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Abstract
Deficits in emotional expression are prominent in several neuropsychiatric disorders, including
schizophrenia. Available clinical facial expression evaluations provide subjective and qualitative
measurements, which are based on static 2D images that do not capture the temporal dynamics and
subtleties of expression changes. Therefore, there is a need for automated, objective and quantitative
measurements of facial expressions captured using videos. This paper presents a computational
framework that creates probabilistic expression profiles for video data and can potentially help to
automatically quantify emotional expression differences between patients with neuropsychiatric
disorders and healthy controls. Our method automatically detects and tracks facial landmarks in
videos, and then extracts geometric features to characterize facial expression changes. To analyze
temporal facial expression changes, we employ probabilistic classifiers that analyze facial
expressions in individual frames, and then propagate the probabilities throughout the video to capture
the temporal characteristics of facial expressions. The applications of our method to healthy controls
and case studies of patients with schizophrenia and Asperger’s syndrome demonstrate the capability
of the video-based expression analysis method in capturing subtleties of facial expression. Such
results can pave the way for a video based method for quantitative analysis of facial expressions in
clinical research of disorders that cause affective deficits.
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1. Introduction
Facial expressions have been used in clinical research to study deficits in emotional expression
and social cognition in neuropsychiatric disorders [1–4]. Specifically, patients with
schizophrenia often demonstrate two types of impairments in facial expressions: “flat affect”
and “inappropriate affect” [5]. However, most of the current clinical methods, such as the scale
for assessment of negative symptoms (SANS [6]), are based on subjective ratings and therefore
provide qualitative measurements. They also require extensive human expertise and
interpretation. This underlines the need for automated, objective and quantitative
measurements of facial expression. We previously reported a method for quantifying facial
expressions based on static images [14,15]. However, temporal information plays an important
role in understanding facial expressions because emotion processing is naturally a temporal
procedure. Therefore, facial expression analysis from static 2D images lacks the temporal
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component, which is essential to capture subtle changes in expression. Although video-based
acquisition has been employed in the examination of facial emotion expression [7], currently
there is no objective and automated way of facial expression analysis for the study of
neuropsychiatric disorders, particularly due to the large volume of data that makes human
analysis prohibitive. In this paper, we present a computational framework that uses videos to
automatically analyze facial expressions and can be used to characterize impairments in such
neuropsychiatric disorders.

The merits of automated facial expression analysis (AFEA) are two-fold: using it can avoid
intensive human efforts, and can provide unified quantitative results. There are already many
AFEA methods being presented in both clinical and computer vision communities [8–13].
Most of the current AFEA methods focus on the recognition of posed facial expressions with
application to human computer interaction tasks, and only a few of them have been applied to
clinical studies [14,15]. In previous work on expression quantification [14,15], the expression
changes were modeled using elastic shape transformations between the face of a neutral
template and the corresponding emotionally expressive face. Again, as most of the current
AFEA methods, this approach is based on static 2D images without any temporal component.

In this paper, we present a computational framework that uses videos for the analysis of facial
expression changes. This framework explores the dynamic information that is not captured by
static images during emotion processing, and provides computationally robust results with
potential clinical applicability. Broadly, our computational framework includes the detection
of faces in videos, which are then tracked through the video, incorporating shape changes.
Based on tracking results, features are extracted from faces to create probabilistic facial
expression classifiers. The probabilistic outputs of facial expression classifiers are propagated
throughout the video, to create probabilistic profiles of facial expressions. Probabilistic profiles
contain dynamic information of facial expressions, based on which quantitative measures are
extracted for analysis. As an application of this framework, such quantitative measurements
for facial expressions could be correlated with clinical ratings to study the facial expression
deficits in neuropsychiatric disorders. To our knowledge, the presented framework is the first
to apply video based automated facial expression analysis in neuropsychiatric research.

The rest of the paper is organized as follows: In Section 2, previous related work is reviewed.
Our computational framework is presented in Section 3. The experimental results are provided
in Section 4. We discuss the results and conclude in Section 5.

