion, using the BPF and FBP approaches, re-
spectively, we have proved that the 3D exact interior re-
construction is feasible from both longitudinally and trans-
versely truncated data collected along any general scanning
trajectory only through an internal VOI. The major mathe-
matical tool which we have used is the analytic continuation
theory. Our previous reconstruction algorithms for exact 2D
interior reconstruction can be directly applied in the 3D case.
Our results can take other mathematical forms, can be ex-
tended to other imaging fields, and have tremendous appli-
cation potentials. We are actively working to realize selected
possibilities.
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