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Abstract
The mesolimbic dopaminergic (ML-DA) system has been recognized for its central role in motivated
behaviors, various types of reward, and, more recently, in cognitive processes. Functional theories
have emphasized DA's involvement in the orchestration of goal-directed behaviors, and in the
promotion and reinforcement of learning. The affective neuroethological perspective presented here,
views the ML-DA system in terms of its ability to activate an instinctual emotional appetitive state
(SEEKING) evolved to induce organisms to search for all varieties of life-supporting stimuli and to
avoid harms.

A description of the anatomical framework in which the ML system is embedded is followed by the
argument that the SEEKING disposition emerges through functional integration of ventral basal
ganglia (BG) into thalamocortical activities. Filtering cortical and limbic input that spread into BG,
DA transmission promotes the “release” of neural activity patterns that induce active SEEKING
behaviors when expressed at the motor level. Reverberation of these patterns constitutes a
neurodynamic process for the inclusion of cognitive and perceptual representations within the
extended networks of the SEEKING urge. In this way, the SEEKING disposition influences attention,
incentive salience, associative learning, and anticipatory predictions.

In our view, the rewarding properties of drugs of abuse are, in part, caused by the activation of the
SEEKING disposition, ranging from appetitive drive to persistent craving depending on the intensity
of the affect. The implications of such a view for understanding addiction are considered, with
particular emphasis on factors predisposing individuals to develop compulsive drug seeking
behaviors.
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1. INTRODUCTION
1.1. The mesolimbic dopamine (ML-DA) system

The ML-DA system (Fig.1) has received considerable attention due to its involvement in a
range of psychological processes and neuropsychiatric diseases. In fact, after the development
of a DA theory of schizophrenia (Carlsson, 1974;1978;Snyder, 1972;Meltzer & Stahl, 1976),
additional ML-DA hypotheses have been proposed to explain addiction (Wise & Bozarth,
1981;1987;Koob, 1992), attention deficit hyperactivity disorder (ADHD) (Oades, 1987;Levy,
1991; Russel, 2000), depression (Willner, 1983a,1983b,Dailly et al., 2004) as well as global
behavioral activation (Gray, 1995) ranging from response persistence to behavioral
compulsions (Salamone & Correa, 2002;Everitt & Robbins, 2005).

Localized electrical brain stimulation studies (Olds & Milner, 1954; Heath, 1964, Olds,
1977; Wauquier & Rolls, 1976) have implicated the ML-DA in positive rewarding states
(Wise, 1978; 1981; Wise & Rompre, 1989) as well as in appetitive motivated behaviors
(Panksepp, 1971, 1981a, 1982; 1986, 1998; Blackburn et al., 1987; 1989; Berridge & Robinson,
1998; Ikemoto & Panksepp, 1999). Since DA is also released in response to aversive stimuli
and stress (Abercombie et al., 1989; Puglisi-Allegra et al., 1991; Rouge-Pont et al., 1993;
Pruessner et al., 2004), it appears to promote generalized behavioral arousal under both positive
as well as negative emotional conditions, perhaps in terms best conceptualized as the seeking
of safety (Ikemoto & Panksepp, 1999). Moreover, the ML-DA system has recently been
recognized for its role in the determination of personality traits, including “novelty” or
“sensation” seeking (Bardo et al., 1996; Zuckerman, 1990), “extraversion” (Depue & Collins,
1999), and “impulsivity” (Cardinal et al., 2004).

Current interpretations of ML-DA functions diverge with respect to emphasis on unconditioned
or behavioral priming effects (motivational theories) versus conditioned effects (learning
theories). The “psychomotor activation” hypothesis (Wise & Bozarth, 1987), the “behavioral
activation system” hypothesis (Gray, 1995), the “behavioral facilitation” hypothesis (Depue
& Collins, 1999), the “SEEKING system hypothesis” (Panksepp, 1981; 1998; Ikemoto &
Panksepp, 1999), the “wanting” hypothesis (Berridge & Robinson, 1998), and the “effort-
regulation” hypothesis (Salamone & Correa, 2002; Salamone et al., 2003) all acknowledge a
motivational interpretation of ML-DA functioning. They share a common perspective based
on the classic distinction between appetitive and consummatory phases of motivated behaviors
(Sherrington, 1906; Craig, 1918), and with relatively minor differences, consider the DA
system as a fundamental drive for the expression of appetitive-approach behaviors.

The “reinforcement” (Fibiger, 1978; White & Milner, 1992; Everitt & Robbins, 2005) and the
“reward” hypotheses (Wise, 1978; Wise & Rompre, 1989; Schultz, 1997; 1998; 2001; Spanagel
& Weiss, 1999; Di Chiara, 2002; Wise, 2004), on the other hand, have largely focused on DA
as a learning mediator. While motivational theories are interested in the proactive actions of
DA transmission on future behaviors, learning theories tend to consider retroactive effects on
strengthened associations among past events. Although modern incentive motivation concepts
view rewards as promoters of motivational arousal and increased behavioral readiness (Bolles,
1972; Binda, 1974; Toates, 1986; Berridge & Robinson, 1998), learning theories consider that
the “most important role of DA in incentive motivation is historical; it is the stamping-in of
stimulus-reward association that has established incentive motivational value for previously
neutral stimuli” (Wise, 2004).

Multiple attempts to integrate motivational and learning perspectives of ML-DA transmission
have been pursued (e.g., Berridge, 2004; Toates, 2004; Koob, 2004), but a coherent
evolutionary-ethological view of how brain DA promotes certain types of unconditional
psychobehavioral tendencies is typically missing in most formulations. Therefore, a
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comprehensive hypothesis integrating new findings with earlier literature on rewarding electric
brain stimulation has yet to emerge. In our opinion, such needed integration may be achieved
by postulating a role of ML-DA in modifying primary-process emotional behaviors1 and
internal affective states (Panksepp, 1998, 2005)2. In fact, emotions and affects have
repercussion both on the way animals act in the world and learn through experience. As
extensively described in previous works (Panksepp, 1981; 1998; Ikemoto & Panksepp,
1999), ML-DA promotes the emergence of the SEEKING emotional disposition3, which we
envision as an affective urge that characterizes all motivated behaviors. This view has been
around as long as the more recent incentive-salience and reinforcement-type theories, but has
been typically ignored by those committed to behaviorist learning paradigm.

1.2. Functional anatomy of the mesencephalic DA projections
In mammals, most DA-containing neurons clustered within three major mesencephalic groups:
A8 cells in the retrorubral field, A9 cells in the substantia nigra (SN) and A10 cells in the
ventral tegmental area (VTA) (Dahlstrom & Fuxe, 1964; Ungerstedt, 1971; Lindvall &
Bjorklund, 1974; Fallon & Moore, 1978; German et al., 1983; Arsenault et al., 1988; German
& Manaje, 1993). Similar organizations of DA cell bodies have been demonstrated in reptiles
(Smeets et al., 1987; Smeets, 1988; Gonzalez et al., 1994) and birds4 (Smits et al., 1990;
Durstewitz et al., 1999). In addition, less dense aggregations of DA neurons inhabit the
supramammillary region of the hypothalamus, the dorsal raphe and the periaqueductal gray
(Swanson, 1982; Gaspar et al., 1983). Morphological characteristics, anatomical locations,
ascending projections and their associations with arousal functions, have led many to assign
DA neurons to the classical “reticular formation” (Moruzzi & Magoun, 1949; Schiebel &
Schiebel, 1958; Leontovich & Zhukova, 1963). Placed within the context of the reticular
activating system (Parvizi & Damasio, 2001), DA neurons are sensitive to various global states
of organisms, and their ascending projections modulate brain arousal in accordance with those
states (Geisler & Zahm, 2005).

The mesencephalic DA cell groups (A8; A9 and A10) lack clear anatomical boundaries,
develop in parallel from common embryonic tissues (Olson & Seiger, 1972; Fallon & Moore,
1978; Hu et al., 2004), and partly overlap in their projection fields (Nauta et al., 1978). Their
axons project largely to structures located in the anterior part of the forebrain, and modulate
the activity of cognitive-executive reentrant circuits between the cortical mantle and the BG
(Alexander et al., 1986; Kalivas et al., 1999) (Fig. 2). Such circuits are involved in the
organization of practically all motivated behaviors, both highly flexible and more automatic.
It is thought that BG-thalamocortical circuits produce adaptive behavioral flexibility, while
their dysregulation underlies a whole plethora of neuropsychiatric diseases, from depression
to obsessive-compulsive disorders, from addiction to Parkinson, etc. (Swerdlow & Koob,
1987; Robbins, 1990; Deutch, 1993; Kropotov & Etlinger, 1999; Jentsch et al., 2000; Graybiel
& Rauch, 2000; Joel, 2001; Groenewegen, 2003). Resembling a spiraling, functional
organization (Zahm and Brog, 1992), a special type of “state” process, information flow
appears to exist between different loops of such circuitries with feed-forward processing from

1An emotional behavior is a flexible and coherent adaptive response to biologically relevant stimuli. It has an instinctual and inherited
basis, but is different from other instincts because of its plastic nature and its strong subjective—affective aspects. All the emotional
behaviors are constituted by a wide array of behavioral and autonomic responses coordinated as an emotional operating system (or
emotional command system) constituted of specific neural circuits within the brain (Panksepp, 1998).
2An affective state is the basic subjective feeling characteristic of primary-process homeostatic drives, emotions and the resulting
sustained moods.
3In this paper we will continue to use the convention of capitalizing the SEEKING disposition indicating that a specific neurodynamic
state is activated and the SEEKING system to help highlight that a functional neural system is being discussed. Please also note that
capitalizations are used to i) avoid part-whole confusions, ii) to alert readers to the claim that these may be necessary brain systems for
those types of emotional behaviors and feelings although by no means sufficient for all the emotional manifestations.
4Comparative studies in vertebrates have demonstrated the loss of some dopamine (and noradrenaline) cell groups in amniotes compared
with anamniotes, especially in the hypothalamic periventricular region (Smeets & Gonzales, 2000).
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limbic regions (especially medial frontal areas), to executive and motor circuits (Heimer &
Van Horsen, 2006). DA neurons thereby act as an intermediary of limbic-emotional and
motivational action outflow (Haber et al., 2000; Joel & Weiner, 2000; Mogenson, et al.,
1980b).

Although DA cell groups form an anatomical continuum, the ML-DA system has been
differentiated from the nigrostriatal (NS) DA system on the basis of anatomical, and functional
criteria (Bernheimer et al., 1973; Ungerstedt et al., 1974). The ML-DA system (Fig.1), situated
more medially in the brain, is more ancient in brain evolution than the more laterally situated
NS-DA circuitry, and it has been more clearly implicated in the regulation of intentional,
motivated movements, in flexible-emotive behaviors, and in the process of “reward” than the
laterally situated NS-DA fields (Papp & Bal, 1987; Wise & Bozarth, 1987; Blackburn et al.,
1989; Berridge & Robinson, 1998; Ikemoto & Panksepp, 1999). The NS-DA system, in
contrast, controls procedural aspects of movements and motivated behaviors as it reaches more
dorsal areas of BG, where behavioral and cognitive habits are learned, stored and expressed
(Hornykiewicz, 1979; Carli et al., 1985; 1989; Graybiel, 1997; Jog et al., 1999; Haber, 2003).

1.3. How can DA affect behavioral and psychological processes?
DA-receptor activated molecular pathways have been partially unraveled (Greengard et al.,
1999; Greengard, 2001a), but the precise mechanisms by which DA influences behavioral and
psychological phenomena, remains unclear. As a modulator of neural activity, DA interacts
with fast synaptic transmission (Greengard, 2001b) and thereby influences the way specific
external information is processed within the brain (Mesulam, 1998). One hypothesis posits that
DA regulatory function increases the signal-to-noise ratio and enhances the efficacy of neural
networks in elaborating biologically significant signals (Rolls et al., 1984; DeFrance et al.,
1985; Kiyatkin & Rebec, 1996; Nicola et al., 2000). Based on in vivo and in vitro single-cell
studies, the signal-to-noise ratio hypothesis explains how behavioral and motivational arousal
processes may be linked to specific cognitive or perceptual representations. However, for
understanding how behavioral and psychological arousal is processed in the nervous system,
large-scale energetic states of the brain, instead of electrical activity of single neurons, need to
be considered (Steriade, 1996; 2000; Ciompi & Panksepp, 2004; Llinas et al., 2005; Freeman,
2005). DA modulates global-field dynamics, desynchronizes cortical-derived oscillatory
rhythms and promotes high-frequency waves along the gamma band within BG-
thalamocortical circuits (Brown & Mardsen, 1998; Brown, 2003; Magill et al., 2004; Lee et
al., 2004). In our view, these rhythms may be accompanied by the release of neurodynamic
instinctual sequences, which are essential infrastructures for intentional behaviors5.
Neurodynamic sequences are repetitive sequential activity patterns reverberating across
specific areas and circuits of the brain. Recently, they have been called “avalanches” (Begs &
Plenz, 2003, 2004), and their influence on brain activity may be described with the concept of
“dynamic attractors” (Freeman, 2000; 2001; 2003).

The sequential patterns favored by DA in ventral BG-thalamocortical circuits may relate to an
instinctual drive to seek life-supportive aspects of the environment and to actively escape those
aspects that could be destructive. These neurodynamic sequences are evolutionarily intrinsic,
but epigenetically refined, procedural patterns associated with the expressions of exploring and
approach behaviors (locomotion, sniffing, head movements, saccades, i.e.). The reverberation

5Intentions literally mean to tend to something. In their primary-process form, they are endogenously produced instinctual activities that
naturally predispose generalized (initially objectless) action urges to evolve behaviorally towards more specific goal-directed responses.
Here, we generally choose to use the concept of intentional behaviors instead of goal-directed behaviors, because goal-directed behaviors
presuppose the explicit representation of the goal. On the contrary, intentional behaviors are intrinsically driven by impulses of neural
activity organizing a specific type of behavioral sequence even before specific objects come to be represented as the final goals. In sum,
intentional behaviors are sustained initially by the unconditional tendency of basal forebrain/BG circuits to complete a neurodynamic
sequence once it has been activated.
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of such sequential patterns within brain circuits change the individual's attitude towards the
environment, promoting the SEEKING disposition to dominate the motivational landscape of
the organism (Panksepp, 1998). This establishes a variety of expectancy states that energize
and coordinate the anticipation of life supporting events with characteristic reward seeking
behavioral tendencies (Panksepp, 1981; 1986). In this way, primary-process “intentions in
action” get transformed into learning and thought-related “intentions to act” (Panksepp,
2003).