2. Related Work
2.1 Clinical Facial Expression Analysis

In clinical research, facial expressions are usually studied using 2D images that are described
in two ways: either as a combination of muscular movements or as universal global expressions.
The Facial Action Coding System (FACS) has been developed to describe facial expressions
using a combination of action units (AU) [16]. Each action unit corresponds to a specific
muscular activity that produces momentary changes in facial appearance. The global facial
expression handles the expressions as a whole without breaking up into AUs. The most
commonly studied universal expressions include happiness, sadness, anger and fear, which are
referred to as universal emotions. While most of the work has been on static 2D images, the
Facial Expression Coding System (FACES) [7] has been designed to analyze videos of facial
expressions, in terms of the duration, content and valence of universal expressions. However,
these methods need intensive human intervention to rate the images and videos of facial
expressions. Such rating methods are prone to subjective errors, and have difficulties in
providing unified quantitative measurements. There is need for automated, objective and
quantitative measurements of facial expressions.
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2.2 Automated Facial Expression Analysis
Automated facial expression analysis (AFEA) allows computers to automatically provide
quantitative measurements of facial expressions. Several factors have contributed towards
making AFEA challenging. First, facial expressions vary across individuals due to the
differences of the facial appearance, degree of facial plasticity, morphology and frequency of
facial expressions [13]. Second, it is difficult to quantify the intensity of facial expressions,
especially when they are subtle. In FACS, a set of rules are used to score AU intensities [16].
However, such criteria are subjective to the rater; therefore it is difficult to extend the
measurements to computer-based facial expression analysis, although there have been methods
to automatically detect AUs [11]. Many AFEA methods have been developed recently to
address such problems [11,12]. These methods can be categorized as image-based, video-based
and 3D surface based, according to the data used. Below we summarize some typical image-
based and video-based facial expression analysis methods.

2.2.1 Image Based Methods—Image-based methods extract features from individual
images, and create classifiers to recognize facial expressions. Commonly used are geometric
features, texture features, and their combinations. Geometric features represent the spatial
information of facial expressions, such as positions of eyes and mouth, the distance between
two eyebrows. The geometric features used by Tian et al. in [17] are grouped into permanent
and transient. The permanent features include positions of lips, eyes, brows, cheeks and furrows
that have become permanent with age. The transient features include facial lines and furrows
that are not present at rest but appear with facial expressions [17]. The texture features include
image intensity[18], image difference[19], edge [17,20], and wavelets [21,22]. To recognize
subtle facial expressions, both features computed by using principal components and image
difference usually require precise alignment, not readily feasible in real world applications.
The edge features are often used to describe furrows and lines caused by facial expressions,
but are difficult to detect for subtle expressions. Gabor wavelets calculated from facial
appearance describe both spatial and frequency information for image analysis, and have
shown capability in face recognition and facial feature tracking [23], as well as facial expression
recognition [21,22]. Furthermore, experiments [18,24] demonstrate that the fusion of
appearance features (Gabor wavelets or PCA features) and geometric features can provide
better accuracy than using either of them alone. To recognize facial expressions, extracted
features are input to facial expression classifiers, such as the Nearest Neighbor classifier [19],
Neural Networks [17], SVM [22], Bayesian Networks [25], and AdaBoost classifier [22,26].

2.2.2 Video-Based Methods—It is claimed that temporal information can improve the
accuracy of facial expression recognition over using static images [27]. However, only few
video-based methods have been developed to use the temporal information of facial
expressions [22,27–31]. In the work of Yacoob et al. [28], each facial expression is divided
into three segments: the beginning, the apex and the ending. Rules are defined to determine
the temporal model of facial expressions. Such rules are ad-hoc, and cannot be generalized to
complex environments. In the work of Cohen et al. [27], facial expressions are represented in
terms of magnitudes of predefined facial motions, so called Motion-Units (MU). A Tree-
Augmented-Naive Bayes classifier is first used to recognize facial expressions at the level of
static images, and then a multi-level Hidden Markov Model (HMM) structure is applied to
recognize facial expressions at the level of video sequences. Yeasin et al. also present a two-
stage approach to recognize facial expression and its intensity in video using optical flow
[29]. Another example of using HMM for facial expression analysis can be found in [30].
Besides HMM, the sampling-based probabilistic tracking methods, known as “particle
filtering” or “Condensation”, are also used to track facial expression in video sequence [31,
32]. Manifold subspace features have been applied for video based facial expression analysis.
However, in their methods, a separate manifold is built for each subject, and the subjects appear
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in both training and testing sequences. It is unclear that such specifically learned manifolds
can be generalized to different subjects, since it is observed that their manifolds show different
structures [31].

An important facet in video-based methods is how to maintain accurate tracking throughout
the video sequence. A wide range of deformable models, such as muscle-based models [33],
a 3D wireframe model [27], a facial mesh model [34,35], a potential net model [36], ASM
[37], and a geometry-based shape model [14,38], are used to track facial features in video.
Although it has been demonstrated that a sophisticated deformable model can improve facial
tracking accuracy, thereby improving facial expression analysis accuracy [39], there are no
comprehensive experiments showing which deformable model is superior to the others.

In summary, video based methods can capture subtle changes and temporal trends of facial
expression, which cannot be achieved by static image based methods. Due to the large amount
of data in videos, a fully automated method for analysis is required. In the following sections,
we first present a framework that is able to quantify the facial expression changes in video,
and then describe normative data on healthy people, and finally apply the method in two
illustrative patients to examine its potential for research in neuropsychiatric disorders.

