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Summary
The bone marrow (BM) milieu confers drug resistance in multiple myeloma (MM) cells to
conventional therapies. Therefore novel biologically-based therapies are needed. Preclinical studies
have identified and validated molecular targeted therapeutics in MM. In particular, recognition of
the biologic significance of the BM microenvironment both in MM pathogenesis and as a potential
target for novel therapeutics has already derived several promising approaches. Thalidomide,
lenalidomide (Revlimid®) and bortezomib (Velcade®) are directed not only at MM cells, but also
BM milieu, and have rapidly from the bench to the bedside and FDA approval to treat MM.

Introduction
Despite advances in systemic and supportive therapies, MM remains incurable due to intrinsic
or acquired chemotherapeutic resistance. High-dose chemotherapy with stem cell
transplantation has significantly extended progression-free and overall survival, but cures few,
if any, patients. Novel therapeutic approaches overcoming drug-resistance are therefore
urgently needed in MM. The interaction of MM cells with extracellular matrix (ECM) proteins
and BM stromal cells (SCs), as well as other components in the BM milieu (ie, osteoblast,
osteoclast, vascular endothelial cells), plays a crucial role in MM cell pathogenesis and drug
resistance. Importantly, novel biologically-based treatments which target not only the MM cell,
but also the MM cell interaction with other accessory cells and cytokines/growth factors in the
BM milieu, can overcome resistance to conventional therapies in both preclinical and clinical
studies, and have great promise to improve patient outcome in MM.

The role of the BM microenvironment in MM
The BM microenvironment promotes MM cell growth, survival, migration and drug resistance.
It is composed of different types of cellular component: including: hematopoietic stem cells;
progenitor and precursor cells; immune cells; erythrocytes; BMSCs; BM endothelial cells
(ECs); as well as osteoclasts and osteoblasts. These cells not only physically interact with MM
cells, but also secrete growth and/or anti-apoptotic factors, such as interleukin (IL)-6, insulin-
like growth factor (IGF)-1, vascular endothelial growth factor (VEGF), and tumor necrosis
factor (TNF)-α, stromal cell-derived factor (SDF) 1α, and B-cell activating factor (BAFF). The
interaction of these cellular components with growth/anti-apoptotic factors, several
proliferative/anti-apoptotic signaling cascades in MM cells: phosphatidylinositol-3 kinase
(PI3K)/Akt; Ras/Raf/mitogen-activated protein kinase (MAPK) kinase (MEK)/extracellular
signal-related kinase (ERK); Janus kinase (JAK) 2/signal transducers and activators of
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transcription (STAT)-3; and nuclear factor (NF)-κB. These signaling cascades activate
downstream target kinases and/or transcription factors which in turn regulate MM cell cycle
progression, proliferation, and anti-apoptosis. Importantly, cytokines secreted from MM cells
and BMSCs in turn further augment these signaling pathways 1–3. Therefore, cytokines, their
receptors, transcription factors and protein kinases represent potential targets for novel
therapies (Figure 1).

Targeting growth factors and their receptors
1. IL-6

IL-6 mediates autocrine and paracrine growth of MM cells within the BM milieu (Figure 1).
Specifically, some MM cells spontaneously secrete IL-6, and IL-6 secretion can be induced
by CD 40 activation of tumor cells 4 or by cytokines (TNFα, VEGF, IL-1) within the BM
microenvironment 5,6. Most IL-6 in the BM milieu is secreted by BMSCs; importantly,
transcription and secretion of IL-6 in BMSCs is upregulated both by binding of MM cells to
BMSCs 7,8 and by secretion of cytokines (VEGF, TGF-β, TNFα) from MM cells 9–11. IL-6-
induced proliferation is associated with activation of Ras/Raf/mitogen-activated protein kinase
kinase (MEK)/p42/44 MAPK signaling cascade 12,13, and can be abrogated by either MAPK
antisense oligonucleotide or by the ERK or MEK inhibitor 14. Survival of MM cells triggered
by IL-6 is conferred via Janus kinase2 (JAK2)/signal transducers and activators of transcription
(STAT) 3 signaling and downstream induction of Bcl-xL 15 and Mcl-1 expression 16,17. IL-6
triggered drug (dexamethasone, Dex) resistance is mediated via phosphatidylinositol-3 kinase
(PI3-K)/Akt signaling cascade, which can be neutralized by PI3K inhibitors (ie, wartmannin
or LY294002). Specifically, Dex-mediated MM apoptosis is not associated with mitochondrial
cytochrome c release 18, but is mediated by Second mitochondria activator of caspase (Smac)
release, from mitochondria 19; cytosolic Smac disrupts the inhibitor of apoptosis XIAP/
caspase-9 complex, thereby allowing activation of caspase-9, caspase-3 cleavage, and
apoptosis. IL-6 inhibits apoptosis triggered by Dex via PI3-K/Akt signaling 20. We have used
gene microarray profiling both to further delineate these cytokine-induced growth and anti-
apoptotic pathways, and to derive targeted therapeutic strategies to overcome drug resistance
based upon interrupting growth or triggering apoptotic signaling cascades 21. For example,
these studies have demonstrated that IL-6 induces the XBP-1 transcription factor 22, which is
implicated in differentiation of normal B cells to plasma cells 23,24 and is markedly
upregulated in freshly isolated MM patient samples.

