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Abstract.-The probability distributions of population size are derived for
populations living in randomly varying environments for both density-dependent
and density-independent population growth. The effects of random variation
in the rate of increase, the carrying capacity, and sampling variation in numbers
are examined.

In a preceding paper, Lewontin and Cohen' discussed the effect of random
variation in finite growth rate on the probability that a population will have a
particular size at a given time. That paper considered only a population grow-
ing without any effect of population size N on growth rate r. Moreover, it
considered only the effect on population growth of random variation in the
growth rate itself. In the present paper I shall extend their results in two direc-
tions. I shall consider both unlimited population growth and density-dependent
growth, and I shall examine the effects of sampling variation in adult numbers
due to finite population size, variation in the growth rate r, and random variation
in the upper limit to growth where there is density dependence.

Density-Independent Growth.-(a) Sampling variation in adult numbers: The
deterministic equation for population growth without any density limitation is
simply

d= r(t)N, (1)

where r(t) is the instantaneous growth rate at time t.
Let us assume that sampling variation occurs only in the death of adults (that

is, that the number of zygotes produced is large compared to the adult population
and is therefore relatively less subject to random fluctuations). Then if v is
the mean viability, the variance of survivorship in a population of size N is
Nv(l-v). The growth equation can be rewritten

dN = r(t)N + v(1t-v) E(t)x/N, (2)

where e(t) is a random variable with mean 0 and variance 1. This case cannot
be subsumed under random variation in r, because in the present case the varia-
tion is proportional to VN. If it were proportional to N, then of course equation
(1) could be put in the form given by Lewontin and Cohen.' Dividing through
by v/N and substituting y = NN, we obtain

dy = '/2r(t)y + 1/2v/v(j77) e(t). (3)
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Multiplying both sides by e-'/2fot(T)dT and subtracting 1/2r(t)e-1/2f1;(T)dry, we ob-
tain

dy
e-/2~r(7)dr:- /2r(t)e-1/2fr(7)dry = '/2 e1/2.fr(T)dt(t). (4)

dt

The left-hand side is tje-1/2for(T)dTJ 1so that, integrating both sides, we have

y = yoe /2g7(T)dT + '/2-\/v(1 - V) e/2for(T)dTfJoe- /2for( )d8e(r)dr. (5)

Thus each E(T) is weighted according to the total accumulated growth since time T.
Now let r(r) be a constant r. Then y becomes

y = yoel/2rt + 1/2foe1/2r(t-r)E(T)dT (6)

The expected value of y is

E(y) = yoel/lr, (7)
and since the different E(r) are independent, the variance of y is

a,, = I/4v(l v)foter(t.T)dr, (8)

or

-y2 V(1 -v)(ert- 1). (9)
4r

Thus the random fluctuations do not affect the average y. But N = y2, so that
from equations (7) and (9)

E(N) = Noert + -v(1 - v)[ert -1]. (10)
4r

Hence E(N) is increased because of random sampling fluctuation when r is
positive. Since e (s) is derived from a binomial process and is roughly normal,
y can be approximated by a normal distribution with mean yoe'/2rt and variance

-v(1 - v) (ert - 1), while N will be distributed as noncentral x2 with 1 d.f. This
4r
N will be skewed to the left so that there will be a very high probability that
N <E(N).

(b) Variance in r: It was shown in the previous paper' that when the random
variation occurs in r, N(t) = Noefr(t)dt. Thus N(t) depends on all past values
of r with equal weight. The central limit theorem applies to fr(t)dt, which ap-
proaches the normal distribution with mean rt and variance tar2. Thus N/No
has a logarithmico-normal distribution

N

- NoVI '-j t

f()=N %/27
r, 2ior2(3NoF).(1

This function has a single peak at N = Noe(r-rr so that the mode increases or
decreases as r is greater or less than a,2.
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Densiy-Dependent Growth.-If there is an upper limit to population growth,

equation (1) may be modified to the form dN = r(t)N 1 -
N

whereK is the
carrying capacity.
Once again we can treat separately random variation in r, random sampling

variation, and variation in k.
(a) Random r: Here we can separate variables and obtain

dN = r(t)dt, (12)
N(1--)

so that

N Noin K-N = in + fr(t)dt (13)