3. Methods
This section presents our computational framework for facial expression analysis using video
data. We provide an overview of the framework in Section 3.1, with further details in
subsequent subsections.

3.1 A Framework of Quantitative Facial Expression Analysis in Video
Our framework for automated facial expression analysis of video data comprises the following
components: 1) detecting landmarks that define the facial shape, and tracking landmarks and
hence the facial changes due to expressions; 2) feature extraction based on these landmarks;
3) creation of classifiers based on extracted features, and probabilistic classification at each
frame of the video sequence; and 4) probabilistic propagation of facial expressions throughout
the video. We first apply a face detector and a landmark detector to automatically locate
landmarks in videos. Based on these detected landmarks, the method further extracts geometric
features to characterize the face shape changes caused by facial expressions. Geometric features
are normalized, which are demonstrated to be robust to skin color and illumination variations,
and are input to facial expression classifiers for analysis. Therefore, the third part of the method
is the creation of probabilistic classifiers using the extracted features. Offline–trained support
vector machines (SVMs) (a type of non-linear pattern classification technique) are employed
to obtain the likelihood probability of each facial expression. Since the probabilistic classifiers
only describe the facial expressions at individual frames, our framework further propagates
the measurements at individual frames throughout videos using a sequential Bayesian inference
scheme, to obtain a representation of facial expression changes in the whole video in the form
of a temporal probabilistic profile of facial expressions. The computational framework is
general, and applicable to all types of participants, for video based facial expression analysis.
The method is applied to a group of healthy people and representative patients with
neuropsychiatric disorders, and measurements extracted from probabilistic profile of facial
expressions are expected to distinguish between patients and controls.

3.2 Landmark Detection and Tracking in Video
In this section, we present our landmark detection and tracking method. In the work of [15],
the face region is manually outlined to obtain the deformation between faces with expression
and neutral faces for analysis. However, manual labeling is time-consuming, and subjective to
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the person who labels the face. Especially in our study, the video of each participant may
contain different facial expressions, up to 10,000 to 20,000 frames. Thus, it is a formidable
task to manually mark all the face shapes in the videos. An automated system is desirable to
perform the landmark points detection and tracking with minimum human intervention. To
automate the process, we first detect the face and facial landmarks in the starting frame of the
video using a face detector and an Active Appearance Model (AAM) [40], and then track the
landmark points in all the remaining frames. In the meantime, the face detector is running
through the video to monitor the tracking, and re-initializes the tracker when participants' faces
are out of the frontal view or occluded when the facial expression analysis cannot be performed.
The whole scheme is illustrated in Figure 1.

3.2.1 Face Detection—In our method, the face is automatically detected in the first frame
of the video. Many face detection methods have been recently developed [41]. Among current
methods, the AdaBoost based methods achieve excellent detection accuracy as well as real-
time speed [42–44]. Here we have applied AdaBoost algorithm with Haar features, to detect
frontal and near-frontal faces[42]. In this method, critical Haar features are sequentially
selected from an over-complete feature set, which may contain more than 45,000 Haar wavelet
features. Threshold classifiers are learned from the selected features, and are combined by
AdaBoost. With a cascade structure [42], AdaBoost-based frontal face detection methods can
achieve real-time speed (i.e., above 15 frames per second) with accuracy comparable to other
methods. Note that our face detector aims at detecting only frontal faces, since our facial
expression analysis is only applied to frontal faces. Figure 2 shows face detection result in the
first frame of a video.

3.2.2 Landmark Detection and Tracking—Inside each detected face, our method further
identifies important landmarks to characterize facial expression changes. Active appearance
model (AAM) [40] locates these landmark points. AAM is a statistical method to model face
appearance as well as face shape. In AAM, the face shape is represented by a set of landmarks,
and the face texture is the image intensity or color of the whole face region. AAM face model
combines the principal components from face texture and shape to formalize a vector, and then
apply an additional principal component analysis (PCA) to further reduce the feature
dimensionality. AAM models can be learned offline from collected annotated training samples.
To locate landmarks in a given image with unknown faces, an efficient method has been
developed in [40] to identify landmarks in images by minimizing the error between original
face and its PCA reconstruction.

In our method, we define the face shape using 58 landmarks, as shown in Figure 3(a). Among
those landmarks, 5 points are defined on each eye brow, 8 points are defined on each eye, 11
points are defined on the nose, 8 points are defined on the mouth, and 13 points are defined on
the face outline. The face texture in our AAM is defined as the RGB color values of the face,
which are transformed on the mean shape. We collect about 100 face images with manually
annotated landmarks, to obtained AAM models. Our implementation of AAM is modified from
[45]. For given images with unknown faces, our method automatically detects the landmarks
using the trained AAM model. Figure 3(b) shows the detected landmarks at the first frame of
video.