Clinically, serum IL-6 and IL-6 receptors are prognostic factors which reflect the proliferative
fraction of MM cells 25–27. IL-6 or CRP, either alone or coupled with serum β2 microglobulin
(β2m) as a measure of MM cell mass 28, provide one example of a biologically-based staging
system in MM. Attempts to target IL-6 in treatment strategies to date have included antibodies
to IL-6 and IL-6 receptor as well as IL-6 superantagonists (ie, Sant7) 29,30 which bind to IL-6R
but do not trigger downstream signaling; although in vivo anti-MM activities have been
observed, to date responses have only been transient.

2. IGF1
Insulin-like growth factor-1 is a multifunctional peptide that regulates cell proliferation,
differentiation, and apoptosis 31,32. In the circulation, IGF-1 binds mainly to the main IGF
binding protein (IGFBP-3). Several studies suggest that high concentrations of circulating
IGF-1 are associated with an increased risk of prostate, breast, lung, and colorectal cancer,
whereas high IGFBP-3 concentrations are associated with a decreased risk 32. However, the
direct relationship of serum IGF-1 level and prognosis in MM has not yet been clarified. Standal
et al reported that the mean IGF-1 level did not differ between MM patients and controls.
However, IGF-1 was a strong indicator of prognosis: median survival of patients with low

Hideshima and Anderson Page 2

Hematol Oncol Clin North Am. Author manuscript; available in PMC 2008 December 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



levels (<13 nmol/l) of serum IGF-1 had not been reached at 80 months 33. Previous studies
have delineated the biological sequelae of IGF-1 in MM cells. Specifically, IGF-1 augments
the proliferative and anti-apoptotic effects of IL-6 34. In contrast to IL-6, IGF-1 activates only
Ras/Raf/MAPK kinase/ERK and PI3K/Akt signalling, but not JAK2/STAT3 pathways, via
type1 IGF receptor (IGF1R) 35.

IGF-1 stimulates sustained activation of PI3K/Akt and NFjB; induces phosphorylation of
FKHR (forkhead) transcription factor; upregulates a series of intracellular anti-apoptotic
proteins including FLIP, survivin, cIAP-2, A1/Bfl-1, and XIAP; as well as decreases drug
sensitivity of MM cells 36. IGF-1 primes MM cell responsiveness to IL-6 and stimulates
production of angiogenic cytokines 37. Importantly, it is more potent than IL-6 in mediating
these effects, setting the stage for novel MM treatments targeting IGF-1. IGF-1 also mediates
MM cell migration via activation of PI3K/Akt signalling cascade 38. The anti-apoptotic effect
of IGF-1 has also been studied using an in vitro model system of MM cells in the BM milieu.
Specifically, IGF-1 inhibits Dex-induced apoptosis in MM cell lines, without altering Bcl-2 or
Bcl-XL proteins, associated with activation of ERK and PI3K/Akt signalling pathways 36.
IGF-1 mediates MM cell growth and survival in MM cells both in vitro 34 and in vivo 31.
Recently, we showed that caveolin-1, which is usually absent in blood cells, is expressed in
MM cells and plays a crucial role in both IL-6 and IGF-1-mediated signalling cascades 39.
Preclinical studies of IGF1R targeted strategies have shown efficacy comparable with that of
other antineoplastic strategies, i.e. proteasome inhibitors and IMiDs, which have proven to be
clinically useful 32. Small-molecule IGF1R kinase inhibitor NVP-ADW742 31, anti-IGF1R
antibodies, or anti-IGF-1 ligand antibodies, will be evaluated in clinical trials in several cancers,
including MM 40.

3. VEGF
VEGF is a known angiogenic factor in both solid tumors and haematological malignancies
41. In MM, VEGF is produced both by MM cells and BMSCs and may account, at least in
part, for the increased angiogenesis in MM patient BM. Our recent studies show that VEGF
triggers ERK activation, proliferation, and migration of MM cells 42,43, which can be
neutralised by VEGF receptor tyrosine kinase inhibitors PTK787 44 and GW654652 45. VEGF
also triggers Src-dependent phosphorylation of caveolin-1, which is required for p130Cas
phosphorylation and MM cell migration 46. Recently, we have shown that VEGF upregulates
Mcl-1 expression in MM cell lines and MM patient cells; conversely, pan-VEGF inhibitor
GW654652 inhibits VEGF-induced upregulation of Mcl-1, associated with decreased
proliferation and induction of apoptosis 47.