1.4. Cardinal feature of the affective neuroethological perspective
Our interpretation of the behavioral functions of the ML-DA system is based on a theoretical
perspective we have called the affective neuroethological view. Such a perspective has
characteristic features that diverge from current dominant theoretical models and that focus on
a series of currently neglected elements.

1) Energy—Modern brain research often fails to account for the energetic and dynamic
aspects of neural, behavioral and mental activities. We should ask why animals perceive the
world as they do and are spontaneously active in globally energetic ways. How can cognitive
computations arise in the brain without the support of global dynamic states that channel an
organism's needs via large-scale brain network functions? Where do such global states arise,
and how do they interact with informational processes?

New neurodynamic approaches, that grant organisms intrinsic behavioral urges, are needed to
make sense of why organisms do what they do (Panksepp, 1998; Kandel, 1999; Freeman,
2000; 2003; Solms & Turnbull, 2002; Ciompi & Panksepp, 2004). It is time to introduce such
concepts into the discussion of brain DA functions since mesencephalic DA and ascending
reticular activating system (ARAS) are fundamental energetic sources for many types of neural
activity6 (Moruzzi & Magoun, 1949; Lindsley et al., 1949; 1950; Jones, 2003). In particular,
behavioral activating properties of DA may depend on its capacity to influence global field
dynamics in the forebrain, as reflected in DA facilitation of the emergence of fast-wave
oscillatory rhythms in BG and cortical areas (Brown & Marsden, 1998; Levy et al., 2000;
Tseng et al., 2001; Brown, 2003; Magill et al., 2004; Sharot et al., 2005).

2) Internal procedural sequences—Behavior is not limited to learning and associative
processes; neuro-behavioral instinctual processes, shaped by evolution, are essential for almost
aspects of goal-directed learning. Neurocognitive behaviorism denies (or at least ignores) an
organism's intrinsic behavioral identity and thus neglects certain inborn adaptive capacities as
fundamental determinants of learning (Lorenz, 1965). In addition to neural plasticity and top-
down hierarchical brain processes, we must harness ethological traditions in order to better
understand intrinsic capacities of organisms and thereby emphasize the importance to
evolutionary constraints on learning (Tinbergen, 1951; Lorenz, 1965; Burkhardt, 2005). In
vertebrates, such constraints emerge substantially from the influences that subcortical brain
structures exert over neocortical functions (MacLean, 1990; Panksepp, 1998).

In particular, basal forebrain, and BG are involved in the expression of sequential, species-
specific movements, such as instinctive and unlearned sequential grooming movements in

6The ARAS represents an endogenous system for regulating brain activity and responding to environmental stimuli and it includes
interconnected neural nuclei in the brainstem, the diencephalon and the basal forebrain. The ARAS has also been called the “isodendridic
core” of the brain, consisting in a “neural continuum with overlapping dendritic fields stretching from spinal cord to
telencephalon” (Geisler & Zahm, 2005, p287). As the main source of the basic sleep-wake cycle, it promotes waking arousal as well as
behavioral inhibition (Jones, 2003). Placed within the context of the reticular activating system (Parvizi & Damasio, 2001), DA neurons
are sensitive to various global states of the organism and their ascending projections modulate brain arousal in accordance with those
states. Moreover, since most areas innervated by DA projections sends feedback to DA neurons via direct and indirect pathways, the
ascending DA systems forms re-entrant loops with the reticular formation.
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rodents (Cromwell & Berridge, 1996), which are the Fixed Action Patterns (FAPs) of
ethologists7 (Lorenz, 1950; Tinbergen, 1951; MacLean, 1990). Moreover, the BG influence
learning, especially when different sequences of actions are linked into a single functional unit
(Knowlton et al., 1996; Graybiel, 1998; Jog et al., 1999; Packard & Knowlton, 2002; Bayley
et al., 2005). Basal forebrain areas, including BG, extended amygdala, septum, and nucleus of
Meynert (Heimer & Van Hoesen, 2006) represent the deep, subcortical parts of the cerebral
hemispheres (Swanson, 2000), and they are essential foundations for higher information
processing regions of neocortex to operate. Housing abundant GABA inhibitory neurons, they
form reciprocal networks and send inhibitory outputs to thalamic, hypothalamic and midbrain
nuclei (Kitai et a., 1981; Berardelli et al., 1998; Kropotov & Etlinger, 1999). Situated between
the cortex, the diencephalon and the brainstem, the basal forebrain is viewed as largely
inhibitory with tonical suppression of behavioral actions (Swanson, 2000). Nevertheless, when
something perturbs its intrinsic equilibrium, particular sequences of activity are released.
Therefore, basal forebrain nuclei have been considered “doors that, when unlocked, may
release into action large functions outside them” (Llinas, 2002).

3) Emotions—Dorsal BG areas control habitual behaviors, whereas other basal forebrain
nuclei (ventral BG, extended amygdala, and septum) are involved in emotional behaviors
(Koob, 1999; Swanson, 2000; Alheid, 2003; Heimer & Van Hoesen, 2006). Emotions comprise
sequences of FAPs that characterize their expressive and communicative aspects (Darwin
1872; MacLean, 1990; Llinas, 2002), but one main characteristic of emotion is to regulate the
organism's behavioral repertoire in flexible ways. Behavioral plasticity arises when each
emotional operating system orchestrates a wide range of potential responses in accordance with
environmental conditions (Panksepp 1998). When an emotion is activated, the organism's
attention is focused largely on a particular set of stimuli, memories and responses. For example,
an animal does not eat while experiencing intense fear; food is transiently excluded from its
interests. Diffusion of basal forebrain/BG characteristic patterns communicates an emotional
disposition within the brain. Such patterns represent the basic action tendencies characteristic
of various primary-process emotions, whose neural representations influence the activity of
many different brain regions and help match perceptual and cognitive representations into a
global action tendency. In such a way, basal forebrain changes intentional states and orients
behavior in specific directions.

From this perspective, it is inadequate to try to explain motivations, intentions and emotions
simply from top-down cognitive or representational perspective. Intentions-in-action, as
intrinsic impulses to act, may best be viewed as neural dynamic sequences, which, once
activated, constitute internal procedural drives8 (Llinas, 2002). In our model, such
neurodynamic sequences emerge from within basal forebrain and BG areas (Knowlton et al.,
1996;Graybiel, 1998), and associated medial diencephalic and mesencephyalic circuits, with
parallel roles in learning and expression of motor habits and emotions (MacLean,
1990;Graybiel, 1997;Jog et al., 1999).

4) Affective feelings—Neuronal activity is not limited to the production of computational
representations of the world; it also helps organize a large variety of states, among which the
emotions and associated affects have been ignored for perhaps too long (Panksepp, 1998,

7In rodents, for example, the BG control instinctive and unlearned sequential grooming movements (Cromwell & Berridge, 1996). The
homologues of BG in birds produce highly stereotyped behaviors, such as those used in song learning (Brainard, 2004; Kao et al.,
2005), while the striatum in reptiles is involved in regulation of social behaviors (Greenberg, 2003). In primates and other mammals, BG
control movements and cognitive executive processes (DeLong, 1990; Graybiel, 1995, Gerfen & Wilson, 1996), especially in initiation
and expression of its automatic procedural component (Graybiel, 1998, Jog et al., 1999).
8As better described in the section 4, internal procedural drives are sequential neural activity patterns spreading within neural circuits
and exerting a strong influence on brain activity. They push neural activity to evolve along specific directions, in accordance with the
sequence specified by the pattern.
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2005). Removing affectivity from neuroscience may lead to a profound misunderstanding of
intrinsic brain organization and functioning, and hinder scientific understanding of how brains
truly operate. A recently re-introduced James-Lange type view of emotions considers affective
feeling to be produced by “somatic marker” representations of body changes (Damasio,
1996; Damasio et al., 2000). However, the nature of feelings should also incorporate the
intrinsic intentionality of many instinctual behaviors; emotions are not only a consequence of
“what happened” (Damasio, 1999), but also ”what is happening”, “what is going to happen”
and “what may happen”. Such processes are not uniquely human characteristics; an affective
core underlying subjectivity appears to have emerged early in vertebrate brain evolution
(Panksepp, 1981; 1998, 2005), derived from brain systems that regulate the inner states of the
organisms (MacLean, 1990; Damasio, 1999; Craig, 2003; Thompson & Swanson, 2003;
Schulkin et al., 2003; Bernston et al., 2003; Porges, 2003; Sewards & Sewards, 2003; Alheid,
2003; Denton, 2006). The core affective substrate of every emotional feeling seems to be
generated, in part, inform hierarchically related neural networks that include, most
prominently, the periaqueductal gray, the hypothalamus, and the extended amygdala
(Panksepp, 1998). Indeed, accumulating evidence for some kind of primary-process
psychological experiences arising from such primitive subcortical circuits is becoming
substantial (Panksepp, 2005, Merker, 2007). In our view, the core affective states are
communicated to higher brain levels through the emergence of specific neurodynamic
sequences, so that the cognitive-evaluative aspects of emotion can be elaborated in a
coordinated fashion by various forebrain areas, especially orbitofrontal and medial frontal
regions.

2. EMPIRICAL STUDIES
2.1. Electrical self-stimulation of the brain (ESSB)

The discovery of ESSB by Olds and Milner (1954) represented a major breakthrough in
understanding the neurobiological bases of reward. Electrical stimulation of various brain sites
in association with specific behaviors increased the probability that animals would repeat those
behaviors. These studies led to the recognition of reward areas in the brain (Olds et al., 1971;
Wise, 1996; 2005; Chau et al., 2004) with the medial forebrain bundle (MFB) being a primary
neural pathway interconnecting many relevant brain regions (see Wise 2002 for a review).
Olds (1977) extensively analyzed the pervasive neuronal learning during appetitive
conditioning that occurred along the trans-hypothalamic self-stimulation continuum (for
review, see Figure 8.3 in Panksepp, 1998). Further it was demonstrated that with fixed-interval
stimulation of this substrate, animals would exhibit spontaneous conditioning characteristics
of fixed-interval instrumental behavior (Clark & Trowill, 1971; Burgdorf, et al., 2000)

It was also observed that electric stimulations of the MFB not only reinforce instrumental
actions, but they also arouse a variety of consummatory behaviors such as drinking, feeding,
gnawing and predation (Glickman & Schiff, 1967; Valenstein et al., 1969; 1970; Panksepp,
1971; 1981). Such stimulations also induced generalized arousal, leading to exploratory
behaviors not strictly related to any biological needs (Gallistel, 1974, Panksepp, 1981). Thus,
it was suggested that ESSB foster a general incentive-based disposition to approach
environmental stimuli (Glickman & Schiff, 1967; Trowill et al., 1969; Panksepp, 1981). With
the characterization of brain DA circuitry (Ungerstedt, 1971), it was further recognized that
the ML-DA system is an important ascending and activating component of the MFB involved
in the learning as well as in the motivational effects of electric brain stimulation (see Wise &
Rompre, 1989 for a review). Moreover, increasing DA levels into the Nacc with
psychostimulants enhances the rewarding properties of self-stimulation itself (Wise, 1996).
The ML-DA system is now generally considered a key circuitry involved in promoting aroused
states concerned with appetitive motivations, attention to rewards and behavioral persistence,
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and by some, the avoidance of punishement—namely the seeking of safety (Ikemoto &
Panksepp, 1999).

2.2. Psychomotor activating effects of DA drugs across vertebrates and invertebrates
Drugs that enhance DA functions mediate the emergence of unconditional, behaviorally
aroused state in many species. Facilitators of DA release, such as cocaine or amphetamine, and
agonists of DA receptors promote waking and behavioral activation in all mammals (Randrup
& Munkvad 1972; Wise & Bozarth, 1987; Trampus et al., 1991; Nishino et al., 1998; Wisor
et al., 2001). Rats and mice increase locomotor activity in response to such drugs and, if high
doses are used, they show stereotypical behaviors (Wise & Bozarth, 1987). In contrast,
decreased DA receptor stimulation is associated with hypoactivity and catalepsy (Fog, 1972;
Johnels, 1982; Monti et al., 1990). Similarly to mammals, injection of cocaine increase
locomotion in birds (Levens & Akins, 2001) and DA promotes locomotor and behavioral
activity in amphibians (Matsunaga et al., 2004; Endepols et al., 2004).

DA induces hyperactivity and exploration also in adult fruit flies (McClung & Hirsh, 1998;
Pendleton et al., 2002; Lima & Miesenbock, 2005; Kume et al., 2005) and other invertebrate
species (Torres & Horowitz, 1998; Sawin et al., 2000; Hills et al., 2004), suggesting a
remarkable evolutionary conservation of function. However, pro-DA drugs may also reduce
locomotor activity in invertebrates, perhaps acting peripherally (Martinez et al., 1988; Pavlova,
2001; Panksepp & Huber, 2004; Chase et al., 2004; Jorgensen, 2004). Although effects of DA
on invertebrate locomotion are not uniform, the rewarding properties for pro-DA drugs seem
to be conserved across invertebrates (Bellen, 1998; Wolf, 1999; Kusayama & Watanabe,
2000; Bainton et al., 2000; Brembs et al., 2002; Panksepp & Huber, 2004; Reyes et al.,
2005).

2.3. Microinjections and lesion studies
Starting with the work of Ungerstedt, et al. (1974), pharmacological and lesion studies of areas
with ML system cell bodies (VTA) and projections have clarified the behavioral functions of
the DA transmission in mammals. Microinjections of DA drugs into the Nacc increase
locomotor activity and exploratory behaviors (Jackson et al., 1975; Pijnenburg et al., 1976;
Carr & White, 1997; Swanson et al., 1997; Schildein et al., 1998), conditioned approach
responses (Taylors & Robbins, 1986; Kelley & Delfs, 1991; Burns et al., 1993; Wolterink et
al., 1993; Parkinson et al., 1999; Wyvell and Berridge, 2000), and anticipatory sexual behaviors
(Everitt et al., 1989; Everitt, 1990). DA enhancing microinjections are also associated with
rewarding properties. Animals readily self-administer DA agonists or drugs that directly
increase DA transmission in the Nacc (Hoebel et al., 1983; Phillips et al., 1994; Carlezon et
al., 1995; Ikemoto et al., 1997). In the conditioned place preference (CPP) paradigm, animals
spend more time in environments associated with Nacc injections of psychostimulants and DA
agonists (Carr & White, 1986; White et al., 1991; Liao et al., 1998). Experimental modulation
of DA transmission in ventral pallidum (VP) and olfactory tubercle has similar, often even
more intense, effects than in the Nacc (Ikemoto, 2003; Ikemoto et al., 2005). In fact,
microinjections of various DA drugs in the VP elicit locomotion and reward-related behaviors
(Gong et al., 1996; 1999; Fletcher et al., 1998) whereas VP lesions reduce responses to natural
and artificial rewards (Hiroi & White, 1993; Gong et al., 1997). Microinjections of GABA-A
receptor antagonists (e.g., picrotoxin, bicuculline) into the VTA increases locomotion by
disinhibiting DA neurons (Arnt & Scheel-Kruger, 1979; Mogenson et al., 1980b; Stinus et al.,
1982), and rodents will learn to self-administer GABA-A receptor antagonists (David et al.,
1997; Ikemoto et al., 1997a) or NMDA agonist (Ikemoto, 2004) into the VTA.