AAM is also used to track the landmark points in the rest of the video. At each frame, the face
shape is initialized with the shape at the previous frame, and then AAM is applied to update
the face shape at the current frame. Compared to independent landmark detection at individual
frames, the AAM tracking speeds up the searching procedure by limiting the searching only
around the previous location, given the assumption that the face moves smoothly. Figure 4
shows the tracked landmarks in the video.
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3.2.3 Combination of Face Detection and Landmark Detection—Although
participants are instructed to restrict their head movement during data capture, the faces of
participants could still be out of the frontal view sometimes. Such cases will fail during face
tracking as well as in the facial expression analysis. To address such a problem, face detection
is combined with landmark tracking such that landmarks detected can be monitored. The frontal
face detector will lose detection when the faces are out of the frontal view or are occluded.
Then the AAM tracking will be stopped. The face detector will keep searching frames until
the face is back to its frontal view, or the occlusion is over. Then the AAM tracker is re-
initialized inside the detected face region. In our experiments, only about 1.4% of frames in
all participants have shown non-frontal faces. The faces out of frontal view will be excluded
from the subsequent facial expression analysis. Figure 5 shows how face detection can find
the face that is out of view and re-initialize the face tracking.

3.3. Facial Expression Feature Extraction
Geometric features are extracted from landmarks to characterize facial expression changes.
The first type of geometric features are the area changes of 28 regions defined by 58 landmark
points, as illustrated in Figure 6(a). Such areas describe the global changes caused by facial
expressions. There are also some facial actions that are closely related to expression changes.
Such facial actions include eye opening, mouth opening, mouth corner movement and eyebrow
movement. To specifically describe such actions, we define another type of geometric features,
which measure distances between some landmark points, as illustrated in Figure 6(b).

To eliminate effects of individual differences in facial expressions, extracted features are
normalized in several ways. First, each face shape is normalized to the same scale. We use the
face width to normalize faces, since it does not vary with facial expression changes. Second,
geometric features are normalized by each subject's neutral faces. For example, each 2D
geometric feature is divided by its corresponding value at the neutral expression of the same
person. Thus, the geometric features only reflect the ratio changes of 2D face geometry, and
individual topological differences are canceled. Finally, all the feature values are normalized
to z-scores for subsequent analysis.

3.4 Facial Expression Classifiers
To quantify facial expressions, extracted features are used to train facial expression classifiers.
We adopt support vector machines (SVM) [46] as a pattern classification method to train
classifiers. SVM is a binary classifier, which can separate two classes by projecting original
data onto a high dimensional space through kernel functions. It provides good accuracy and
generalization capability. At the training stage, SVM requires training samples to obtain class
boundaries. At the classification stage, for a new data point, SVM returns a numeric result that
represents the distance from the feature point to the class boundary. There are some efforts to
interpret SVM outputs from the probabilistic point of view [47,48]. A direct method is to fit
the output of SVM into parametric probability models [48]. By assuming the distance output
by SVM as a Gaussian likelihood model, the posterior probabilities can be directly fit with the
sigmoid function as shown in Eqn (1):

(1)

where x is the class label, Z is the output of SVM. The parameters μi,σi, Ai, Bi are estimated
from training data. We are mainly interested in the likelihood probability p(Z | x), which will
be used for the later Bayesian probability propagation.

The label x refers to the facial expression, and Z is the SVM output of extracted features. The
class label x takes discrete values, i.e. x = i indicates the existence of the i-th facial expression.
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p(Z | x = i) and p(x = i | Z) are the likelihood and posterior probability of the i-th facial expression
respectively. However, SVM is essentially a binary classifier, while facial expression analysis
is a multi-class problem as there are more than 2 facial expressions. There are usually two
strategies, i.e., “one-against-another” and “one-against-all”, to extend binary classifiers for a
multi-class problem. In the “one-against-another” strategy, multiple binary classifiers are
trained for each pair of classes. If there are k classes, there will be k(k−1)/2 binary classifiers.
The final decision is made based on majority voting over all the binary classifiers. In another
“one-against-all” strategy, k binary classifiers are trained for k classes, with each binary
classifier trained to separate one facial expression from the other facial expressions. It is shown
in [49] that the “one-against-another” significantly increases the computational complexity,
but improves the accuracy only slightly. Therefore, we apply the “one-against-all” strategy,
i.e., training one SVM classifier for each expression using extracted features. For analysis of
new data, the outputs from SVM classifiers, p(Z | x = i), will be used for the probabilistic
propagation in video sequences.