We have also shown that a VEGF receptor inhibitor pazopanib (GW786034B) inhibits VEGF-
triggered signaling pathways in both tumor and endothelial cells 48. Humanized monoclonal
antibody against VEGF Bevacizumab (Avastin) was recently approved by the FDA for the
therapy of metastatic colorectal cancer, and ongoing studies in MM are evaluating the efficacy
of bevacizumab, with or without thalidomide, in patients with relapsed or refractory MM 41.

4. FGF
MM cells express and secrete bFGF, which contributes to the increased angiogenic potential
of BM plasma cells in progressive MM 49. BMSCs from MM patients and control subjects
express high-affinity FGF receptors R1–R4. Importantly, stimulation of BMSCs with bFGF
induces a time- and dose-dependent increase in IL-6 secretion; conversely, stimulation with
IL-6 enhances bFGF expression and secretion by MM cell lines, as well as MM patient cells
50. In MM, dysregulation of fibroblast growth factor receptor 3 (FGFR3) by the t(4;14)
translocation is a primary event in 10–20% MM patients and confers poor prognosis 51–54.
As a surface receptor, FGFR3 can be targeted by monoclonal antibodies 55,56 or be inhibited
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by selective tyrosine kinase inhibitors (SU5402, SU10991, PD173074, or PKC412) 57,58.
Preclinical studies have validate FGFR3 as a therapeutic target in t(4;14) MM, and FGFR3
inhibitors are currently under clinical evaluation to improve prognosis of this patient subgroup.

5. BAFF
B-lymphocyte stimulating factor (Blys) is a TNF family member, which plays a critical role
for maintenance of normal B-cell development and homeostasis. B-cell activating factor
(BAFF) and a proliferation-inducing ligand (APRIL), another TNF family members sharing
significant homology, are both expressed on MM cells 59,60. Three receptors for BAFF have
been identified: B-cell maturation antigen (BCMA), transmembrane activator and calcium-
modulating cyclophilin ligand interactor (TACI), and BAFF-receptor. TACI and BCMA can
also bind to APRIL, whereas BAFF-R is specific for BAFF. It has been shown that the serum
levels of BAFF and APRIL are increased in patients with MM 61. BAFF and APRIL promote
MM cell growth and activate NF-κB, PI3K/Akt, and Ras/Raf/MAPK pathways with
upregulation of Mcl-1 and Bcl- 2 anti-apoptotic proteins, leading to protection of MM cells
against Dex-induced apoptosis 59. Therefore blockade of BAFF/BAFR axis represents a
potential therapeutic target.

6. Wnt
Wnt signalling regulates various developmental processes and can lead to malignant
transformation. Wnts are a family of secreted cysteine-rich glycoproteins that act as short-range
ligands locally and bind to frizzled transmembrane receptors. Intracellularly, a canonical Wnt/
β-catenin signaling cascade inhibits GSK-3β activity, thereby blocking β-catenin
phosphorylation and degradation by proteasomes. In MM, Wnt/β-catenin pathway is activated
following treatment with Wnt-3a. MM cells highly express β-catenin, which is consistent with
active β-catenin/T-cell factor (TCF)-mediated transcription 62. Further accumulation and
nuclear localisation of β-catenin, and/or increased cell proliferation, is achieved by stimulation
of Wnt signaling with either the Wnt-3a or the constitutively active mutant of β-catenin 62.
Recent studies have shown that inhibition of β-catenin and TCF-4 interaction by PKF115-584
induces cytotoxicity in both patient MM cells and MM cell lines and mouse xenograft models
of human MM 63.

In the BM microenvironment, Wnt signaling is involved in osteblastogenesis. MM cells in
patient BM-biopsy specimens express dickkopf 1 (DKK1), a negative regulator of the Wnt/β-
catenin signaling cascade 64. Moreover, elevated DKK1 levels in BM plasma and peripheral
blood from patients with MM correlate with DKK1 gene expression patterns and were
associated with focal bone lytic lesions 65. Importantly, recent studies have shown that anti-
DKK1 neutralizing Ab increases numbers of osteocalcin-expressing osteoblasts and bone
mineral density of implanted bone in SCID mice 66.