Experimentally enhanced DA function increases behavioral activity, whereas lesions of the
ML-DA system reduce or eliminate exploratory and appetitive-approach behaviors (Koob et
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al., 1978; Fink & Smith, 1980; Robbins & Everitt, 1982; Evenden & Carli, 1985; Taghzouti,
1985; Robbins et al., 1989; Pierce et al., 1990; Pfaus & Phillips, 1991; Jones & Robbins,
1992; Liu et al., 1998). Pharmacological reduction of Nacc DA transmission inhibits seeking-
approach behaviors in response to reward-associated cues (Blackburn et al., 1992; Di Ciano et
al., 2001; Parkinson et al., 2002; Wakabayashi et al., 2004). Interestingly, ML-DA depletion
or inhibition disrupts active-avoidance behaviors (Jackson et al., 1977; Koob et al., 1984;
McCullogh et al., 1993), suggesting that ML-DA also participates in the seeking of safety
(Ikemoto & Panksepp, 1999).

The functions of DA projections to the pFC are less clear. On one hand, intra-medial pFC
injections of amphetamine produce moderate increases in open-field activity (Carr & White,
1987; Kelley et al., 1989) and DA transmission in the pFC is involved in the reinstatement of
cocaine seeking-behaviors in rats (McFarland & Kalivas, 2001; Park et al., 2002; McFarland
et al., 2004; Sun & Rebec, 2005). On the other hand, microinjections of DA agonists in the
pFC decrease spontaneous, novelty- and psychostimulants-induced locomotor activity
(Radcliffe & Erwin, 1996; Broersen et al., 1999; Lacroix et al., 2000; Beyer & Steketee,
2000). A significant negative correlation also exists between mesocortical DA transmission
and locomotor activity (Hedou et al., 1999). Consistent with these findings, pFC DA lesions
produce hyperactivity (Tassin et al., 1978) and have anti-depressive effects9 (Espejo &
Minano, 1999; Ventura et al, 2002). Additional dilemmas exist concerning the role of
mesocortical DA transmission in mediation of reward. Whereas rats self-administer cocaine
directly into pFC and cocaine injected in the medial pFC induces CPP (Hemby et al., 1990),
amphetamine in the medial pFC is not self-administrated (Goeders et al., 1986) nor does it
induce CPP (Carr & White, 1986; Schildein et al., 1998). It has also been shown that lesion of
mesocortical projections do not reduce reward learning (Isaac et al., 1989; Hemby et al.,
1992; Shippenberg et al., 1993; Burns et al., 1993) or self-administration of intravenous cocaine
(Martin-Iverson et al., 1986; Schenk et al., 1991; McGregor et al., 1996).

In contrast to the role of DA in ventral BG and prefrontal areas, ML-DA transmission within
the amygdala (in basolateral as well as in medial and central nuclei) has been implicated in the
expression and learning of fear (Pezze & Feldom, 2004). For example, inhibition of DA
transmission within the amygdala reduces fear-potentiated startle (Greba & Kokkinidis, 2000),
the retrieval of conditioned-fear associations (Nader & LeDoux, 1999), and has a general
anxiolytic effect (de la Mora et al., 2005). On the other hands, rats self-administer d-
amphetamine directly in the central nucleus of the amygdala (Chevrette et al., 2002), while
DA transmission in the basolateral amygdala contribute to the establishment and reinstatement
of instrumental and associative reward learning (Zarrindast et al., 2003; Andrzejewski et al.,
2005; Alleweireldt et al., 2006). In sum, both positive and negative emotional behavioral
dispositions appear to be stimulated by DA in the amygdala. However, since DA elicits active
but not passive avoidance behaviors, it may be argued that central amygdaloid DA is still
involved in promoting energized “approach towards safety” (Ikemoto & Panksepp, 1998). We
would argue that in the absence of negative incentive stimuli, the ML-DA system largely
promotes positive affective states, and that only in the presence of various concurrent negative
emotional states or stimuli might it contribute to aversive feelings. However, we do not know
whether this contribution is to directly facilitate aversive feelings or alternatively, perhaps to
dampen those feelings, even though not to the point of affective neutrality. Much more work
is needed on such aversion related affective issues.

9In our opinion, the frontal cortex control and inhibit primary-process emotional processes such as those that may be disinhibited in
attention deficit, hyperactivity disorders (ADHD), leading to heightened levels of emotional acting out (Panksepp, 2001).
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2.4. The Nacc core/shell distinction
The Nacc consists of two anatomical and functional subdivisions, the shell and core (Zahm &
Brog, 1992; Heimer et al., 1997; Zahm, 1999; Kelley, 1999; Di Chiara, 2002; Ikemoto, et al.,
2005). DA projections to the shell are more sensitive to a great variety of stimuli, including
drugs of abuse (Pontieri et al., 1995), restraint and pharmacological stress (Deutch & Cameron,
1992; Horger et al., 1995; Kalivas & Duffy, 1995; King et al., 1997), food, (Bassareo & Di
Chiara, 1999) and novel stimuli or environments (Rebec et al., 1997; Rebec, 1998; Barrot et
al., 2000). Moreover, microinjections of DA drugs into the medial shell, but not the core,
support instrumental behaviors and CPP (Carlezon & Wise, 1996; Ikemoto et al., 1997;
Chevrette et al., 2002; Sellings & Clarke, 2003). It is generally accepted that the shell is
involved in mediating the rewarding effects of psychostimulants (Parkinson et al., 1999; Rodd-
Henricks et al., 2002; Ito et al., 2004), but there is less agreement concerning the psychomotor
activating effects of these drugs. For example, the behavioral activating property has been
attributed to an action of psychostimulants in the core (Weiner et al., 1996; West et al., 1999;
Boye et al., 2001; Sellings & Clarke, 2003), in the shell (Heidbreder & Feldon, 1998; Parkinson
et al., 1999; Ito et al., 2004), and in both structures (Pierce & Kalivas, 1995; Ikemoto, 2002).
However, a recent experiment indicated that the locomotor activating properties of cocaine
depend upon DA transmission into the core, while rewarding effects of the psychostimulant
depend upon DA transmission in the shell and into the olfactory tubercle (Sellings et al.,
2006). It has also been shown that rats learn to self-administer the psychostimulant in the medial
shell and in the medial tubercle, but not in the core, ventral shell and lateral tubercle (Ikemoto
et al., 2006). Although these findings indicate that rewarding effects of psychostimulants are
mediated by Nacc shell and olfactory tubercle, while the locomotor activating effects are
mediated by the Nacc core, previous findings demonstrated that DA transmission in the core
is necessary for some associative processes, for instance, the establishment of Pavlovian or
instrumental conditioning (Parkinson et al., 1999; 2000; Hall et al., 2001; Hutcheson et al.,
2001; Di Ciano et al., 2001).

Interestingly, DA transmission in the shell of the Nacc has different characteristics when
compared with the transmission in the core. Basal extracellular DA levels are greater in the
core and ventral medial pFC than the shell (King & Finlay, 1997; Hedou et al., 1999). However,
studies in postmortem tissue punches revealed that basal DA levels are greater in the shell than
the core, while the DOPAC/DA ratio is greater in core (Deutch & Cameron, 1992). Although
the total amount of DA (extracellular + intracellular) could be higher in the shell, the amount
of extracellular DA could be greater in the core due to a faster rate of release and uptake. In
fact, in vitro voltammetric studies show that the values of DA release and uptake in the shell
Nacc are approximately one-third of those measured in the core region. Moreover, the density
of [3H]mazindol binding sites in the Nacc was examined by autoradiography and the shell was
found to have an average of half the number of DA uptake sites than those measured in the
core region (Jones et al., 1996). Together, these findings suggest that DA transmission in the
shell of the Nacc presents the characteristic of so-called slow (Greengard et al., 1999), non-
synaptic (Vizi, 2003) or volume transmission (Sykova, 2004; Bach-Y-Rita, 2005). Conversely,
DA transmission in the core seems to be more confined to the synaptic clefts.

Besides the neurochemical differences between the core and the shell of the Nacc, important
functional differences appear to be associated with these subregions. The DA volume
transmission in the shell of the Nacc may be involved in the generation and the maintenance
of an aroused and positive affective state. On the other hand, the DA transmission in the core
may be involved in the expression of this emotion in the BG-thalamocortical circuits and then
in the “control of goal-directed behavior by associative process” (Ito et al., 2004). Indeed,
excitotoxic lesions of Nacc core disrupt Pavlovian approach behavior (Parkinson et al.,
2000), conditioned reinforcement (Parkinson et al., 1999) and Pavlovian to instrumental
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transfer (Hall et al., 2001), while coincident activations of D1 receptors and NMDA receptors
in the Nacc core are necessary for associative learning (Smith-Roe et al., 2000; Wickens et al.,
2003; Hernandez et al., 2005).

2.5. Electric activity of DA cells: phasic and tonic DA transmission
Phasic DA transmission is the short-lasting and impulse-dependent release that appears as a
consequence of neural burst firing (Gonon, 1988; Suaud-Chagny et al., 1992). Following such
bursts, high levels of DA molecules are released into the synaptic cleft at up to mM
concentration (Garris et al., 1994), and then rapidly removed via a re-uptake system (Floresco
et al. 2003). To the contrary, tonic DA levels are diffused in the extracellular space outside the
synaptic clefts, but exist in very small concentrations (in the nM range), and change relatively
slowly (Grace, 2000).

It has recently been proposed that phasic DA in the Nacc is the key component in the process
of reward (Grace, 1993; 2000; Wightman & Robinson, 2002; Self, 2003) and that the rewarding
effect of electrical stimulation of the MFB is mediated, at least partially, by transient DA release
(Wise, 2005). The role of phasic DA in reward processes is envisioned to reflect the fact that
phasic DA is a time- and space-specific event, necessary for associative learning, and acts as
a detector of coincidence when coupled with glutamatergic inputs directed into the Nacc
(O'Donnell, 2003; Dalley et al., 2005). Since DA is transiently released before the execution
of goal-directed movements (Phillips et al., 2003; Roitman et al., 2004), phasic DA may
promote not only reward-related learning (Reynolds et al., 2001) but also motivated behaviors
(Phillips et al., 2003; Ghitza et al., 2004; 2006).

The presence of unpredicted salient, novel and rewarding stimuli induce transient DA cell
bursts (Miller et al., 1981; Freeman et al., 1985; Steinfels et al., 1983; Schultz et al., 1993;
Mirenowicz & Schultz, 1996; Schultz et al., 1997; Horvitz et al., 1997; Schultz, 1998; Horvitz
et al., 2000; Cooper, 2002), suggesting a role of phasic DA in the salience attribution process
or the attentional-exploratory behavior that always follows such waking events. However, the
overall mean DA cell bursting (and firing) appear independent from the tonic arousal state of
the organism, since DA neurons do not alter firing rates with waking and sleep (Trulson et al.,
1981; Steinels et al., 1983; Miller et al., 1983; Trulson & Preussler, 1984; Hyland et al.,
2002). Effects of stress on DA cell bursting is also not clear with some reports of a reduction
in bursts or no effect (Ungless, 2004), with increases in burst firing observed by others
(Anstrom & Woodward, 2005).

In contrast, increased amounts of tonic extracellular DA levels exist during emotional arousal,
either in aversive and appetitive conditions, or when organisms are actively engaged with the
environment (Thierry et al., 1976; Roth et al., 1988; Cousins et al., 1999; Di Chiara et al.,
1999). Evidence from voltammetry (Trulson et al., 1985) and microdialysis (Smith et al.,
1992; Feenstra et al., 2000; Lena et al., 2005) illustrates that tonic DA is sensitive to fluctuations
in sleep-wake states, and there is also enhanced release during REM-dream episodes (Miller
et al., 1983; Solms, 2000; Maloney et al., 2002; Gottesman, 2002). Activating the D2-type
inhibitory postsynaptic and presynaptic receptors, tonic DA generally reduces the influence
that descending glutamatergic projections exert over neurons in the BG and VTA (Nicola et
al, 2000; Schmitz et al., 2003). In such a way, tonic DA activity may block the cortical and
limbic top-down control, favoring the expression of behaviorally aroused states generated
subcortically (see Sect. 4).

It has been demonstrated that tonic DA reduces the firing of DA neurons and phasic DA release
via D2 autoreceptor activation in terminal projections and soma (Fig. 3A) (Grace,
2000;Schmitz et al., 2003). However, long-lasting elevations of tonic DA levels may also
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increase the quanta of DA molecules released per single burst (Fig. 3B). Two lines of evidence
suggests this hypothesis:

1. Psychostimulants increase tonic DA levels into the Nacc, and thereby enhance the
rewarding properties of self-stimulation (Wise, 1996), by presumably potentiating the
amount of phasic DA released after each stimulation. Moreover, amphetamine
produces an impulse-dependent DA release into the Nacc (Ventura et al., 2004;
Ventura & Puglisi-Allegra, 2005), which may be associated with its rewarding effect.
Since amphetamine generally suppresses the electrical activity of DA neurons
(Westerink et al., 1987), the impulse-dependent DA release may arise from an
increased amount of molecules released per impulse.

2. Continuous electrical stimulations of DA cells progressively decrease impulse-
released DA quanta (Garris et al., 1999). Therefore, investigators need to consider
that if an electrically overactive system promotes blunted phasic DA release, a less
excitable system may be characterized by the fact that each action potential now has
a greater power of each impulse.

Therefore, although the inhibitory action of tonic DA over phasic DA has been emphasized
(Grace, 2000), the possibility of positive reciprocal feedbacks should also been considered
(Fig. 3). In particular, we suggest that high levels of tonic DA do not decrease the total amount
of phasic DA per se, but reduce the excitability of DA cells to descending excitatory
glutamatergic inputs, acting either indirectly via D2 receptors located on DA neurons or directly
on glutamatergic terminals reaching the VTA. However, high levels of tonic DA will increase
the quanta of DA released per single impulse, potentiating the effect that each impulse will
produce in term of extracellular DA release. In conclusion, we are tempted to hypothesize that
high tonic DA levels will predispose to a less excitable but more powerful ML-DA network
influences.

3. THEORETICAL INTERPRETATIONS
Complex relationships among neural, behavioral and psychological levels guarantee the
presence of substantial gaps in our understanding that remain to be filled. The adoption of novel
integrative hypotheses may be essential for promoting empirical predictions that can help fill
the remaining gaps.