3.5 Probabilistic Propagation in Video: Creation of Probabilistic Profile of Facial Expressions
The probabilistic outputs of facial expression classifiers, p(z | xi), model facial expressions at
individual frames only, but have not fully utilized the temporal information of facial
expressions in videos. We apply a sequential Bayesian estimation scheme to propagate the
posterior probabilities of facial expressions throughout the whole video. The sequential
Bayesian estimation and its Monte Carlo derivations have been widely used in visual tracking
[6,29], as they can handle sequential inference problems effectively and elegantly. Our method
applies the sequential Bayesian estimation to infer the posterior probability P(xt | Z1:t) of facial
expressions in video. In P(xt | Z1:t), xt refers to the facial expression at the t-th frame, and
Z1:t represents the history of features extracted from frame 1 to frame t. To infer P(xt | Z1:t)
from individual frames, a “dynamic model” is needed to describe the temporal relationship
between facial expressions is needed. Such a dynamic model is denoted as P(xt | x1:t−1). Usually,
there are two assumptions made in the sequential Bayesian estimation for purpose of simplicity:
P(xt|x1:t−1) = P(xt|xt−1) and P(Zt|x1:t) = P(Zt|xt). Such assumptions are called Markov properties,
and have been widely adopted in the sequential inference. A graphical model that illustrates
our sequential Bayesian estimation is shown in Figure 7. With the assumptions of Markov
property, posterior probabilities can be estimated from a measurement model P(Zt | xt) and a
propagated prior P(xt−1 | Z1:t−1), based on Bayes rule, as Eqn (2):

(2)

where  is a normalization constant that ensures that the summation
of probability equals to 1. As shown in Eqn (2), the posterior probability P(xt | Z1:t) is
sequentially estimated from the previous probability P(xt−1 | Z1:t−1).

For the facial expression analysis of any participant using video, the likelihood measurement
P(Zt | xt) is obtained by inputting features extracted from individual frames to the trained SVMs,
which are described in Section 3.4. Then the posterior probability P(xt | Z1:t) is propagated
throughout the video using sequential Bayesian inference, i.e., Eqn (3). The probabilities P
(xt | Z1:t) therefore describe the temporal characteristics of facial expressions in videos, and
provide the quantitative measurements that our method will use for subsequent analysis. These
frame-wise probabilities help create a probabilistic profile for the expression, which can be
visualized as a graph (see Figure 10) with each curve corresponding to the response to the
classifier from a particular expression. The five curves together form probabilistic profiles of
facial expressions in videos.
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3.6 Information Extracted from Probabilistic Profiles: Potential Relevance to
Neuropsychiatric disorders

The probabilistic facial expression profiles provide rich information about the subtle and
dynamic facial expression changes in video. Our method extracts several types of
measurements from probabilistic profiles for facial expression analysis. The first measurement
is the average of posterior probabilities of intended emotions, as a measurement of appropriate
facial expressions. For the video segment of the i-th intended emotion (e.g., one of happiness,

sadness, anger, and fear), the averaged measurement is denoted as , where
ni is the length of corresponding video for the i-th intended emotion. The measurement P̄i
quantifies the correlation between participants’ facial expressions and their intended emotions.
A larger P̄i refers to a greater expression of the intended emotion and a lower value corresponds
to the amount of inappropriate affect. Therefore, by comparing the measurements of individuals
from different groups, we can quantify the facial expression impairments.

Another measurement derived from a probabilistic facial expression profile is the probability
of the neutral facial expressions in videos. For each video segment that contains one intended
emotion, the posterior probability of the neutral expression indicates the lack of facial
expression, and hence functions as a measure of flat affect, and can be correlated with flat
affect ratings. Also, to eliminate the impact of different video lengths, we average the
probability of neutral expression for each intended emotion, denoted as

. Thus, the probabilistic profile and the measures of flat and
inappropriate affect computed from the probabilistic profile of facial expressions, quantify the
two major deficits associated with neuropsychiatric disorders.

Except for the average probabilities, two other measurements are the occurrence frequency of
the appropriate and neutral expressions. Assuming that during a video, the number of frames
where the maximal poster probability corresponds to the appropriate (when the expression
picked by the probabilistic classifier is same as the intended) and neutral (when the classifier
identifies the expression as neutral) expressions are la and ln respectively, the occurrence

frequency of appropriate and neutral expressions are defined as , and . Based on
definitions, the two measurements describe appropriateness and flatness of facial expressions.
These four measures indicate that the probabilistic profile has rich information for facial
expression analysis. Developing more measurements from probabilistic profiles to better
describe dynamics of facial expressions remains part of future research.