7. CD40
CD40 is a TNFα super family member. CD40 ligand (L) triggers p53-dependent MM cell
proliferation, as well as PI3K/Akt/NFκB-dependent migration in MM cells 67,68. In BMSCs,
CD40 triggers secretion of IL-6 and VEGF, which further promotes MM cell growth in the
BM milieu. Therefore, inhibition of CD40-CD40L interaction is a possible therapeutic strategy
in MM. Indeed, anti-CD40 antibodies (SGN-40, CHIR-12.12) modestly inhibit MM cell
proliferation 69. Importantly, these antibodies can induce antibody-dependent cell-mediated
cytotoxicity (ADCC) against CD40-positive MM cells, which can be further enhanced by
lenalidomide 70,71.
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8. Others
Serotherapy directed against CD20 targets only a minority of MM patient tumor cells, since
CD20 expression is not common in MM (20% CD20+). The anti-CD20 monoclonal antibody
(Rituximab) achieved response in 32% previously treated MM patients, all of whom had CD20
+ tumor cells 72. CS1 (CD2 subset 1) is a member of the CD2 family of cell surface
glycoproteins and highly expresses on myeloma cells. Recent studies have shown that a novel
humanized anti-CS1 mAb, HuLuc63, induces significant ADCC against MM cells including
drug-resistant cells, and inhibited their interaction with BMSCs 73

Targeting intracellular molecules
1. Proteasome

Ubiquitin-proteasome pathway is a protein degradation system which maintains intracellular
protein homeostasis. It plays a central role in the targeted degradation of cellular proteins,
including cell cycle regulatory proteins and apoptosis associated proteins. Ubiquitin is a small
protein (76 amino acids). The C-terminus of ubiquitin forms an isopeptide bond with the amino
group of a lysine side chain in a target protein. After attaching multiple copies of ubiquitin to
target proteins, the protein will be degraded by 26S proteasome, which consists of a proteolytic
core, the 20S proteasome, sandwiched between two 19S regulatory complexes. The 20S
proteasome has multiple active sites, including caspase-like, trypsin-like, and chymotrypsin-
like sites. Since Ubiquitin-proteasome pathway is crucial for survival of cancer cells, its
inhibition represents a novel therapeutic strategy in cancer. The proteasome inhibitors are
classified as reversible and irreversible according to their inhibition of chymotrypsin-like,
trypsin-like, and/or caspase-like activities. Bortezomib is a reversible inhibitor of
chymotrypsin-like activity, and has demonstrated significant anti-tumor activity in preclinical
and clinical studies in MM.

a. Bortezomib (Velcade®)—Bortezomib (N-pyrazinecarbonyl-L-phenylalanine-L-leucine
boronicacid) is a boronic acid dipeptide which inhibits β1, β1i, and β5 subunits of the 20S
proteasome core in the 26S proteasome complex 74. The initial rationale to use bortezomib in
MM is its inhibitory effect of NF-κB, which plays a crucial role in the pathogenesis in cancer
cells including MM. The NF-κB complex is a dimer of different combinations of Rel family
proteins, including p65 (RelA), RelB, c-Rel, p50 (NF-κB1), and p52 (NF-κB2). Recent studies
have revealed that NF-κB activity is mediated via two distinct pathways. In the canonical
pathway, NF-κB is typically a heterodimer composed of p50 and p65 subunits 75, and its
activity is regulated by association with IκB family proteins 76. Following stimulation by
various factor, including cytokines (ie, TNFα, IL-1β, IGF-1), IκB protein is phosphorylated
by IκB kinase (IKK), typically IKKβ. Phosphorylated IκB is subsequently poly-ubiquitinated
and degraded by the 26S proteasome 77,78, which allows p50/p65 NF-κB nuclear
translocation. Bortezomib inhibits degradation of IκB and blocks NF-κB activity.

Although NF-κB is a major target of bortezomib, it also has other target molecules. First, it
directly induces apoptosis of human MM cell lines and freshly isolated patient MM cells despite
induction of p53-independent p21Cip1 and p27Kip1. Second, it triggers apoptosis even in drug
resistant cells, and adds to the anti-MM activity of Dex. Importantly, IL-6 and other growth
factors do not overcome bortezomib -induced apoptosis, which is triggered by activation of
caspase-3 via caspase-8/9 79,80. Third, bortezomib cleaves DNA repair enzymes (DNA-PKcs,
ATM) 81,82, and enhances sensitivity of MM cells to conventional chemotherapeutic agents,
especially to DNA damaging agents (ie, doxorubicin, melphalan) 81. Forth, previous studies
have also shown that normal plasma cells, as well as MM cells, produce and secrete abundant
immunoglobulins, which require a highly developed endoplasmic reticulum (ER) and
chaperone proteins (ie, heat shock proteins (Hsps)) that effect proper translation and folding.
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The unfolded protein response ensures that the plasma cells can catabolize immunoglobulins,
therefore proteasome inhibition is an ideal novel therapeutic strategy for MM 83. Fifth,
bortezomib induces a stress response in MM cells. For example, bortezomib upregulates HSPs
and c-Jun NH2-terminal kinase (JNK) which mediate apoptosis triggered by unfolded proteins.
While bortezomib directly induces caspase-dependent apoptosis, it also targets the BM
microenvironment. Specifically, in MM cells, it triggers downregulation of gp130 84, which
is phosphorylated after IL-6 binding to its receptor, thereby inhibiting phosphorylation of ERK,
STAT3, and Akt induced by either IL-6 or by binding of MM cells to BMSCs. Sixth,
bortezomib also inhibits VEGF-triggered caveolin-1 phosphorylation and markedly decreases
caveolin-1 expression, thereby inhibiting VEGF-induced MM cell migration 46. Seventh,
expression of adhesion molecules (ie, ICAM-1, VCAM-1) on both MM cells and BMSCs is
also regulated by NF-κB, inhibition of NF-κB by bortezomib decreases adhesion and thereby
enhances susceptibility of MM cells to therapeutic agents 85,86 (Figure 2). Importantly,
bortezomib also inhibits the paracrine growth of human MM cells in the BM milieu by
decreasing their adherence to BMSCs and related NF-κB dependent induction of IL-6 secretion
in BMSCs (Figure 1).