3.1. Neurocognitive behaviorism
Much of today's experimental work is driven by a common theoretical perspective, here termed
“neurocognitive behaviorism”. It is characterized by two main assumptions. (1) Animal (and
human) behaviors are the product of associative memories stored in the brain (Watson, 1913;
Skinner, 1938; Martin & Levey, 1988; Resler, 2004; Rolls, 2004; Pickens & Holland, 2004).
(2) Cognitive processes, mediated by higher cortical functions, can be conceptualized as
computations for unconscious control of behavior and modeled in accordance with information
processing theories (Kihlstrom, 1987; Gerstner et al., 1997; Fuster, 2002; Miyashita, 2004;
Vogel, 2005). Behavioristic and cognitive approaches have melded together since associative
learning is considered the process through which organisms acquire and modify their predictive
cognitions (Sutton & Barto 1981).

Within this context, the principal focus of research is to clarify how DA modulates learning
by sustained alterations of intracellular molecular mechanisms (Greengard et al., 1999; Hyman
& Malenka, 2001; Barrot et al., 2002; Nestler, 2004), enhanced synaptic plasticity (Centonze
et al., 2001; Li et al., 2003; Huang et al., 2004), and facilitated neural communication (White,
1996b; Robinson & Kolb, 1999; Reynolds et al., 2001; Nestler, 2001a; Wickens et al., 2003;
Centonze et al., 2003). Considering the motivational properties of ML-DA transmission,
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neurocognitive behaviorism is characterized by a top-down, incentive salience orientation of
brain functioning rather than a bottom-up view that envisions brain DA to facilitate ingrained
psychobehavioral subroutines necessary for survival. Motivations are viewed as cognitive
representations of future goals elaborated in cortical structures, which thereby control the
activities of motor circuitries. Within this worldview, DA regulates the communication
between cortico-limbic inputs and Nacc neurons, and then manages information flow from
cognitive representations (neocortical and higher limbic areas) to movements (BG areas)
(Cepeda et al., 1998; Kalivas & Nakamura, 1999; Nicola et al., 2000; Schultz & Dickinson,
2000; Joel et al., 2002; Dayan & Balleine, 2002; Murer et al., 2002; West et al., 2003;
O'Donnell, 2003; Carelli, 2004).

The neurocognitive behaviorist perspective has advanced hypotheses about the etiology of DA-
related psychiatric diseases. Drug abuse, for example, is viewed as a product of abnormal
learning, occurring when the associations between external predictors of the drug's presence
and behaviors directed towards its acquisition and consumption progressively consolidate
(Robbins & Everitt, 1999; Robinson & Berridge, 2000) (see Sect. 5). In the establishment of
compulsive seeking behaviors, the critical step is the cortico-striatal circuits fueling by drug-
induced DA release (Pierce & Kalivas, 1997; Di Chiara, 1998; Di Chiara et al. 1999; Berke &
Hyman, 2000; Nestler, 2001b, Everitt et al., 2001; Wolf, 2002; Kelley, 2004; Self, 2004).
Despite such theoretical successes, it remains difficult for such models to explain how increased
ML-DA transmission also promotes certain kinds of unconditional responses, such as
behavioral activation expressed in exploratory-investigatory behaviors (Panksepp, 1981; Wise
& Bozarth, 1987) the generation of positive affective states (Drevets et al., 2001; Burgdorf &
Panksepp, 2006). It is also unresolved why individuals show differences in dispositional
vulnerability toward addiction (True et al., 1999; Uhl, 1999; 2004; Vanyukov & Tarter,
2000). If addiction is a learned process, what predisposes an individual to be a good or bad
learner?

3.2. Formal models of DA functioning
Electrophysiological recordings from DA neurons generally demonstrate that these cells burst
when a reward value is better than expected (Schultz, 1997; 2002). Phasic (or transient) DA
transmission is thus viewed as key for organisms to change their internal cognitive schemata
in relation to what happened around them (Grace, 2000; Waelti et al., 2001; Reynolds et al.,
2001; Wightman & Robinson, 2002; Cooper, 2002; Ungless, 2004). DA transmission is thereby
conceptualized as a teaching signal, which reorganizes cognitive representations by indicating
prediction errors (Redgrave et al., 1999; Schultz & Dickinson, 2000).

The new data on DA transmission seem congruent with temporal difference (TD) models for
reward learning in animals (Sutton & Barto, 1981). TD models, just like some ethological
models (Panksepp, 1981), view learned behavior as the product of anticipatory expectations
processed within the brain. These expectations are modeled in algorithmic computations
capable of predicting the reward value of stimuli which are dynamically modified by
experience. Only recently, have such models been utilized to explain DA functions within the
brain (Schultz et al. 1997; Waelti et al., 2001; Dayan & Balleine, 2002; Montague et al.,
2004).

TD models describe “the function of reward according to the behavior elicited. For example,
appetitive or rewarding stimuli induce approach behavior that permits an animal to
consume” (Schultz et al. 1997). Such formal models predict that each collection of sensory
cues represents a specific reward value, and that animals tend to seek out those that offer the
greatest reward. A movement may be defined as activity leading to a sequence of perceptual
configurations, whose rewarding value is measured by how strongly it entices the organism to
approach or proceed with a sequence of learned configurations. A core problem of TD models
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concerns a stimulus' temporal representation (Schultz et al., 1997), which is essential for
associating sensory cues with future rewards along a number of intermediate time points. Yet
it remains unclear, in such formal models, how a representation of reward value is translated
into concrete actions and how the animal behaves in novel situations, where no reward value
has been solidified by previous learning.

These problems may be well addressed by considering that sensorial configurations are
embedded into pre-motor sequences leading organisms to move within and between these
configurations. In well-learned situations, past experiences determine the succession of
perceptual configurations embedding them within the organism motor-cognitive habits. In such
cases, initial presentations of reward-predicting stimuli transiently stimulate the DA system,
and phasic DA transmission activates the sequences leading to the predicted outcome.
However, in novel situations (or when the reward delivery is maximally uncertain), fixed
sequences of movements across sensorial configurations have not yet been established. The
persistent increase of DA cell firing in such unpredictable conditions (Fiorillo et al. 2003) may
promote the emergence of an unstable state, characterized by the release of instinctual
behavioral arousal patterns, which drive organism to explore external stimuli and to cope with
life-challenging events in unpredictable environments (Panksepp, 1981; 1998).

In sum, formal neurocognitive behaviorist models of DA functions are built upon a
disconnection between brain information-processing modules responsible for the cognitive
prediction of reward and those intrinsic brain circuits responsible for the natural behavioral
patterns exhibited during reward seeking. In our view, these two aspects are part of the same
integrated process: an intrinsic instinctual action tendency to move across perceptual/cognitive
landscapes so as to approach towards specific outcomes within environments. In novel and
unpredictable contexts, the reward value of a stimulus is the product of the sustained emotional
tendency to unconditionally move towards certain objects within the environment. In learned
situations, on the other hand, a series of configurations is evoked by previously acquired
knowledge so the SEEKING urge is manifested in the tendency to run along the entire sequence
until the final configuration is reached. It is possible that the neural circuitry that subsumes the
SEEKING response is the only “ground state” in the brain upon which effective information
processing can proceed. In other words, all emotional systems control sensory input gating, as
well as selective responses to those stimuli. Thus incentive salience may be as much a reflection
of changing action readiness as any changing properties of the perceptual field.

3.3. The incentive salience hypothesis
Recognition of a direct involvement of the ML-DA system in the behavioral effects of ESSB
(see Wise & Rompre, 1989 for a review) led to a provocative and for a while seminal hypothesis
to explain both motivational and learning effects of the ESSB (Wise et al, 1978). Stimulation
of the ML-DA system induced a positive hedonic state and enhanced the pleasure derived from
consummatory behaviors. Criticism of the hedonic hypothesis emerged from the demonstration
that more intense activation of ML-DA occurs during the appetitive phase, than during the
consummatory phase of motivated behaviors (Blackburn et al., 1987; 1989; Panksepp,
1981a, 1982; 1986). ML-DA thus appears more concerned with “wanting” and less with
“liking” (Berridge & Robinson, 1998). This idea is consistent with evidence from
pharmacological manipulations of the ML-DA system in the context of instrumental behaviors.
Blocking DA activity in the Nacc strongly diminishes maze-running speed, even though
consumation of available rewards is unaffected (Ikemoto & Panksepp, 1996). Reduced DA
activity diminishes the appetitive urge more than consummatory pleasure10. Likewise, by
facilitating arousal of this system with amphetamine in instrumentally conditioned rats, those
animals exhibit more directed appetitive behavior toward stimuli associated with rewards in
the past (Wywell & Berridge, 2000; 2001).
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According to Berridge, DA is a promoter of the motivational salience of external stimuli,
without implying any conscious experience of affective quality. “Liking” has been considered
independent from DA transmission, as DA does not seem to promote hedonic taste reactions
(Berridge & Robinson, 1998). However, it is important to emphasize that taste pleasure may
not exhaust the range of possible positive affects that may be facilitated by brain DA arousal.
Moreover, many experiments have pointed to the involvement of ML-DA transmission in the
consummatory phase of motivated behaviors, such as feeding (see MacDonald et al., 2004 for
a review), while a recent study demonstrated that strongly valenced tastes, both pleasant and
unpleasant, may promote DA arousal (Roitman, et al., 2005).

Since animals self-stimulate the ML system, which is strongly controlled by brain DA
availability, it needs also to be explained why the activation of an appetitive “wanting” state
has its own rewarding properties despite being considered an unconscious process. Otherwise,
it is unclear why animals would seek to self-activate their own general purpose, appetitive
states. Focusing on this aspect, Berridge (2004) concluded that problems in the field arise when
we wrongly believe that appetitive behaviors are direct expressions of what used to be called
“drives”. Indeed, in drive-reduction theories, only the reduction of a drive was originally related
to the reward, while the drive itself was deemed to be aversive (Hull, 1943; Spence, 1956;
Mowrer, 1960). As a solution to the dilemma, Berridge proposed that appetitive behaviors arise
from the attribution of incentive properties to external stimuli (pursuant to the views of Bolles,
1972; Bindra, 1974; Toates, 1986), rather than from internal drives. Therefore, “when incentive
salience is attributed to a stimulus representation, it makes the stimulus attractive [and]
attention grabbing” (Berridge, 2004 p, 195). Since ML-DA transmission presumably helps an
external stimulus to acquire incentive salience (Berridge & Robinson, 1998), it also influences
the learning of stimulus-related contingencies and appetitive motivations to approach the
stimulus.

3.4. The affective neuroethological perspective
With a focus on the unconscious attributions of salience to external representations, Berridge's
perspective attempted to explain the role of DA transmission in the absence of any pleasure
(specifically sensory “liking”). Berridge claims that motivations are commonly activated by
the presence (or anticipatory representation) of external stimuli and not necessarily by internal
drives nor affective states. Nevertheless, such a behavioristic shift of focus from the organism
to the environment can be misleading. Although the role of external stimuli for guiding
motivational processes are undeniable, an excessive reliance on how perceptual stimuli guide
behavior could obscure an intrinsic, initially objectless, appetitive motivation as a real process
within organisms. Indeed, the manner in which ML-DA transmission may increase the
incentive salience of external stimuli is by changing the self-referential attitude of the organism
towards those stimuli. In this “active-organism” view, that acknowledges the existence of
experienced affect, an internally generated action tendency (i.e., the SEEKING instinct) lies
at the very center of information processing.

Thus, in our estimation, ML-DA transmission subcortically promotes the emergence of the
emotional SEEKING disposition, an intrinsic psychobehavioral function of the brain, that
evolved to cope with all varieties of life-challenging events in unpredictable environments
(Panksepp, 1981; 1998,2005). This disposition consists of instinctual behavioral tendencies
that help organism to move accross sensorial configurations and to approach specific sources
of stimulations, including salient non-reward events (Horvitz, 2000). The SEEKING

10Nevertheless, every consummatory behavior also has an appetitive component (animals fluctuate between approaching/manipulating
and consuming the food), and hence it is not surprising that DA transmission is enhanced during feeding, and partially controls food
intake (Hernandez & Hoebel, 1988; Hoebel et al., 1989; Martel & Fantino, 1996; Ragnauth et al., 2000; Kelley & Berridge, 2002;
MacDonald et al., 2004).
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disposition is manifested in energized behaviors such as forward locomotion, orienting
movements, sniffing, investigating, and ultrasonic 50-KHz vocalizations in rats (Ikemoto &
Panksepp, 1994;Panksepp, 1998;Burgdorf & Panksepp, 2006). The SEEKING disposition,
independent of world events, would also have its own hedonic properties, not the “pleasure of
satisfaction”, but “enthusiastic positive excitement”, “interest”, “desire”, and “euphoria”11 (for
relevant subjective human data, see Drevets et al., 2001;Jönsson, et al., 1971;Newton, et al.,
2001;Romach, et al., 1999;Volkow & Swanson, 2003). Moreover, promoting the urge to
project oneself forewaord in space and time, the SEEKING disposition, manifested at the
cortical level (e.g., medial frontal cortex), may facilitate the generation of higher-order
“forethought”, positive expectancies and anticipatory states (Panksepp, 1981, Wise, 2005).

It is well-established that emotions affect memory consolidation and retrieval (Cahil, 1997;
McGaugh, 2000; Packard & Cahill, 2001; Roozendaal et al., 2001; 2002; Bernston et al., 2003;
Richter-Levin, 2004). By promoting the expression of the SEEKING disposition, ML-DA
transmission may then facilitate learning, both through attentive processes as well as favoring
the recollection of past events related to the arousal of the SEEKING state. The SEEKING
disposition may be viewed as an affect-centered instinctual structure binding together
perceptual and motor configurations. Indeed, associations between perceptual and motor
representations may follow the connections that each of them has established with the
SEEKING state. Such an automatic, associative process relates to temporal- and cue-
predictability of rewards. The role of the SEEKING disposition in learning is evident in the
shaping of spontaneous sniffing behavior in rats during the free, fixed-interval delivery of
rewards (Clark & Trowill, 1971; Panksepp, 1981a). Similarly, this phenomenon is also evident
in 50 kHz chirping of rats (Burgdorf et al., 2000), an unconditioned component of ML-DA
network activity (Burgdorf & Panksepp, 2006).