4. Results
In this section, we present results obtained by applying our framework to a few datasets that
underline the generalization capability, ease of applicability and automated nature of our
method. We first train and validate the probabilistic facial expression classifiers that are to be
applied at each frame, using a dataset of actors [50]. The application of our framework is also
validated by comparing the classification in video with human rating results. We then apply
our computational framework to a collection of video segments from healthy people and
present case studies on a patient with schizophrenia and a patient with Asperger’s syndrome,
which demonstrates the potential applicability of our framework.
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4.1 Validation of Probabilistic Classifiers on Actors
Although there are some existing facial expression databases [21,51,52], none of them are
designed for clinical studies, especially the study of neuropsychiatric disorders such as
schizophrenia. They mainly comprise posed expressions that actually do not follow the true
trend of emotions, and usually contain expressions of only high intensity. In this study, we use
a database of evoked facial expression images collected from professional actors, which have
been acquired under experimental conditions that are similar to our patient/control data
described below at Section 4.2. The actors database contains posed and evoked expressions of
32 professional actors [50]. For each type of facial expression, the actors started with a neutral
face, and then were guided by professional theater directors through enactments of each of the
four universal emotions of happiness, sadness, anger, and fear based on the evoked emotions
procedure [50]. Images were acquired while these actors were expressing emotion at three
levels of intensity: mild, medium, and peak. Selected face examples are shown in Fig. 8.

The dataset is used as the training and validation data for facial expression classifiers. While
posed databases have been used in the past for many expression studies, there is evidence that
evoked emotions are more accurately perceived than posed expressions [50], and therefore we
only use the evoked expressions in this study. The training images include four expressions
(i.e., happiness, sadness, anger, fear) at all intensities of facial expression and neutral
expression. We apply the method described in Section 3, except for the tracking part, on actors’
images to create facial expression classifiers. The landmarks are detected on these facial
images, and features are then extracted from these landmarks, as explained in Section 3. Using
extracted features, total five SVM classifiers are trained, with one for each of the four
expressions and the neutral expression. In order to test the accuracy of trained classifiers, they
are further validated through a cross-validation procedure that is explained as follows. In each
iteration of the cross-validation, face images from one subject are left out from the training
data (neutral faces as well as faces with expression), and are tested on the classifiers trained
on the remaining samples. The validation iterates until all the subjects are left out once and
only once for testing. The testing accuracy averaged over all the data indicates the accuracy of
trained classifiers. Table 1 summarizes the cross-validation accuracy of the facial expression
classifiers. In this table, the rows show intended emotions, which are considered as ground
truth in this validation, and the columns show classified expressions.

Our validation is further compared with human rating results. In a previous study [50], 41
students from undergraduate and graduate courses in psychology at the Drexel University were
recruited as human raters. The raters were shown each face, and were asked to identify the
emotional content of the face. The human raters were able to correctly identify 98% correct
for happiness, and 67% correct for sadness, 77% correct for anger, 67% correct for fear. The
overall accuracy of human raters is 77.8%, which is comparable with our cross validation
accuracy. With more control/patient data being collected in our study, our ultimate goal is to
use controls’ data as the ground truth to train the facial expression classifiers.

4.2 Preliminary Results on Control/Patient Data
4.2.1 Data Collection—In our preliminary study, facial expressions of individuals from
different groups, including healthy controls, patients with schizophrenia, and patients with
Asperger’s syndrome, are acquired under the supervision of psychiatrists. The data was
acquired under an approved IRB protocol of the University of Pennsylvania and permission
has been obtained from subjects for the publication of pictures. All the participants are chosen
in pairs matched for age, ethnicity, and gender. Each participant undergoes two conditions:
posed and evoked. In the posed session, participants are asked to express the emotions of
happiness, anger, fear, sadness and disgust, at mild, medium, and peak levels. In the evoked
session, participants are individually guided through vignettes, which are provided by
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participants themselves, and describe a situation in their life pertaining to each emotion. In
order to elicit evoked expressions, the vignettes are recounted back to the participants by a
psychiatrist, who guides them through all the three levels of expression intensity (mild, medium
and peak) for each emotion. The videos and 2D images are acquired during the course of the
expression using the setup illustrated in Figure 9. There are six grayscale stereo camera, one
color camera and a video camera [14]. The color camera captures the 2D images, work on
which has been described in [15]. The six grayscale cameras and the color camera are calibrated
to produce images that are used for 3D reconstruction of the faces. Our work using 3D surface
data to analyze facial expressions is beyond the scope of this paper. Since evoked emotions
are more accurately perceived than posed expressions, we only use the videos of evoked
expressions for facial expression analysis, by applying the presented framework. We also
exclude disgust from the analysis. Video recordings of facial emotional expression are
segmented into 5 clips, 1 for each of the five emotions expressed. Each emotional segment
begins from the mild intensity expressed, and ends at the extreme intensity, as identified during
interview. The patient/control database is currently small and hence we use a few of the datasets
to demonstrate the applicability of our framework. In future, as the dataset grows, we will be
able to perform a group-based analysis, using the probabilistic profiles for the expressions
obtained from our framework, via measures of flat and inappropriate affect computed from
these.