Most recently, the effects of bortezomib in bone remodeling, specifically on osteoblasts and
osteoclasts, have been reported 87,88. Bortezomib significantly induced a stimulatory effect
on osteoblast markers in human mesenchymal cells without affecting the number of osteoblast
progenitors in bone marrow cultures or the viability of mature osteoblasts, associated with
upregulated Runx2/Cbfa1 activity in human osteoblast progenitors and osteoblasts.
Importantly, numbers of osteoblastic cells was significantly increased by bortezomib.
Specifically, Runx2/Cbfa1-positive osteoblastic cells was observed in MM patients responded
to bortezomib treatment 88. Moreover, bortezomib inhibited osteoclast differentiation and
bone resorption activity. The mechanisms of action targeting early osteoclast differentiation
was related to the inhibition of p38 MAPK pathways, whereas targeting the later phase of
differentiation and activation was due to inhibition of p38 MAPK, AP-1 and NF-κB activation
89.

Other proteasome inhibitors
NPI-0052 is a novel proteasome inhibitor from Salinospora tropica, a marine actinomycete.
Although bortezomib only blocks chymotryptic activity, NPI-0052 inhibits chymotryptic,
trypsin-like and caspase-like activities. NPI-0052-induced cytotoxicity is predominantly
triggered by caspase-dependent apoptosis. It induces cytotoxicity in MM cells resistant to
conventional agents. Importantly, it is also able to overcome bortezomib resistance in vitro
90. NPI-0052 triggers reactive oxygen species/caspase-8-dependent apoptosis, which can be
enhancd by histone deacetylase inhibitor in ALL cells 91.

PR-171 is another novel epoxyketone-based irreversible proteasome inhibitor, which primarily
inhibits chymotriptic activity of 20S proteasome. It triggers JNK/caspase-dependent apoptosis.
In comparison to bortezomib, PR-171 exhibits equal potency but greater selectivity for the
chymotrypsin-like activity of the proteasome. In cell culture, PR-171 is more cytotoxic than
bortezomib following brief treatments that mimic the in vivo pharmacokinetics of both
molecules.92. Multicenter phase I studies to evaluate the safety, tolerability, and clinical
response to intensive dosing with PR-171 in patients with relapsed or refractory hematological
malignancies has already been reported. In this study, 51 patients are enrolled, and 17 out of
21 myeloma patients were previously treated with bortezomib; importantly, 4 myeloma
patients responded to PR-171 treatment (PR, 19%) 93.
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2. Lenalidomide (Revlimid®)
Although lenalidomide, an immunomodulatory derivative of thalidomide has multiple
mechanisms of anti-MM activities: including directly inducing G1 growth arrest or apoptosis;
inhibits MM cell adherence to BMSCs; decreasing production of cytokines; inhibiting BM
angiogenesis which is increased in MM patients; and enhancing anti-MM immunity with
stimulation of T cell and natural killer cell responses. We and others have recently studied the
mechanism of anti-MM activity of thalidomide derivatives known as immunomodulatory
drugs (IMiDs), which have significantly higher potency at inducing apoptosis or growth arrest
in MM cells resistant to melphalan, doxorubicin and dexamethasone 94. The IMiDs reduce the
secretion of IL-6 and VEGF triggered by the binding of MM cells to BMSCs, and inhibit
angiogenesis 11. We and others demonstrated that the IMiDs stimulated T-cell proliferation
via T cell co-stimulatory mechanism. Specifically, IMiDs trigger tyrosine phosphorylation of
CD28 on T cells, followed by activation of nuclear factor of activated T cell 2 (NFAT2) and
production of IL-2 70,95. Moreover, IMiDs induce NK cell cytotoxicity, since both NK cell
proliferation and antibody-dependent cell-mediated cytotoxicity (ADCC) activity were
enhanced by IL-2 production from T cells triggered by IMiDs 70,71,96 (Figure 2). These data
provide the cellular and molecular basis for use of IMiDs as an adjuvant in immunotherapeutic
treatment strategies for MM.