Additional evidence supports our view. In classical conditioning, novel or unusual stimuli can
be associated with unconditioned stimuli whereas habitual stimuli in familiar environments do
not condition readily (Rescorla & Wagner, 1972). It is noteworthy, that neutral cues initially
provoke sniffing, a DA energized response, but this effect habituates rapidly (Clark, Panksepp
& Trowill, 1970). Moreover, it has been demonstrated that operant responses for electrical
brain stimulation are always preceded by some exploratory or investigative behaviors (Ikemoto
& Panksepp, 1996). Unconditioned rewards may thus promote associative learning to the
degree the SEEKING disposition has been aroused. In such a way, when the reward arrives
and animals begin to exhibit consummatory behavior, the changing neurodynamic of the
SEEKING state (e.g., diminished foraging) or perhaps those associated with the pleasurable
interaction with the reward, solidifies the previously related appetitive activity.

The activation of the emotional SEEKING disposition by particular environmental stimuli
facilitates instrumental responding within other contexts. For example, the presentation of a
conditioned stimulus enhances instrumental response also for unconditioned stimuli different
from the one the conditioned stimulus had previously been paired with (Corbit & Balleine,
2005). Moreover, an environment associated with food delivery enhances the locomotor
activating effects of amphetamine as well as an environment associated with the amphetamine
(Yetnikoff & Arvantogiannis, 2005). In these two cases, the effects of the stimulus (or the
environment) on the animal's performance cannot be explained by direct stimulus-response
associations simply because these associations have never occurred. On the other hand, it is
very probable that associations have been established between the SEEKING disposition and
the operant responses, so they are released whenever the SEEKING state is again activated
(independently of the stimuli that were originally involved in the generation of that state).

11This does not mean that DA arousal might not contribute to coping with aversive situations; we would simply predict that it generally
tends to counteract negative feelings, even though it may not eliminate them.
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In sum, the affective neuroethological perspective of the ML-DA system is centered on the
SEEKING disposition concept, whose ability to explain both motivational and rewarding
function of DA transmission is unique among existing scientific scenarios. Such perspective
can easily incorporate most of the other views, including variants of enhanced incentive
salience and the maintenance of effortful behaviors (Salmone, et al., 2005). The core of the
SEEKING affective state may be generated in midbrain and hypothalamic areas (Panksepp
1998; Damasio, 2000; Parvizi & Damasio, 2000) and communicated, in part, to BG-
thalamocortical circuits via midbrain DA neurons. As many empirical findings demonstrated
(see section 2), ventral BG-DA transmission is essential to the behavioral and mental
expression of the SEEKING disposition. In contrast, DA projections to pFC may facilitate
information processing without activating the affective-emotional, euphoric aspects of the
SEEKING urge. In our view, the attentive and executive functions controlled by mesocortical
DA projections (Goldman-Rakic et al., 2000; Nieoullon, 2002; Castner et al., 2004; Arnsten
& Li, 2005) may constitute more sophisticated cognitive processes related to the SEEKING
disposition. Since under stressful conditions DA transmission in the pFC inhibits DA release
in the Nacc (Deutch et al., 1990; Karreman & Moghaddam, 1996; King et al., 1997; Wilkinson,
1997; Jentsh et al., 1998; Ventura et al., 2002), it is also likely that DA-promoted pFC functions
may hinder the overt expression of the SEEKING disposition in such highly aroused situations,
and may potentially inhibit positive affective states.

4. NEW INROADS OF THE AFFECTIVE NEUROETHOLOGICAL PERSPECTIVE
In the previous section, we described how the behavioral functions of ML-DA emerge from
its ability to activate the SEEKING emotional disposition. It is now important to provide new
hypotheses describing how this disposition is processed in the brain. Obviously, this proposal
needs an elucidation of the role of DA in modulating neural activity across brain circuitries.
Indeed, correlative neurophysiological observations obtained from recording DA neurons
(which tell us much about what DA cells are listening to, but not necessarily what message
they are passing on; see Panksepp, 2005), as is common in the otherwise excellent
electrophysiology work of W. Schultz and colleagues, should be integrated with
neurophysiological findings about the effects of DA in its projections areas (which better
informs us about what DA doing as it is being released downstream of the inputs).

4.1. DA modulation of neural activity
Binding to its receptors, DA activates a cascade of intracellular processes with many diverse
neural influences (Missale et al., 1998; Greengard et al., 1999), from changing the activity of
ion-channels to altering the functionality of different membrane receptors. DA transmission
also regulates gene expression, and leads to permanent synaptic changes (Greengard, 2001;
Wolf et al., 2003; Nestler, 2004). Along with many other G-protein–coupled receptors (Hille,
1994), DA receptors alter neuronal excitability via modulation of voltage-dependent ion
channels, and influences behavioral processes by modulating large scale neural activity in
widespread neural networks.

DA release generally depresses spontaneous and evoked cell firing (Siggins, 1978; Dray,
1980; Rowlands & Roberts, 1980; Yim & Mogenson, 1982; 1986; Brown & Arbuthnott,
1983; Johnson et al., 1983; Yang & Mogenson, 1984; DeFrance et al, 1985; Chiodo & Berger,
1986; Hu & Wang, 1988; Nisenbaum et al, 1988; Hu et al, 1990; Pennartz et al., 1992; Harvey
& Lacey, 1996; 1997; Nicola et al., 1996; Peoples & West, 1996; Peoples et al., 1998; Nicola
& Deadwyler, 2000; Zhang et al., 2002). It has been argued that behavioral arousal emerges
from a DA disinhibitory role obtained by the block of an inhibitory pathway. Indeed, the main
targets of DA neurons are BG GABA inhibitory neurons (Graybiel, 2001; Groenewegen,
2003), and DA decreases firing in the globus pallidus and the substantia nigra, the two main
BG output nuclei (Alexander et al., 1986; Albin et al., 1989; Gerfen et al., 1990; Bergman et
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al., 1994; Nini et al., 1995; Brown & Marsden, 1998; Gerfen, 2000; Gurney et al., 2001; Brown
et al. 2001).

Despite a predominantly inhibitory role, DA also enhances spontaneous and evoked neural
activity in striatal as well in cortical neurons12 (Gonon & Sundrstom, 1996; Hernandez-Lopez
et al., 1997;Hu & White, 1997;Gonon, 1997;Cepeda et al., 1998;Lewis & O'Donnell,
2000;West & Grace, 2002;Charara & Grace, 2003;Chen et al., 2004;Bandyopadhyay et al.,
2005). The general interpretation of such bidirectional effects is that DA, in a manner similar
to NE, enhances the signal-to-noise ratio in neural networks. In other words, DA may filter
spurious activity and suppress background noise, while facilitating and enhancing neural
activities related to significant incoming signals (Rolls et al., 1984; De France et al., 1985;
Kiyatkin & Rebec, 1996;O'Donnell & Grace, 1996;Nicola et al., 2000;West & Grace,
2002;West et al., 2003;Brady & O'Donnell, 2004). The signal-to-noise ratio hypothesis is a
computational theory based on the idea that DA facilitates the selection of Nacc competing
neuronal ensembles (Pennartz et al., 1994;Redgrave et al., 1999), that receive multiple
converging inputs from pFC, hippocampus, and amygdala (Pennartz et al., 1994;O'Donnell &
Grace, 1995;Groenewegen et al., 1999;French & Totterdell, 2002). DA then modulates
synaptic communication (West et al., 2003) and gates information to the Nacc, favoring the
entrance of salient signals in BG-thalamocortical executive circuits (Mogenson et al.
1980a;Pennartz et al., 1994;Groenewegen et al., 1999;West et al., 2003;O'Donnell, 2003), and
translating motivational representations into executive motor plans (Mogenson et al. 1980a,
Wilner & Sheel-Kruger, 1991; O'Donnell 2003). ML-DA also strengthens synaptic
associations between descending glutamatergic projections and BG neural ensembles,
influencing long-term memory processes (Wise, 2004).

4.2. DA modulation of global field dynamics
It is remarkable that cognitive, top-down perspectives of ML-DA system are largely built on
the observation of DA effects on single neuron firing (Schultz, 1997, 1998, 2001, 2002,
2004, 2006). Based on information from large-scale populations of neurons, an alternative
picture is now emerging. DA transmission desynchronizes slow rhythms and induces fast-wave
oscillations within the BG-thalamocortical circuits (Brown & Marsdan, 1998; Brown, 2003;
Lee et al., 2004; Sharott et al., 2005). It also promotes a greater autonomy of BG neural patterns
from a strict cortical control, blocking the spread of cortical synchronous oscillations into the
BG (Marsden et al., 2001; Brown, 2001; 2003; Priori et al., 2002; Williams et al., 2002; Heimer
et al., 2002; Cassidy et al., 2002; Goldberg et al., 2002; Magill et al., 2004; Sharot et al., 2005)
(Fig. 4A). Such network effects may offer the best overall explanation of DA induced
psychobehavioral arousal (Steriade, 1996; 2000). Collectively, local field potential studies
support the hypothesis that DA promotes the emergence of characteristic rhythms and their
diffusion in the brain:

1. DA decreases the power and coherence of cortically derived beta-frequency
oscillations (∼15 Hz), and promotes the emergence of high-frequency gamma
oscillations (>60 Hz). The prevalence of beta rhythm in BG-thalamocortical circuits
is associated with motor impairments characteristic of Parkinson disease (Deuschl et
al., 2000; Vitek & Giroux, 2000; Brown, 2003; Dostrovski & Bergman, 2003;
Hutchison et al., 2004).

12The impact of DA transmission on neural activity seems to depend on three main factors: (1) DA receptors: D2-type receptors are
inhibitory, while D1-type receptors feature both excitatory and inhibitory roles (Hernandez-Lopez et al., 1997, Reynolds et al., 2001,
Floresco et al., 2001a, b, Chao et al., 2002, West & Grace, 2002); (2) Steady-state membrane potentials: DA inhibits hyperpolarized
neurons (down-state), and excites depolarized ones (up-state) (Cepeda et al., 1998; Nicola et al., 2000; West & Grace, 2002); and (3)
Concentration: evoked concentrations of DA in the range of 600 nanomolar (nM) elicit excitation (Gonon, 1997) while higher
concentrations inhibit firing rates (Williams & Millar, 1990).
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2. DA suppresses slow firing oscillations and regular bursting of BG neurons (∼ 1 Hz)
in anaesthesized and sleeping rats (Pan & Walters, 1988; MacLeod et al., 1990; Murer
et al., 1997; Tseng et al., 2000; 2001). Since rhythmic bursts have been interpreted as
the result of spreading of cortical activity into BG nuclei, these changes may reflect
a barrier between cortex and BG.

3. DA increases the multisecond temporal oscillatory patterns (from ∼30 sec to ∼ 10
sec) of BG nuclei's spike trains, and increases the spectral power of these oscillations
(Ruskin et al., 1999; 2001; 2003).

The DA capacity to promote gamma rhythms needs specific attention, since these oscillatory
waves are involved in diverse behavioral and psychological processes, while their alteration
has been observed in neuropsychiatric disorders (Herman & Demiralp, 2005). The generation
of gamma rhythms is essential for synaptic plasticity and memory processes (Paulsen and
Sejnowski 2000; Buzsáki and Draguhn 2004; Sederberg et al., 2006), voluntary movement
execution (Cassidy et al., 2002; Countermanche et al., 2003; Kuhn et al., 2004; Sharot et al.,
2005), attentive functions (Brown, 2003), and “binding of sensory object features into a
coherent conscious percept” (Engel and Singer 2001). It has also been suggested that gamma
waves preside over the emergence of active intentional brain states (Freeman, 2003), which
underlie all of the above mentioned functions.

In sum, the behavioral arousal function of ML-DA transmission may be explained on the basis
of a DA-promoted emergence of high-frequency oscillations in BG-thalamocortical circuits.
According to this view, motivated behaviors do not arise from cognitive signals activating
executive motor plans, but from instinctual behavioral and emotional drives originating in
midbrain and hypothalamic areas and communicated through DA within BG-thalamocortical
circuits. We will next explore the possibility that gamma rhythms favor the release of specific
neural activity patterns expressing intentional behavioral dispositions.

4.3. DA effects on sequential neural activity patterns
It has been shown that GABA neural networks are involved in the desynchronization of slow-
wave oscillations (Slovite, 1987) and in the promotion of high-frequency rhythmic oscillations
in the gamma band (Llinas et al., 1991; Steriade 2000). GABAergic neurons also preside over
the release of repetitive sequential patterns (or neurodynamic sequences) (Laurent, 2002;
Lagier et al., 2004; Beggs & Plenz 2003; 2004). Capturing brain activity within dynamic
attractors (Freeman 2000; 2001; 2003; Lewis, 2005), the GABAergic basal forebrain
neurodynamic sequences direct activity consistent with the sequence, and constitute the
intrinsic structure of intentional behaviors and cognitions. Viewed as impulses to act, they
translate neural activity into the intentional code13 necessary for active movements.

It is not known how GABAergic networks produce fast-wave rhythms and sequential neural
activity patterns or the exact relationship between gamma rhythms and the release of
neurodynamic sequences. However, it is reasonable that ML-DA favors the release of basal
forebrain neurodynamic sequences reflected within fast-wave oscillatory gamma rhythms. As
demonstrated for gamma rhythms (Brown, 2003), optimal levels of DA are important also for
the release of neurodynamic sequences14 (Stewart & Plenz, 2006).

In classic theory of BG functions (Alexander et al., 1986; Albin et al., 1989; Gerfen et al.,
1990; Gerfen, 2000; Gurney et al., 2001), DA transmission relieves thalamic and brainstem

13We refer to intentional code as the dynamic structure of the neural activity produced in basal forebrain and basal ganglia areas. The
intrinsic organization of these areas evolved to favor the emergence of sequential activity patterns that may be easily translated in
movements because of their procedural shape. In other words those areas have been predisposed to release coherent sequences of
movements.
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nuclei from chronic inhibition by BG output nuclei. DA arousal is supposed to emerge from a
global increase in thalamocortical activity, while the activity of BG output nuclei is considered
antikinetic. This view may be contradicted by evidence where electrical stimulation of BG
output nuclei relieves Parkinsonian symptoms (Hamani et al., 2006). BG output nuclei may
rather exert an antikinetic effect primarily when they oscillate at low frequencies, but not when
normal BG oscillatory activity is restored through DA-facilitating medications or electrical
stimulation15 (Garcia et al., 2005). Rather than conceiving DA behavioral effects as a
consequence of BG output nuclei inhibition, we propose that DA transmission promotes high-
frequency oscillatory patterns (Fig. 4A), and the release of BG neurodynamic sequences. The
overall DA inhibition of excitatory input, mainly mediated by D2-type receptors of the indirect
pathway of BG16 (Fig. 4B), reduces the diffusion of cortical rhythms and promotes BG
characteristic rhythms17. On the other hand, acting upon D1 receptors of depolarized striatal
neurons belonging to the direct pathway, phasic DA may increase their responsiveness to
convergent descending excitatory influences (Gerfen, 2000; Nicola et al., 2000; Murer et al.
2002; West et al., 2003). This may promote the release of neurodynamic sequences in
accordance with specific information coming from corticolimbic structures (Fig. 4B).
Convergent glutamatergic input may thus form a switching signal (Redgrave et al., 1999),
allowing new information to enter basal forebrain/BG areas and new sequential activity
patterns to be generated in BG-thalamocortical circuits. Consistent with this view, an imbalance
between phasic and tonic DA transmission may promote attention deficit hyperactivity
disorders (Levy, 2004) and probably also Tourette's syndrome. BG-thalamocortical circuits of
these subjects may be overcharged by switching signals, as external stimuli continuously
release new neurodynamic sequences. Conversely, excesses of BG tonic DA transmissions
may promote stereotypical behaviors and obsessive-compulsive disorders (Korff & Harvey,
2006). In these cases, the abnormal presence of tonic DA may completely suppress the
influence that cortical and limbic areas exert over subcortical nuclei, leading neurodynamic
sequences to be produced autonomously and without any input from the external environment.