4.2.2 Application of the Video Based Expression Analysis Framework—The
method described in Section 3 is applied to several video clips, each of which contains one
type of facial emotional expression of a participant, to obtain the probabilistic profile for facial
expression. First, landmarks are detected and tracked in the video, and then facial expression
features are extracted from tracked landmarks. The extracted features are input to facial
expression classifiers that have been trained using actors’ data, to obtain posterior probabilities
of facial expression in videos. In order to validate our framework, we first compare our method
with the human ratings using the Facial Expression Coding System (FACES) [7] on a healthy
control group. To further demonstrate its applicability to patients, we examine the method on
healthy controls, a patient with schizophrenia, and a patient with Asperger’s syndrome.

4.2.2.1 Validation on FACES: In order to validate the video based framework, we compare
our results with human ratings from Facial Expression Coding System (FACES) performed
by human raters, on facial expressions from the healthy control group. In FACES, facial
expressions in video segments are coded for frequency, duration, valance (positive or negative),
and intensity (low, medium, high, very high). Two trained raters coded the frequency of facial
expressions in each video segment. Expressions were coded if a neutral expression changed to
an emotional expression and changed back to a neutral expression (1 expression coded) or to
a different emotional expression (2 expressions coded). Facial changes independent of emotion
expression (e.g. yawning, licking lips, talking, head nodding, head tilt, diverted eye gaze) were
not counted as an emotion expression. For every expression, the emotion (happiness, sadness,
anger, and fear), intensity (3-point scale of mild, moderate, and extreme), and duration (in
seconds) were coded.

For each intended emotion, i.e., one of happiness, sadness, anger and fear, we have used 9
videos of healthy controls. For a rater to perform human FACES ratings, a video clip acquired
from each participant is divided into separate segments, with each segment only corresponding
to one type of intended emotion. All the segments are randomized such that raters were blind
to the participants’ intended emotion. With capturing speed at 15 frames per second, the length
of segmented videos in the control group varies between 646 and 1431 frames for happiness,
between 815 and 2620 frames for sadness, between 680 and 3252 frames for anger and between
1042 and 2578 frames for fear. The two raters are consistent with each other at most cases,
even they may have small disagreements in the beginning and ending time of each segmented
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expression. FACES rating results from both raters are summarized in Table 2. In the table,
rows show intended emotions of video segments, and columns show their FACES ratings.

Since there are possible inconsistency between human ratings and the intended emotion of
participants, there are two types of percentages, shown in Table 2, to interpret the FACES
rating results. Type I percentage refers to, among all the videos captured in an intended emotion
session, the percentage of expressions that are rated as the corresponding intended emotion.
For example, among all video segments captured as part of the session for intended happiness,
there are 82.0% expressions are rated as happiness by raters based on the FACES rule, and the
remaining are rated as other expressions. The type II percentage illustrates, among all the
expressions rated from FACES, the percentage of expressions that are actually from the
corresponding intended emotion sessions. For example, among all the video segments rated as
anger by FACES, 70.0% are from the intended anger sessions. The type I percentage is low
for sadness, anger, and fear, demonstrating that videos may contain other expressions during
one session of single intended emotion. The type II percentages show that the expression of
happiness and sadness can appear in other emotion sessions, while anger and fear expressions
appear more in the corresponding emotion sessions. Low percentages of both types
demonstrate the uncertainty in expression and perception of emotions, and also highlight the
difficulties of automatic analysis of evoked and subtle emotions.

We further compare our results from probabilistic profiles with human ratings from FACES,
and show that our automatic method presents a reasonable accuracy. In this experiment, we
validate only on those expressions in which the FACES ratings are consistent with intended
emotions, to reduce the uncertainty factor in human emotion ratings. After generating
probabilistic profiles, the mean posterior probabilities of each emotion in videos, i.e, P̄i, are
used for facial expression recognition. The expression corresponding to the largest P̄i is
considered the intended emotion in the video. Table 3 summarizes the comparison results
between FACES rating and our classification results. The rows show expressions rated from
FACES, and the columns show automatically classified expressions based on the principle of
maximal posterior probability. The recognition, except for the expression of sadness, provides
reasonable results. Since all the classification results are based on the classifiers trained using
actors’ data, as we currently do not have enough controls for both training and validation, we
expect that the accuracy would be increased when we have enough controls for training.

4.2.2.2 Case Studies on Individuals from Different Groups: The measurements extracted
from probabilistic profiles can be used to examine different groups, such as healthy controls,
and patients with deficits in facial expressions. Here we demonstrate the scalability of our
method by applying it on three individuals, one from each group: healthy controls, patients
with schizophrenia, and patients with Asperger’s syndrome.