KNoefr(8)ds (14)
N~)=K - No + Noefo(8)d8 (4

Thus if r > 0, N(t) -+ K, while if F < 0, N(t) -- O. Since N is now bounded,
we can use the diffusion equation methods described by Kimura2 to find the
limit distribution. In his notation, let M(N) be the mean change inN given N,
and V(N) the variance of the change. Then the limit distribution is given by

4?(N) =V(N)e2V())dN (15)

where

C= 1/ (Vf)exp 2f'V(N dN) dN.

In our case, M(N) = rN (1 - ), and V(N) = ar2N2 (1 - . Then

C 221 dN
(N) = - N) exp - j i' (16)

which is

CN2(2r'-) / N-2(+)
¢(N) = I1 --_ (17)

Thus c1(N) increases toward infinity as N -* K. It will be U-shaped if i/o.2 < 1.
Then there are accumulations of populations near 0 and K. But if r > a2, the
populations will accumulate at K. This 4>(N) is, however, an artifact of the
model, since as N -> K variation in r has no effect, and a population at K remains
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there. With even a small amount of random variation the ascending curve
near K will be replaced by a peak.

(b) Sampling variation: Here there is no explicit solution to the equation

d- = rN1 -K) + e(t)v'. However, we can use the diffusion equation

method. Now M(N) = rN( - N) and V(N) = U"2N. Thus

1(N) -e2(12)* (18)

The slope of 4(N) is (-f + VJ) so that near N = 0 the slope is negative.

The maxima and minima are found at the roots of rN(1-K) = 1/2au2. Thus

c1(N) falls to a minimum at --/( ) - 2K and rises to a maximum at

2 + - 2 As the variance increases, the modes approach each other,

and when ao2 = rK, CF(N) is a monotonic descending curve. Here large r
ameliorates the effect of uf2 in reducing the modal (and presumably also the
mean) population size.

(c) Random K: In order to solve equation (12) for random K we make the
1 1 dy ri Q__substitutions Kt = Q(t) and - = N. Then- = -(1-( dt or

K(t) y y2
dyd= -ry + rQ(t). (19)

This can be solved by multiplying both sides by ert, adding ryert to both sides,
and integrating directly. This gives

y = yoe-rt + foe t8)Q(s)ds, (20)

so that

N = No/{e-rt + Nof j(j) ds}. (21)

Thus N(t) depends on a weighted harmonic mean of the K's, with r determin-
ing how quickly past values of K are damped out.
The diffusion equation approach is applicable when there is no correlation

among the K's. However, it is more convenient to look at the equation for
1 dy

y -NI -~t = -ry + rQ(t). Now for r > 0, y is bounded, and we may use the

diffusion approach. Thus M(y) = -ry + rQ, V(y) = r2o-Q2, and

(22)
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Thus 1/N is distributed normally with mean Q and variance l/2riQ2, and the
harmonic mean of K is the median N. Clearly, N is reduced by the variance
of K, and this effect is increased with increasing r.

In summary, sampling variance increases the expected size of density-inde-
pendent populations, but with an upper limit K it results in bimodality. Most
populations are either near zero or near a peak between K/2 and K. Variation
in r without density dependence does not alter the expected value of In N, and
therefore it increases the expected N. Variable r, when there is a ceiling to
population growth, results in the concentration of population near K if the vari-
ance of r is less than the mean, and otherwise gives a bimodal distribution with
populations near K and zero. In either case, N is some function of the integral
of r(t) over all past values with equal weight.
When the carrying capacity K itself varies, N is equal to a weighted harmonic

mean of the K's, with greater weight given to recent values. The rate at which
the effects of past K's are damped out depends on r, larger r giving rapid damp-
ing.

I Lewontin, R. C., and D. Cohen, these PROCEEDINGS, 62, 1056 (1969).
2 Kimura, M., in Cold Spring Harbor Symposia on Quantitative Biology, vol. 20 (1955), pp.

33-53.
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