4.4. ML-DA and the SEEKING neurodynamic sequences
Limbic neurodynamics in the ventral BG serve as vectors for the expression of the SEEKING
emotional disposition, translating a general arousal state into active exploration. They are the
neural bases of instinctual internalized movements or action tendencies directed to actively
investigate elements of the external and in humans perhaps the internal (mental) environment.
SEEKING tendencies are comprised of specific types of locomotor activities, associated
autonomic changes, and other responses directed to attain perceptual information and to
progressively orient the organism toward affectively enticing and eventually desired sources
of stimulation (e.g., via whole body exploratory sequences, eye and head movements, sensory-
information sampling with continuous sniffing).

The SEEKING neurodynamic sequences presumably drive motor-action pattern generators via
connections from ventral BG output to brainstem motor nuclei. By integrating incoming

14Massive, cortical, glutamatergic input to basal forebrain and BG nuclei blocks neurodynamic sequences through the reciprocal
GABAergic connections characteristic of basal forebrain ensembles. With a metaphor taken from Dante's Inferno, basal forebrain neurons
are like the damned souls of envious kept in a cauldron. They can not escape because when “one does manage to escape, the others pull
him/her back in! And so the cauldron closes itself” (Llinas 2002, p.138). However, when only a subset of basal forebrain neurons receives
excitation (and this effect may be potentiated by DA transmission), a behavioral coherent neurodynamic sequence is properly released.
15The current interpretation of the therapeutic effects of deep brain stimulation is that such electric currents disorganize and blocks the
activity of BG output nuclei. However, it is interesting to note that the frequencies of such stimulations are around the gamma range
(∼100Hz) (Garcia et al., 2005). Why not hypothesize then that the deep brain stimulation is effective because it restores basal ganglia
characteristic oscillatory rhythms?
16But partially also by D1-type receptors belonging to hyperpolarized neurons of the direct pathway (Nicola et al., 2000).
17DA transmission tonically inhibits the entrance of glutamatergic descending input in BG areas either via D2-type receptors of striatal
neurons belonging to the indirect pathway, or via D1-type receptors of down-state, striatal neurons from the direct pathway (Nicola et
al., 2000).
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perceptual information into SEEKING action tendencies, the organism may coordinate its
relationship with the environment in flexible ways. Perceptual information from both external
and internal sources receive a preliminary evaluation of its survival value as it enters the NAc
through limbic structure like olfactory bulb, pFC, amygdala, hippocampus. The diffusion of
SEEKING sequences in the BG-thalamocortical circuits brings about exploration and approach
to the most prominent sources of positive affective stimulation. Going beyond formal models
(Schultz & Dickinson, 2000; Waelti et al., 2001; Dickinson & Balleine, 2002; Schultz, 2004;
Niv et al., 2005), we think that the SEEKING neurodynamic sequences are the procedural
structures that concretely lead organisms to move across landscapes of perceptual
configurations. Instead of being processed in abstract algorithmic computations, the rewarding
value of external stimuli depends on the ability to activate such instinctual psychobehavioral
sequences. Raw emotional feeling may be highly linked to the neurodynamics that generate
instinctual emotional behaviors. From this perspective, it is likely that positive emotional
affects, such a DA facilitated euphoria, emerge relatively directly from instinctual SEEKING
dynamics (Panksepp, 2005).

The SEEKING neurodynamic sequences in the limbic BG-thalamocortical circuit interfaces
continuously with other neural activities. Therefore, the role of ML-DA transmission in
learning emerges when such neurodynamics intermesh with other cognitive and perceptual
representations (See Lewis (2006) for another elaboration of this type of view in emotion
theory). This forms a tight linkage between external stimulus configurations and the SEEKING
urge, where external environmental configurations gain the ability to activate SEEKING
sequences, acquiring incentive motivational value18 (via classical conditioning). When
unexpected positive outcomes (sensory pleasures) emerge for a behavior in a novel
environment, motor sequences that were stimulated by the presence of rewards and reward
related stimuli become linked to the SEEKING sequences. Discrete operant behavior thereby
becomes embedded progressively into ever narrowing SEEKING sequences, connecting the
original configurations of stimuli to final reward configurations. Such behaviors eventually
become habitual, and perhaps largely affectively unconscious, when ML-DA arousal is no
longer necessary to activate appetitite SEEKING urges (Choi, et al., 2005).

In sum, the neurodynamics of SEEKING sequences within BG-thalamocortical circuits should
be viewed as essential neural integrative substrates for associative and operant learning
processes. As described in the next section, considering the SEEKING disposition as the
affective substrate for appetitive learning could have profound implications in understanding
addictions.

5. THE ML-DA SYSTEM IN DRUG ADDICTION
5.1. Current theories

Drug abuse has been defined as a chronically relapsing disorder, in which the addict
experiences uncontrollable compulsion to take drugs, while the repertoire of behaviors not
related to drug seeking, taking, and recovery, declines dramatically (White, 2002). The
development of addiction is attributed to the action of drugs in the brain (Leshner, 1997).
Chronic drug use causes permanent neural changes at many levels of analysis, from molecular
and cellular levels to neural circuits (Hyman & Malenka, 2001; Everitt & Wolf, 2002; White,
2002; Nestler, 2004; Koob et al., 2004; Robinson & Kolb, 2004). Activity of the ML-DA

18SEEKING neurodynamic sequences may simply promote approach or operant behaviors via activation of motor routines. By activating
these sequences, external stimuli may acquire an unconscious incentive value (Berridge 2004). However, it is also possible that SEEKING
sequences actively contribute to the emergence ofpositive hedonic state – not sensory pleasure but euphoria. Indeed, hypothalamic and
midbrain nuclei receive abundant direct and indirect connections from the NAc shell, the ventral pallidum, and the pFC, and empirical
data, such as conditioned place preferences, indicate that all these brain regions contribute to affective experiences (Panksepp, 2005).
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system represents a key aspect of the chain of events that leads from a molecular action of
drugs to the establishment of compulsive habits. In fact, most common drugs of abuse stimulate
the release of DA, which modulates both their rewarding and the psychomotor arousal effects
(Wise & Bozarth, 1987; Di Chiara & Imperato, 1988; White, 1996b; Di Chiara 1998).
Permanent functional changes in the ML system and in BG-thalamocortcal circuits, arising
from repetitive DA stimulation, are involved in the development of compulsive drug-taking
behaviors (Berke et al., 1998; Robinson & Kolb, 1999; Nestler, 2001a, 2004; Hyman &
Malenka, 2001; Koob & LeMoal, 2001; Li et al., 2003; Kalivas et al., 2003). Through the
complex reorganization of brain circuits, drugs gradually acquire a tremendous motivational
power, as organisms become captivated by drug-related activities.

Initial studies of drug abuse in the 1960-1970s considered dependence as the cardinal feature
of the disease. Dependence is the physiological state of organisms necessitating continuous
drug intake to avoid withdrawal symptoms. The “opponent process theory,” Solomon (1977)
proposed that drug abuse arises substantially from homeostatic imbalance caused by
compensatory adaptations to chronic drug usage. Concurrently, Panksepp and colleagues
(1978, 1980) envisioned that the natural negative emotional processes that sustain drug
addictions is related psychologically to the separation-distress process that young animals
exhibit when isolated from their caretakers. In other words, endogenous opioids mediate the
rewards of social reunion, which is a powerful evolutionary force for creating social bonds,
and hence addictive tendencies. Thus, much of drug abuse may reflect self-medication to
alleviate aversive feelings, partly engendered by drug withdrawal (see Khantzian, 2003, with
commentaries). This perspective has also been adopted by Koob and his coworkers who have
sought to identify the neurochemical processes directly involved in generating dependence
(Koob & LeMoal, 1997; 2001; 2005; Koob, 2003). As a “hedonic homeostatic dysregulation”,
drug abuse has a cyclic and progressive nature and is characterized by a pathological alteration
of the reward state. As a result of ML-DA hypofunctionality, the deficit in reward functioning
throws organisms into a “spiraling distress cycle” and drugs become necessary to restore the
normal homeostatic state (Koob & LeMoal, 2001).

Criticism of the affective theory of drug abuse relates to the presence of relapse episodes.
Specifically, the affective-homeostatic perspective fails to explain why “after prolonged drug-
free periods, well after the last withdrawal symptom has receded, the risk of relapse, often
precipitated by drug associated cues, remains very high” (Hyman, 2005 p1414). Moreover, in
animal models, re-exposure to drugs or drug-related stimuli reinstates drug-seeking behaviors
more strongly than withdrawal (Stewart & Wise, 1992). Relapse is then interpreted as the result
of unconscious associative memories that, once activated, drive mechanistically the behaviors
of addicts without the involvement of any hedonic-homeostatic process (Shaham et al. 2003).
Such a conclusion is not probably from the Panksepp, et al (1978, 1980) analysis, where the
neurological substrates of drug addiction are strongly linked to the natural social-emotional
reward processes of animals that are always experienced at the affective, if not cognitive, level.

In the neurocognitive behavioristic perspective, drugs act on the neurochemical processes
involved in the formation of associative and procedural memories (Di Chiara, 1999; Berke &
Hyman, 2000; Nestler, 2002; Robbins & Everitt, 2002). Addiction is thus viewed as a
“pathological usurpation of the mechanisms of reward-related learning” (Hyman, 2005). This
interpretation has received support from work showing many common molecular pathways in
addiction and memory processes19 (Nestler, 2002; Hyman et al., 2006).

19The relevance given to associative learning overlaps the emphasis on overt behavioral expression as the only appropriate level of
analysis. Drug addiction is now diagnosed exclusively on the basis of observable “behavioral abnormalities”, and is defined “as a loss
of control over drug use, or compulsive drug seeking and taking despite adverse consequences” (Nestler, 2001b, p119). The emotional
aspects of addiction are typically underemphasized.
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A widely heralded attempt to integrate this approach with a motivational perspective argues
that repetitive drug usage causes a sensitization of the ML-DA system (see next paragraph),
which is involved in mediating the incentive salience of external stimuli (Robinson & Berridge,
1993; 2000; 2003). The attractiveness of drugs and drug-associated cues depends on the
capacity of those cues to activate a motivational appetite (“wanting”) through the stimulation
of the ML-DA system. This theoretical perspective focuses on the influence of the sensory and
perceptual processes that regulate the SEEKING urge, and has had little to say about the
emotional characteristics of brain states. Moreover, a pure incentive sensitization view might
wrongly predict that addicts consume less drugs as their system gets sensitized to it. Namely,
they are getting more effect from a smaller amount of drug.

5.2. The addiction cycle
One of the big problems in addiction studies concerns how compulsive habits get established
from the occasional use of drugs. The process of sensitization is now considered a key step in
the addiction development cycle where repetitive drug intake further enhances the desire to
consume drug and further lead to uncontrollable urges. It has been shown that previous drug
use, especially that of psychostimulants, increases locomotion, stereotypic responses
(“behavioral sensitization”), or the ML-DA response (“biochemical sensitization”) to a
subsequent acute dose of the same drug (Vandeschuren & Kalivas, 2000; Sax & Strakowsky,
2001; Ungless et al., 2001). And this happens not just for drug rewards, but a variety of natural
rewards (Nocjar & Panksepp, 2002), especially social ones (Nocjar & Panksepp, 2007).

The concept of sensitization was originally utilized to describe the fact that the application of
electrical stimuli induces a “progressively excitable neuronal locus” showing an enhanced
sensitivity to subsequent application of the original stimulus or associated cues (Goddard et
al., 1969; Janowski et al., 1980). Since enhanced behavioral and ML-DA responses to drugs
correspond to the enhancement of rewarding properties, a study of sensitization should foster
our understanding of why drugs and drug-related stimuli acquire an increasing motivational
and incentive value (Robinson & Berridge, 1993; 2000; Morgan & Roberts, 2004).

Sensitized responsiveness to drugs often depends on particular stimuli and environmental
conditions previously associated with drug intake (Robinson & Berridge, 2000; Weiss et al.,
1989). “Context-dependent sensitization” can thus be used to explore how drug-associated
stimuli acquire their incentive value. It also provides an explanation for the phenomenon of
relapse, where drug-associated memories maintain the ability to activate the ML-DA system
long after the withdrawal has subsided (Shaham et al., 2003). On the other hand, “context-
independent sensitization” may reflect the increasing ability of drugs to activate the ML-DA
system, without contributions from external stimuli (Patridge & Schenk, 1999). In such cases,
it is possible that the specific response to the pharmacological action of drugs is potentiated in
some way or that the activity of the ML-DA system is globally increased after drug use.

It has been shown that repetitive administration of psychostimulants causes an increased
activity of midbrain DA neurons (White & Wang, 1984; Henry et al., 1989; Wolf et al.,
1993; Kalivas 1995). Furthermore, molecular and cellular adaptations responsible for a
sensitized DA activity have been found in the VTA (Vanderschuren & Kalivas, 2000; Kalivas
et al., 2003; Vezina, 2004; Borgland et al., 2004) or along DA projections. A subsensitivity of
D2 autoreceptors, which inhibit DA cell firing, also exists after repeated drug usage (White &
Wang, 1984; Volkow et al., 2002). Although a general enhancement of ML-DA functions after
chronic drug treatment has been postulated (Robinson & Berridge, 2000; Vezina et al.,
2004), adequate evidence of enhanced ML-DA release under basal testing conditions in
chronically drugged animals is missing. On the contrary, as predicted by the hedonic
homeostatic dysregulation hypothesis (Koob & LeMoal, 1997; 2001; 2005; Koob, 2003), a
deficiency in ML-DA transmission and consequent motivational changes have been observed
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after repetitive drug use (Parsons et al., 1991; Weiss et al., 1992; Koob & LeMoal, 1997;
2005; Nestler, 2004). Moreover, as already noted, it is difficult for ML-DA sensitization
theories to explain why the rewarding power of drugs is enhanced, while natural rewards are
commonly ignored by human addicts.