3. Histone deacetylase (HDAC)
HDAC inhibitors are members of novel class of anti-tumor agents for malignancies, and a large
number of structurally diverse HDAC inhibitors have been purified from natural sources or
synthetically developed. HDAC inhibitors can be divided into six classes based on their
chemical structure. These classes are short-chain fatty acid, hydroxamate, benzamide, cyclic
tetrapeptide, electrophilic ketone and the others 97. Accumulated histone acetylation by HDAC
inhibitors attenuates their electrostatic interaction with the negatively charged DNA backbone,
promoting the unfolding of histone–DNA complex, thereby modulating access of transcription
factors to their binding sites of action and transcription of their target genes 98–100 (Figure
1). Previous studies have shown that deletions or inactivating mutations of HATs which
decrease histone acetylation are involved in development of human neoplasms 101,102. In
contrast, inhibition of HDAC activity triggers growth arrest and/or apoptosis of tumor cells.
Possible mechanisms of anti-tumor activities of HDAC inhibitors have recently been
comprehensively described 97; however, their mechanisms of growth inhibitory effects in MM
cells have not yet been fully characterized.

a. Suberoylanilide hydroxamic acid (SAHA)—SAHA is prototype class I, II HDAC
inhibitor which directly interacts with the catalytic site of HDAC like protein and inhibits its
enzymatic activity. Inhibition of HDAC activity by SAHA therefore results in alteration of
gene expression in various cell types including MM 103. Like other HDAC inhibitors, SAHA
upregulates p21WAF1 expression 104,105, thereby inhibiting tumor cell growth. In MM,
SAHA: modulates gene expression and inhibits of tumor cell growth 103,106; induces
upregulation of p21WAF1; upregulates p53 protein expression; and dephosphorylates Rb,
followed by apoptosis. Importantly, upregulation of p21WAF1 occurs prior to p53 induction,
suggesting that p21WAF1 upregulation is independent of p53 activity 103. SAHA-induced
apoptosis in MM cells is associated with Bcl-2 interacting protein Bid; conversely,
overexpression of Bcl-2 blocks SAHA-induced apoptosis, suggesting that Bcl-2 plays a crucial
role regulating SAHA-induced apoptosis in MM cells. Interestingly, SAHA does not trigger
caspase activation, and the caspase inhibitor does not protect against SAHA-induced
cytotoxicity. However, poly (ADP) ribose polymerase (PARP) is significantly cleaved by
SAHA, suggesting that SAHA triggers atypical PARP cleavage in MM cells 103. Importantly,
SAHA suppresses expression and activity of the proteasome and its subunits, providing the
rationale for its use in combination with bortezomib to enhance its cytotoxicity 106. It has also
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shown that SAHA enhances tumour necrosis factor-related apoptosis-inducing ligand
(TRAIL)-induced cytotoxicity, associated with upregulation of the proapoptotic proteins (Bim,
Bak, Bax, Noxa, and PUMA) and downregulation of anti-apoptotic proteins (Bcl-2 and Bcl-
xL) 107.

b. MVP-LAQ824 (LAQ824)—LAQ824 is a member of hydroxamate HDAC inhibitor which
blocks class I and II HDAC activity. LAQ824 inhibits proliferation of cancer cell lines with
IC50s of 10–150nM ranges in vitro, indicating that anti-proliferative potency of LAQ824 is
up to 200-fold higher than that of SAHA. 108,109. Anti-tumor activity of LAQ824 has been
extensively studied in leukemia cells 110–114. In MM, LAQ824 induces apoptosis at IC50 of
100 nM at 24 hour in most MM cell lines and patient tumor cells. Importantly, LAQ824 is
effective in cells which are resistant to conventional therapies (dexamethasone, doxorubicin,
melphalan). Moreover, LAQ824 inhibits cell growth in vivo in a preclinical murine myeloma
model. Unlike SAHA, LAQ824-induced apoptosis is associated with caspase activation 115.

c. LBH589—LBH589 is a hydroxamic acid analog which blocks class I and II HDAC activity.
LBH589 has been studied in many malignancies as a single agent, as well as combined with
other anticancer agents 116–119. LBH589 has also been shown to inhibit angiogenesis in vitro
120. In MM, LBH589 blocks cell cycle progression, associated with upregulation of
p21WAF1, p53, and p57, and induces cytotoxicity through an increase in mitochondrial outer
membrane permeability 121. The IC50 of LBH589 is 40–80 nM in most MM cell lines 121,
122. LBH589-induced cytotoxicity is associated with caspase/PARP cleavage; however,
interestingly, LBH589 also triggers a caspase-independent apoptotic pathway through the
release of apoptosis-inducing factor (AIF) from mitochondria 121. Synergistic cytotoxicity
against MM cells is observed with LBH589 in combination with bortezomib 122. Phase II
clinical trials of LBH589 are ongoing in MM, and a clinical trial of bortezomib with LBH589
to block proteasomal and aggresomal breakdown of protein, respectively, is soon to begin.