In sum, two different and opposite molecular pathways activated by drugs have been discovered
(Nestler, 2004), which are being related to the experience-dependent motivational power of
drugs. On one hand, compensatory adaptations responsible for a decreased ML-DA functioning
induce motivational impairments and loss of interest in activities not associated with drug
consumption (Koob & LeMoal, 1997; 2001; Nestler, 2001b, Volkow, 2002; Barrot et al.,
2002; Aston-Jones & Harris, 2004). On the other hand, changes responsible for a sensitized
DA responsiveness to drug and drug-related stimuli (Vanderschuren & Kalivas, 1999; Nestler,
2002; 2004) may lead drug-related memories to acquire an increasing motivational value
(Robinson & Berridge, 2000).

5.3. The affective neuroethological perspective of addiction
Like the affective-homeostatic perspective of Koob and his coworkers, our view is centered
on naturally occurring internal affective states. We have envisioned how natural “social
reward” chemicals, such as endogenous opioids, participate in addictive urges (Panksepp,
1981b; Panksepp, et al., 2004). However, affectivity in our view is conceptualized not only as
a result of homeostatic self-regulatory processes, but also of basic intention-in-action type
emotional dispositions (Panksepp, 1998, 2003, 2005). Compared with the “psychomotor
stimulant theory” (Wise & Bozarth, 1987) and with the “incentive-sensitization theory” of
addiction (Robinson & Berridge, 2000), our perspective attempts to specify that the appetitive
motivational component stimulated by drugs is an ancestral emotional urge (the SEEKING
disposition) regulated by DA transmission and characterized by specific neurodynamic
patterns along ventral striatum and ventral BG-thalamocortical circuits. Moreover, this
emotion is characterized by neural, behavioral and affective components linked together in
complex and synchronized ways.

According to this perspective, drugs of abuse, especially psychostimulants, provide an artificial
way to stimulate the emergence of the SEEKING disposition, through which motivated
behavior are normally expressed and certain positive affective feelings, such as the euphoria
and exhileration of exploration and reward pursuit, arise. The role of the SEEKING disposition
in mediating drug-reward is indicated by the similarity between the unconditioned effects of
drugs and those of novelty. Novelty may be considered the unconditioned stimulus to which
the SEEKING system is naturally predisposed to react (explaining why novelty promotes
exploration), while drugs activate the same system in a pharmacological way. Interestingly,
novel environments enhance the rewarding and psychomotor activating properties of drugs,
leading to environment specific sensitization (Badiani et al., 1995; 1998;Badiani & Robinson,
2004). From our point of view, the disposition to seek and explore, already active in the
presence of novelty, is further activated by drugs, creating an amplified effect20.

Strong associative memories between the SEEKING disposition and drug-related stimuli
create the neural conditions for drugs to progressively increase their incentive value. Indeed,
in this view, drug-related memories push organisms to consume drugs primarily by activating

20Commonalities between novelty and drug reward explain why addiction is so pervasive and difficult to stop. Indeed, if natural rewards
activate the ML-DA system in unpredictable and novel situations, a DA-induced activation of the SEEKING urge will help the animal
to both achieve its goal and to learn from its current experiences. As environments become increasingly familiar, the SEEKING disposition
is not activated as intensely. However, drugs of abuse will continue to activate the ML-DA system pharmacologically even in familiar
situations, bringing about the experience of novelty and of its associated euphoric effects. This process will cause repetitive and abnormal
learning until the motivational and behavioral repertoire of organism becomes thoroughly captivated by drug-related activities.
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the SEEKING emotional disposition (at least at the first stages of the addiction process). The
involvement of the SEEKING disposition in the first stages of addiction is consistent with
evidence that sensitization arising from repeated drug injections not only promotes the
establishment of drug-seeking behaviors, but also increase the vigor of normal motivational,
non drug-related activities, such as a pursuit of sexual and food rewards in rats (Nocjar &
Panksepp, 2002, 2006; Panksepp et al., 2004).

Molecular, cellular and synaptic learning processes stimulated by drugs could be related to the
emergence of the SEEKING disposition, in the way we think this disposition is manifested at
the whole brain/mind level (as neurodynamic patterns emerging into ventral BG and spreading
into BG-thalamocortical circuits). It seems unlikely to us that molecular and cellular
adaptations observed after drug use correspond to the storage of specific information into a
linear input-to-output way of processing (Fig. 5A). To the contrary, we think that those brain
changes more likely affect the way global reverberatory activity patterns within BG-
thalamocortical circuits are generated, how they are supported by ML-DA transmission, and
how they are related to incoming activity elaborated through the rest of the brain. We envision
the SEEKING neurodynamics being the affective-action centered functional structures,
whereby drug-related memories and drug-seeking behaviors become linked together (Fig. 5B).

The abnormal and continuous activation of the SEEKING disposition by drugs is also
responsible for the consolidation of compulsive habits, when behavioral routines to find and
consume drugs become part of epigenetic changes in the SEEKING dispositions (Ikemoto &
Panksepp, 1999). We can imagine that SEEKING neurodynamics activated in ventral BG by
drug-associated memories are progressively transformed into behavioral sequences associated
with compulsive habits and expressed habitually in dorsal BG circuitry. In such cases, addicts
may no longer seek drugs just because of subjectively experienced elevated desire and euphoria
but because of the power of automatically expressed habitual stereotypical compulsive
behaviors (that are also well suited to effectively alleviate withdrawal distress).

A novel feature of this model is that it offers some unique unconditional indicators of SEEKING
urges for monitoring drug desire and craving independently of formal conditioning paradigms
(Panksepp et al., 2002; 2004). For instance, rat vocalizations may serve as an instinctual “self-
report” of appetitive drug desire or aversion, since rats exhibit more 50kHz ultrasonic
vocalizations (USVs) when returned to environments in which they received rewarding drugs,
and more 22kHz USVs when returned to environments in which they received aversive drugs
(Burdorf et al., 2001a). Indeed, the 50kHz USV system is intimately related to ascending brain
DA networks (Burgdorf & Panksepp, 2006; Burgdorf, et al., 2007), and the placement of
amphetamine directly into the Nacc, especially the shell region, is effectively promotes 50 kHz
USVs (Burgdorf et al., 2001b, Thompson et al., 2006). Such affective vocalizations may be
capable of being used to track fluctuating affective changes during various phases of the
addiction cycle (Panksepp, et al., 2002, 2004).

As highlighted in the next paragraph, the affective neuroethological perspective provides a
new way of envisioning individual vulnerability to psychostimulant addictions and perhaps
other drugs as well. An ethological description of normal SEEKING behavior, together with
the knowledge of the neural circuits involved in other emotions (Panksepp, 1998), especially
negative ones such as social separation distress (Panksepp, 1981) permits a conceptualization
of addiction vulnerability as the consequence of the cascade of natural but specific emotional-
affective liabilities. In particular, a deficit in the ML-DA may lead individuals to become
compulsive drug consumers, by promoting an enhanced ML-DA responsiveness to drugs. In
other words, drugs will acquire an enhanced euphoria-producing (rewarding) power since the
hypofunctional DA system is characterized by a deficient development of self-inhibitory
mechanisms that usually counteract the neurochemical effects of drugs.
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5.4. Individual vulnerability
An important issue in drug abuse research concerns why some individuals develop vigorous
compulsive drug use after modest consumption of drugs. Human family studies demonstrate
that addiction's vulnerability is influenced both by genes and environmental conditions (Uhl,
1999; 2002; True et a., 1999; Vanyukov & Tarter, 2000). Similarly, individual vulnerability
to drug abuse in animal models depends on both genetic (Carney et al., 1991; Belknap et al.,
1993a, 1993b, Meliska et al., 1995) and environmental risk factors for addiction (Bowling et
al., 1993; Bowling & Bardo, 1994; Cabib et al., 2000; de Jong & Kloet, 2004; Nader & Czoty,
2005).

It has been demonstrated that vulnerable animals show higher locomotor and exploratory
activity in novel environments (Piazza et al., 1989; Rouge-Pont et al., 1993; Deroche et al.,
1995; Grimm and See, 1997; Pierre and Vezina, 1997; Kabbaj et al., 2000; Marinelli & White,
2000; Shimosato & Watanaba, 2003; Orsini et al., 2004). Because of their preference for novel
environments (Dellu et al., 1996; Stansfield et al., 2004), they have been described as novelty-
seekers (Bardo et al., 1996; Klebaur & Bardo, 1999) and compared to human sensation-seekers,
namely individuals characterized by lower levels of internal arousal who are strongly attracted
to intense sources of stimulation (Zuckerman, 1990; Dellu et al., 1996). In accordance with
such views, vulnerability to addiction has been seen as the result of an endogenous deficiency
in the reward state, and, more specifically, in the ML-DA functioning. Indeed, in laboratory
animals, low basal levels of ML-DA are related to drug-seeking behaviors, either in individuals
with genetic- and history-induced vulnerabilities (Kellogg, 1976; Kempf, 1976; Nestler,
1993; George et al., 1995; Gardner, 1999; Misra & Pandey, 2003) or in acute withdrawal from
drugs (Parsons et al., 1991; Weiss et al., 1992). In an attempt to maintain “optimal levels of
arousal” (Hebb, 1955), individuals with a lower endogenous DA transmission may be
preferentially attracted to the hedonic effects of drug-promoted arousal of the ML-DA system,
since drugs may constitute a way to compensate for endogenous arousal deficits and to
pharmacologically increase internal levels of activation. On the other hand, since positive
affective states are influenced by arousal following an inverted-U shaped function, drugs of
abuse may constitute an excessive source of stimulation for individuals with higher basal levels
of arousal, generating unpleasant states in them. Therefore, the “self-medication
hypothesis” (Markou et al., 1998; Khantzian, 2003) as well as the “reward deficiency
hypothesis” (Commings & Blum, 2000) look at drug-taking behaviors as instruments of self-
regulation and thereby emphasize the relevance of affective feelings as signals of addiction
relevant internal states.

Criticism against these theories of vulnerability came from studies showing that novelty- and
drug-seeking rats are characterized by overactive ML-DA neurons (Marinelli & White,
2000; Vezina, 2004). Indeed, rats selected for high responsiveness to novelty and
psychostimulants (high responders, HR) present an increased firing and bursting activity of
ML-DA neurons in basal conditions (Marinelli & White, 2000). These findings have been
considered strong evidence for an endogenous sensitization of the ML-DA system. Such
endogenous sensitization has been attributed to a potentiation of synapses connecting
glutamatergic excitatory projections and DA neurons in the VTA, and has been suggested as
the cause for increased activating and rewarding properties of novelty and drugs. Indeed,
animals that are more vulnerable to developing drug self-administration show higher levels of
behavioral activation after drug intake (Piazza et al., 1989). This effect is explained by a greater
drug response in the ML-DA system of these individuals (Bradberry et al., 1991; Hooks et al.,
1992b; Rouge-Pont et al., 1993; Piazza & LeMoal, 1996; Zocchi et al., 1998; Robinson &
Berridge, 2000).

A challenge to the endogenous sensitization hypothesis has emerged from experiments in
which high responding rats have a slower rate of DA release and uptake in the Nacc compared
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with low responders (Chefer et al., 2003). The greater electrical activity of DA neurons
(Marinelli & White, 2000) thus correlates with a less rapid DA transmission in projection
areas21 (Chefer et al., 2003). Since DA influences the responsiveness of ML cells to external
input, low DA levels should be accompanied by a prevalence of glutamatergic transmission
and a hyper-excitability of DA neurons to glutamate. Indeed, DA usually reduces the amount
of glutamate released or the intensity of glutamate-evoked cell firing (Siggins, 1978; Dray,
1980; Yim & Mogenson, 1982; 1986; Bradley et al., 1987; Maura et al., 1988; Harsing & Vizi,
1991). The prevalence of glutamatergic transmission in the VTA and higher ML-related
regions may also cause the spreading of slow-wave cortical rhythms into the midbrain and BG.
The increased bursting activity of DA neurons (Marinelli & White, 2000) may then be caused
by a deficiency in DA transmission and may arise from the diffusion of cortical synchronized
activity, as manifested in animals treated with chloral hydrate (Steinfels et al., 1981) and in
BG output nuclei of Parkinsonian patients22 (Wichmann & De Long, 2003).

If the ML-DA deficiency is one predisposing factors in addiction vulnerability23, it is also true
that sensitivity to the rewarding effects of drugs forms a key component (de Wit et al.,
1986;Seale & Carney, 1991; O'Brien et al., 1996; Brunelle et al., 2004;Uhl, 2004). Therefore,
it remains to be established why individuals with a blunted ML-DA transmission should present
an enhanced ML-DA response to drugs and novelty. An important consequence of endogenous
DA hypofunctionality is the reduced expression of neuronal self-inhibitory mechanisms in the
ML system. Vulnerable individuals, after drug experiences, show fewer or less functional D2
autoreceptors (White & Wang, 1984;Cabib et al., 2002;Volkow et al., 2002;Nader & Czoty,
2005). Mice of the C57 strain (the addiction vulnerable phenotype) not only show lower levels
of D2-autoreceptors in the VTA (Puglisi-Allegra & Cabib, 1997), but also a reduced
concentration of DA transporter proteins (DAT) responsible for the re-uptake of extracellular
DA in ventral striatal areas (Janowski et al., 2001). Maternally separated rats, which are more
vulnerable to addiction, exhibit lower levels of DAT in adulthood compared with controls with
direct implications for greater responsiveness to drugs and stress (Meaney et al., 2002). On the
other hand, socially dominant monkeys present higher levels of D2 receptors, protecting them
against the rewarding effects of cocaine (Morgan et al., 2002). It has also been shown that the
pFC DA response to amphetamine in the C57 “vulnerable” mice strain is considerably lower
compared with that of the DBA addiction “resistant” mice strain (Ventura et al. 2004), and
prefrontal DA transmission exerts an inhibitory control over DA release in ventral striatal areas
(Deutch et al., 1990;Karreman & Moghaddam, 1996;King et al., 1997;Wilkinson, 1997; Jentsh
et al., 1998; Ventura et al., 2002).