e. Other HDAC inhibitors—Tubacin is a hydroxamic acid HDAC inhibitor and inhibits
only HDAC6 activity 123. Previous studies have characterized the aggresome as an alternative
system to the proteasome for degradation of polyubiquitinated proteins. The aggresome
pathway therefore likely provides a novel system for delivery of aggregated proteins from the
cytoplasm to lysosomes for degradation 124. In this aggresomal protein degradation pathway,
HDAC6 has an essential role, since it can bind both polyubiquitinated proteins and dynein
motors, thereby acting to recruit protein cargo to dynein motors for transport to aggresomes
125. We have demonstrated that blockade of both proteasomal and aggresomal protein
degradation by bortezomib and tubacin, respectively, synergistically enhances cytotoxicity in
MM cells in vitro 126. Depsipeptide (FR901228, FK228) is a class of cyclic tetrapeptide and
inhibits only class I HDAC activity 127. Depsipeptide induces apoptosis in MM cell lines and
in primary patient tumor cells, associated with downregulation of Bcl-2, BCL-xL and Mcl-1
expression 128. PXD101 is a hydroxamate class HDAC inhibitor 129 which has
antiproliferative activity in MM cell lines, and shows additive and/or synergistic effects with
conventional agents used in MM. MS-275 belongs to the benzamide class and inhibits class I
and II HDACs. KD5170 is non-hydroxamate, orally bioavailable HDAC inhibitor which
significantly inhibits osteoclast formation at lower μM range and triggers apoptosis in MM
cells 130.

4. Heat shock protein (Hsp) 90
Hsp90 is a molecular chaperone which facilitates intracellular protein trafficking,
conformational maturation, and 3-dimensional folding required for protein function.
Intracellular overexpression of Hsp90 proteins are observed in most MM tumor cells, but not
in monoclonal gammopathy of undetermined significance (MGUS) or in normal plasma cells
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131. The ansamycin antibiotic geldanamycin (GA) and its analogs bind to the critical ATP-
binding site of Hsp90, thereby abrogating its chaperoning activity in the MM BM milieu;
decreasing IGF-1R and IL-6R expression on MM cells; depleting growth kinases (e.g., Akt,
IKK, Raf) and anti-apoptotic proteins (FLIP, XIAP, cIAP, telomerase); as well as inhibiting
both constitutive and cytokine-induced activation of NF-κB and telomerase (hTERT) in the
BM milieu 132. GA and other Hsp90 inhibitors induce apoptosis of MM cell lines and patient
cells which are resistant to Dex, anthracyclines, Thal or IMiDs, TRAIL/Apo2L, and
bortezomib. Moreover, a geldanamycin analog 17-AAG suppresses in MM cells the expression
and/or function of multiple levels of insulin-like growth factor receptor (IGF-1R) and
interleukin-6 receptor (IL-6R) signaling (eg, IKK/NF-κB, PI-3K/Akt, and Raf/MAPK) and
downstream effectors (eg, proteasome, telomerase, and HIF-1α activities)in MM cells 132.
Most recently, Hsp90 inhibitors have been reported to induce myeloma cell death, at least in
part, via ER stress and the unfolded protein response death pathway 133.

IPI-504 is a hydroquinone hydrochloride derivative of 17-AAG. In MM, IPI-504 inhibits MM
cell growth in vitro and in mouse models. Like other Hsp90 inhibitors, IPI-504 synergistically
enhances cytotoxicity of bortezomib 134. 17-dimethylaminoethylamino-17-
demethoxygeldanamycin hydrochloride (17-DMAG) is also a water soluble novel Hsp90
inhibitor 17-DMAG, which attenuates the levels of STAT3 and phospho-ERK, as well as
decreases the viability of MM cells 131.

5. Akt (protein kinase B)
Akt signaling mediates MM cell resistance to conventional therapeutics 20,36,135, therefore,
biologically-based treatments targeting Akt are a promising therapeutic strategy in MM.
Perifosine is a synthetic novel alkylphospholipid which inhibits Akt activation. In MM cells,
we have shown that Perifosine inhibits both baseline and cytokine (IL-6, IGF-1)-triggered Akt
activation. Importantly, Perifosine triggers significant cytotoxicity even of MM cells adherent
to BM stromal cells (SCs) and therefore overcomes CAM-DR. Furthermore, Perifosine
augments both conventional agent- and bortezomib-induced MM cell cytotoxicity.
Importantly, we have also demonstrated in vivo anti-MM activity of Perifosine in a human
plasmacytoma mouse model, associated with downregulation of Akt phosphorylation in tumor
cells 136. Perifosine has been shown to induce selective apoptosis in MM cells by recruitment
of death receptors, such as TNF-related apoptosis-inducing ligand (TRAIL)-R1/DR4 and
TRAIL-R2/DR5 137. Most recently, we have shown that Perifosine-indiced cytotoxicity is
strongly associated with downregulation of survivin 138.