In sum, the lower expression or functionality of self-inhibitory processes in the ML system
may compensate for the endogenous hypofunctionality of ML-DA transmission. Although
basal levels of DA are restored, the ML-DA system will became less capable of self-regulating
its own activity. In situations where unusual stimuli, such as drugs of abuse or novel
environments, induce a consistent release of DA into the Nacc and related basal forebrain
regions, the deficiencies in the inhibitory mechanisms in the ML system will cause abnormally
elevated DA responses. Therefore, vulnerable individuals may experience greater rewarding

21It is interesting to note that the same paradoxical correlation is present in animals chronically treated with drugs.
22On the other side, GABA projections into the VTA exert a general inhibition on DA cell firing (Hyland et al., 2002). Keeping the DA
neurons in a hyperpolarized state, GABA inputs permit the progressive accumulation of DA molecules in the presynaptic vescicles and
the increase of quanta of DA released per impulse. Moreover, GABA transmission promotes the emergence and the diffusion of basal
forebrain and BG oscillatory rhythms. Under GABA control, the ML system may then be regulated by those neurodynamic patterns
forming the procedural structure of intentional behaviors.
23Although the existence of an endogenous hypofunctionality of ML-DA transmission is considered the first link in the chain, it is not
clear where this deficit arises. It is easy to speculate that it may have developmental origins, based either upon genetic or environmental
factors.
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effects of drugs, partly, we would propose, due to a higher activation of the SEEKING
emotional disposition.

When the system “crashes” because effective reward-seeking is thwarted, animals exhibit
depressive responses partly because of the emerging dysphoria producing dominance of
dynorphinergic tone over the whole ML-DA SEEKING apparatus (Nestler & Carlezon,
2006). Although we have not focused on this aspect of the ML-DA seeking urge, it would be
predicted that kappa-receptor antagonists might not only be excellent antidepressants but they
will tend to restore SEEKING urges in the behaviorally dysfunctional syndrome of clinical
depression. Most other theoretical perspectives of the ML-DA functions, especially the
neurocognitive “teaching signal” views, might have difficulty generating comparably
straightforward predictions.

6. CONCLUSION
The analysis of ML-DA functions has become an enormous field of inquiry, and new findings
and theoretical interpretations are emerging at a steady pace. As this paper was completed, a
whole issue of the journal “Psychopharmacology” (2007, vol. 191, issue 3) appeared that was
dedicated to the topic. There is no need to modify our position with respect to the cornucopia
of these additional perspectives, which are mostly elaborations of previous positions. We would
simply highlight that the view advanced here is one of the earliest and most holistic attempts
to conceptualize how transhypothalamic reward circuitry, energized by the ML-DA system
energizes a coherent organismic response to the world ((Panksepp, 1981 to Panksepp &
Moskal, 2007). It can readily accommodate and be synergistic with many of the more specific
views that exist in abundance in the literature.

Many theories of ML-DA still envision this system participating in goal-directed behaviours
in relatively passive cognitive ways, such as “reward prediction error” which do not clearly
envision or recognize the energetic psychobehavioural states this system mediates. Those
alternative views remain encumbered by the failure to sift correlates from causes. Most
eletrophysiological studies have been characterizing what DA neurons are listening to, truly a
wide array of information, rather than what these systems are passing on in the global regulation
of behavioural states (Panksepp, 2005). In our affective neuroethological perspective, the ML
DA is part of a general purpose appetitive foraging system (the SEEKING system) that allows
animals to become acquainted with the diverse configurations and reward of their
environments, and thereby establish realistic and adaptive expectations. This system, perhaps
some subcomponents more than others, also participates in protecting animals against the
vicissitudes of their world (punishing contingencies) by promoting the seeking of safety.

Our view openly acknowledges affective psychological changes, which emerge from related,
but poorly understood, emotional network functions (Panksepp, 2005). In its primal form the
ML-DA-SEEKING system can generate a special kind of positive affect that is characterized
by a euphoric engagement with the world. To the extent that we can define the normal range
of arousal of this system, we would suggest that it routinely tends to promote an affectively
positive engagement with the world, even though it may not be able to completely counteract
a negative affective state that has been concurrently aroused by various punishing events that
require the seeking of safety. It is also likely that excessive arousal of this system may be
experienced as affectively extreme, leading to feelings such a cravings and excessive feelings
of urgency.

We have hardly touched upon the human brain imaging data that is beginning to highlight how
important this system is in all varieties of appetitive human motivation, from the excitement
of anticipating monetary rewards (Breiter, et al., 2001; Knutson, et al., 2001), to the delights
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of love (Fisher, et al., 2006) and music (Blood & Zattore, 2001). These issues have been well
reviewed elsewhere (Knutson & Wimmer, 2007), and generally support the long-standing
thesis that has been updated and mechanistically developed here. Indeed, some of the new wave
of “neuroeconomic” brain imaging goes back to animal work affirming the appetitive nature
of some of the spontaneous signs of ML-DA arousal, such a 50 kHz ultrasonic vocalizations
(USVs) in rats (Knutson, et al., 2002). This vocal index of positive social engagement,
especially the “frequency modulated” (FM) variety is strongly affetced by ML-DA dynamics
(Burgdorf, et al., 2001, 2007). Another, putative direct index of the arousal of this SEEKING
system in rats is the appetitive invigoration of sniffing (Clark & Trowill, 1971) and this measure
exhibits spontaneous temporal conditioning that helps explain why animals behave the way
they do (i.e., exhibit scalloped, expectancy-type, operant responding) on fixed interval
schedules of reinforcement (Panksepp, 1981, 1998). Thus, we have at least three measures of
spontaneous arousability of the SEEKING urge in rodents: i) sniffing, ii) 50 kHz FM USVs,
and iii) general exploratory-foraging activities. Such unconditional indices, above and beyond
DA release, should help us better characterize how the SEEKING disposition helps various
behavior patterns become part of the learned repertoires of animals —both “realistic” and
“delusional” --as the brains of organisms try to make causal sense of the correlated events to
which they are exposed.

Many modern theories of ML-DA function still reflect the old battles between behaviorists and
ethologists (Burkhardt, 2005). Obviously, the two views must work together, and they need to
be integrated into a seamless whole. However, it needs to be reaffirmed that, as an initial step,
organisms do have certain complex behavioural abilities before those abilities get re-structured
and channelled by learning. In its primal form, the ML-DA energized brain SEEKING system
provides a “goad without a goal” (Panksepp, 1971), promoting the emergence of specific
neurodynamic sequences first associated with instinctual exploratory and with learning,
appetitive approach patterns. Thereby DA transmission rapidly becomes enmeshed in all
varieties of object relations that allow animals to effectively pursue all exteroceptively
detectable resources needed for survival.

Several recent publications exhibit a growing interest in integrating dorsal BG DA and ventral
BG DA behavioural functions (Robbins & Everitt, 2007; Nicola, 2007). Unfortunately, only
single-neuron electrophysiological findings are presented as new empirical evidence without
consideration of global-field dynamics studies that first revealed their usefulness in
understanding Parkinson's disease. Most of the work in the field is still motivated by
computational views of ML-DA functions (see Phillips et al., 2007; Nicola, 2007; Phillips et
al., 2007), focusing largely “on a role of phasic dopamine in controlling the discrete selection
between different actions” (Niv et al., 2007). Moreover, such views have difficulty specifing
which kinds of actions are modulated by ML DA, since there is no evidence that “stimulus-
evoked firing of DA neurons encodes specific movements” (Nicola, 2007). Such important
questions recur in many of the most recent theoretical papers. How the behavioral activating
effect of DA may be translated into specific motor patterns? Which kinds of actions are
represented in the Nacc and other ventral BG areas? How are such actions adaptive in novel
environments?

In our affective neuroethological perspective, the activating effects of DA is translated into
instinctual (i.e., unconditioned) action tendencies, psychobehaviorally represented in ventral
BG-thalamocortical circuits, since DA-promoted high-frequency rhythms facilitate the release
of SEEKING neurodynamic sequences. Such sequences lead to explicit orienting, seeking and
approaching movements when coupled with various external stimulus representations that have
been experienced in the context of reward aquistions. Our model integrates dorsal and ventral
BG DA functions in a new way, since we considered the procedural routines represented in
dorsal BG as learned subsequences of the SEEKING disposition that have become habitual
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(also see discussion in Ikemoto & Panksepp, 1999). Therefore, in novel and unpredictable
environments, instinctual actions of exploration and approach to previously uninvestigated
stimuli prevail, while in well-learned situations those patterns are no longer needed (i.e.,
functional) and instinctual habitual sequences, reflecting more predictable and linear input-
output relations, elaborated by dorsal BG circuits, prevail.24 It is noteworthy that the latter
pattern are more unconscious that the affectively rich SEEKING patterns elaborated by the
more medial, and hence evolutionarily more ancient, ML-DA circuits.
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Abbreviations
ARAS  

Ascending reticular activating system

BG  
basal ganglia

CPP  
Conditioned Place Preference

DA  
dopamine

ESSB  
Electric self-stimulation of the brain

FAPs  
Fixed Action Patterns

GABA  
Gamma aminobutyric acid

MFB  
Medial Forebrain Bundle

ML  
mesolimbic

ML-DA system 
mesolimbic dopamine system
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NS-DA system 
nigrostriatal dopamine system

Nacc  
nucleus accumbens

pFC  
Prefrontal Cortex

TD  
Temporal Difference models

VP  
ventral pallidum

VTA  
Ventral Tegmental Area
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Figure 1. The ML-DA system
The figure shows a schematic representation of the main forebrain areas reached by the
mesolimbic DA system (Swanson, 1982; German & Manaye, 1993; Haber & Fudge, 1997).
According to anatomical and evolutionistic criteria (Swanson 2000), the structures innervated
by ML-DA have been divided in dienchephalic, basal forebrain, and higher forebrain areas.
Midbrain: VTA = ventral tegmental area
Diencephalon: LH = lateral hypothalamus, LMB = lateral mammillary body
Basal forebrain: Nacc = nucleus accumbens, VP = ventral pallidum, OT = olfactory tubercle,
CeA = central nucleus of amygdala, MeA = medial nucleus of the amygdala, BNST = bed
nucleus of stria terminalis, LS = lateral septum.
Higher forebrain: pFC = prefrontal cortex, ACC = anterior cingulated cortex, BLA =
basolateral amygdala, HC = hippocampal complex.
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Figure 2. DA innervation of BG-thalamocortical circuits
All ascending mesencephalic DA projections innervate the BG rather widely, while only the
ML-DA system projects to the frontal cortex. Although the DA transmission in frontal cortex
has received an increasing interest, our paper is mainly focused on the role of DA release in
BG. In particular, DA transmission in ventral and dorsal striatal areas (the input areas of BG)
modulates the communication between glutamatergic projections arriving from frontal cortex
and GABAergic neurons located inside the striatum. In such a way, DA regulates the diffusion
of neural activity patterns within basal ganglia-thalamocortical circuits. The figure doesn't
show the segregation of BG-thalamocortical circuits described by Alexander and coll.
(1986), but the schematic representation can be applied to limbic, associative or motor loops
of those circuits.
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Figure 3. Functional feedbacks between tonic and phasic DA transmission
In the Grace model (Grace 1991; 2000), tonic DA levels were indicated to inhibit phasic DA
release, since D2 autoreceptors activation decreases bursting (and firing) activity of DA
neurons. Without questioning the validity of the Grace theory, our alternative model considers
the existence of two different feedback loops between tonic and phasic DA transmission. The
first one is well experimentally demonstrated, it acts in short-time periods, and consists of the
negative influences that tonic DA exerts over DA cell bursting (as in the Grace model).
However, in our alternative model, a positive feedback loop has been hypothesized (but not
demonstrated yet), since its existence may help in explaining some important empirical
evidence. The supposed positive feedback loop should act in longer time frames and consist
in tonic DA increasing the amount (or quanta) of DA released per single burst. We called this
component the relative phasic DA transmission, to distinguish it from the absolute phasic DA
transmission, which is dependent upon the relative phasic DA, plus the mean bursting activity
of DA neurons. In our model, tonic DA transmission increases the relative phasic DA
(potentiating the efficiency of each burst), and inhibits the mean bursting activity of DA
neurons, without strongly modifying the absolute phasic DA. In sum, the Grace model
emphasizes the existence of a negative interaction between tonic and phasic DA, whereas our
model individuates the existence of a positive feedback loop.
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Figure 4. DA-promoted BG activity patterns
Much evidence has shown that the release of DA into BG blocks the spreading of cortical
rhythms in BG structures (A). For example, DA inhibits cortically-derived beta oscillatory
patterns and promotes the emergence of BG characteristic oscillatory patterns (in the gamma
range) in BG-thalamocortical circuits (Brown & Mardsen, 1998; Brown, 2003; Countermanche
et al., 2003; Magill et al., 2004; Lee et al., 2004; Sharrot et al., 2005).
The inhibitory function of DA transmission on the spreading of cortical rhythms is mainly
mediated by the activation of D2-type receptors (D2), since they have an inhibitory role over
descending glutamatergic transmission into BG areas (Nicola et al., 2000; West et al., 2003;
O'Donnell, 2003) (B). The consequent emergence of gamma and other BG rhythms may favors
the release of neurodynamic sequences and their diffusion in BG-thalamocortical circuits. On
the other hand, transient activation of D1-type receptors (D1) may have an excitatory function
and seems to favor the entrance of specific and highly convergent cortical and limbic
information into BG (West et al., 2003; O'Donnell, 2003) (B). Those signals may control the
release of neurodynamic sequences in accordance with the representation of the organism-
environment relationship. The global function of DA may then be conceptualized as a
widespread modulation favoring the elaboration of relevant corticolimbic information into a
BG intentional code.
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Figure 5. The process of drugs addiction development
In the neurocognitive behavioristic perspective, addiction has been explained as the
consequence of drug-induced brain adaptations “stamping” specific associative memories in
neural circuits (A). The over-representation of drug-related memories should be caused by
synaptic modifications connecting cortico-limbic areas (involved in the representation of
motivationally relevant stimuli) to BG areas (involved in the expression of motivated and
intentional behaviors). The flow of activity through which compulsive memories are expressed
is a linear input-output way of processing, while the ML-DA transmission (especially into the
Nacc) is supposed to be particularly important in the drug-induced reinforcement process. The
affective neuroethological perspective advanced here diverges from the previous one in
considering the drug-induced activation of the SEEKING emotional disposition as the cardinal
element in the formation of those memories that make drugs and drug-related stimuli always
more attractive (B). In particular, we think that ML-DA release after drug intake facilitates the
emergence of specific neurodynamic sequences along the BG-thalamocortical circuits, which
constitute the patterns through which the SEEKING disposition is expressed at the neural level.
Once generated, these sequences match the representations of specific information about the
environment (which are elaborated in BG-thalamocortical circuits and related structures). In
line with the “Hebbian” dynamic conception of synaptic plasticity, we think that the match
between SEEKING sequences and drug-related memories permanently modify the functional
organization of the brain (from the molecular to the systemic level). Therefore, the cascade of
neuroadaptations observed after drug use (from molecular to cellular level) represents the
tendency of the SEEKING disposition to be activated by drug-related memories and expressed
through drug-seeking behaviors.
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