6. Mammalian target of rapamycin (mTOR)
mTOR is a serine/threonine protein kinase that regulates transcription, cell proliferation, and
survival. Inhibition of mTOR by its inhibitors therefore induces potent cytotoxicity in MM
cells 139,140. Specifically, rapamycin induced G0/G1 arrest, associated with an increase of
the cyclin-dependent kinase inhibitor p27 and a decrease of cyclins D2 and D3 in MM cells
141.. Interestingly, PTEN-negative myeloma cells are more sensitive to mTOR inhibition that
PTEN-positive cells 142. Rapamycin shows synergistic cytotoxicity in combination with
dexamethasone Stromberg, 2004 #5217} and lenalidomide 143. CCI-779 is a rapamycin analog
which demonstrates inhibition of proliferation and induction of apoptosis, associated with
cyclin D1 and c-myc downregulation and up-regulation of p27Kip1 in OPM-2 cells 144.
Moreover, CCI-779 downregulates VEGF translation, and ultimately blocks angiogenesis
145.

7. MAPK kinase (MEK)
MEK/ERK pathway is one of the major signaling cascades which can be activated by many
cytokines (ie, IL-6, IGF-1, SDF1α, BAFF) in MM cells. We have shown that inhibition of ERK
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by antisense oligonucleotide blocks MM cell proliferation 12,13. Therefore inhibition of MEK/
ERK signaling is a promising therapeutic strategy.

Recent studies have shown that clinical grade novel MEK1/2 inhibitor AZD6244
(ARRY-142886) induces apoptosis in MM cell lines and patient MM cells, associated with
caspase-3 activation. Importantly, AZD6244 down-regulates the expression/secretion of
osteoclast (OC)-activating factors from MM cells and inhibits in vitro differentiation of MM
patient PBMCs to OCs 14.

8. Bcl2 and Bcl-xL
Bcl2 family members have a crucial role in protecting cells from apoptotic stimuli. In MM,
Bcl-2 antisense oligonucleotide (G3139) 146,147, and Bcl2/Bcl-XL inhibitor (ABT-737)
148,149 induce strong anti-MM activities as single agents and in combination with Dex 150.

Future directions
Although each of novel agent demonstrates significant preclinical anti-MM activity in vitro
and using an in vivo mouse model of human MM, treatment with single agents may not achieve
sufficient clinical efficacy. Therefore, treatments combining novel agents with conventional
and/or novel agents to overcome clinical drug resistance are required. Among these
combination therapies, thalidomide with dexamethasone, bortezomib with dexamethasone,
and bortezomib with doxorubicin have shown promising results in clinical studies based upon
our preclinical studies. Our recent preclinical studies indicate that other novel agents enhance
cytotoxicity induced by conventional agents. For example, bortezomib induces stress response-
related proteins such as heat shock proteins hsp27, hsp70, and hsp90. Blockade of Hsp90 or
Hsp27 by their inhibitors restores sensitivity to bortezomib. Recent studies have demonstrated
that unfolded and ubiquitinated proteins are degraded not only by proteasomes, but also by
aggresomes dependent on HDAC6 activity. Inhibition of both proteasome and aggresome
mechanisms using bortezomib and HDAC6 specific inhibitor tubacin induces accumulation of
ubiquitinated proteins, followed by significant cell stress and cytotoxicity in MM cells. Most
recently, we demonstrated that the potent Akt inhibitor perifosine augments bortezomib-
induced cytotoxicity in MM. These preclinical studies of combination therapies of bortezomib
with novel agents provide the rational framework for clinical evaluation of these treatment
options.
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Figure 1.
Novel biologically-based therapies targeting MM cells and the BM microenvironment. Novel
agents A. directly inhibit MM cell growth; B. inhibit angiogenesis; C. inhibit MM cell adhesion
to BM accessory cells; D. decrease cytokine production and sequelae in the BM
microenvironment; and E. enhance host anti-MM immunity.
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Figure 2.
Cell surface and intracellular targets of novel therapeutic agents. Novel agents block signaling
cascade triggered by MM cell-BM accessory cell interaction and induce growth inhibition in
the BM microenvironment. Novel agents; inhibit interaction of cytokines/growth factors and
their receptors expressed on MM cell; inhibit receptor tyrosine kinase activity; intracellular
molecules (kinases, anti-apoptotic proteins, molecular chaperons, transcription factors).
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