Figure 10 shows the visualization of facial expressions probabilistic profiles as graphs of
posterior probabilities of four facial expressions and neutral faces in each intended emotion of
the three participants. In this figure, each color represents one of the four emotions: happiness
(green), sadness (blue), anger (red), fear (yellow), and the neutral expression (brown). The
horizontal axis represents the frame index, and the vertical axis represents the posterior
probabilities P(xt | Z1:t) for one of four emotions and neutral expression, which is denoted as
xt, at the t-th frames. Some frames from the videos corresponding to these profiles with the
corresponding probabilities are shown in Figure (11), (12) and (13), where the probabilities
are visualized as bars on the top right corner, with the bar of the longest length corresponding
to the outcome of the frame on the application of the classifiers. As displayed in these figures,
the posterior probabilities of expressions, P(xt | Z1:t), indicate the trends of facial expression
changes of individuals in the video.
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An inspection of Figures 10, 11, 12 and 13 indicates that probabilistic profiles of facial
expressions are able to capture subtle expressions and to identify expressions that are different
from the intended emotion, hence determining the inappropriateness of emotion, as well as
identify frames that have neutral expression thereby identifying the flatness of expression. The
probability bars associated with the top right corner reveals that the classifier is able to correctly
determine the type and intensity of emotion. In Fig 11(c), neutral is picked up instead of fear.
The classifier is able to identify the emotion correctly even when the expression deviated from
the intended (Fig. 12(b), frame 1, sadness is identified instead of the intended anger and in fig.
13(c) in which sadness is identified instead of intended fear). These expressions are rated to
be correct by a human rater. Subtle expressions are also well identified (Fig. 13(a), frame 3,
Fig. 12(a), frame 3).

After obtaining the probabilistic profiles of facial expression for each intended emotion, we
compute quantitative measurements to characterize facial expressions in video. As described
in Section 3.6, four types of measurements are calculated, i.e., P̄i, N̄i, fa, and fn. Specifically,
P̄i and fa quantifies the appropriate expression for the i-th intended emotion (e.g., one of the
four emotions: happiness, sadness, anger, fear), and N̄i and fn quantify the neutral expression
in the i-th intended emotion. These measurements will be used to correlate with clinical
measurements of inappropriate and flat affect when we have collected enough samples for the
group study. Table 4 and 5 show two types of average probabilities for each emotion, along
with the averages over all the emotions, for the three participants. Table 6 and 7 show two
occurrence frequency measurements for each emotion.

Table 4 and 6 demonstrate that overall, the healthy control expresses intended emotion better
than the patient with Asperger’s and schizophrenia (especially in the fear). The averages
(column 6) in both the tables show that the levels of impairment of the Asperger’s patient lie
in between that of the controls and the schizophrenia patient. Table 5 and 7 also shows that the
individuals demonstrate different levels of expressiveness. However, the control has more
neutral expression than the two patients. As confirmed by clinical ratings (using SANS [6]) by
two experts, the controls actually show almost the same level of flatness as the patients (the
flatness index scores at 2 and 3 according to two raters). However, such an observation does
not permit conclusions regarding group behavior of patients relative to controls. We expect to
perform group difference studies when more patient data has been acquired.

5. Discussion and Future Work
In this paper, we present an automated computational framework for analyzing facial
expressions using video data, producing a probabilistic profile of expression change. The
framework explores rich information contained in the video, by providing a probabilistic
composition of each frame of the sequence, thereby highlighting subtle differences as well as
the possibility of a mixture of emotions. The potential relevance for neuropsychiatric disorders
stems from the propensity for impaired emotion expression including inappropriate or flat
affect. Thus far diagnosis of impaired affect expression required trained clinical observers. The
framework benefits from being automated, thereby helping in processing lengthy video
sequences. It is also applicable to participants from groups with different pathologies or various
stages of disease progression.

The preliminary results demonstrate the capability of our video-based expression analysis
method in identifying characteristics of facial expressions through probabilistic expression
profiles (Figure 10). These expression profiles, in conjunction with the metrics of
appropriateness and flatness computed from them, provide extensive information about the
expression and capture the subtleties of expression change. Patients follow different trends of
facial expression than healthy participants. The facial expressions of the healthy control are
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more consistent with the expected trend of intended emotion, that is the emotion gradually
progresses from mild to moderate and finally to the peak level. Especially for the expressions
of anger and fear, the facial expression trends of the healthy control better characterize the
intended emotion than the patients. Another observation is that the intensity of expression of
the healthy control is higher than the patients. The differences between the three subjects are
mainly in the negative emotions of sadness and fear. Especially for fear, the healthy control is
more expressive than the two patients. Also the measurements averaged over all expressions
demonstrate the difference between individuals, although the differences in the happy and
anger expressions are small. We believe that with additional enrollment of subjects, our
framework will be able to identify significant group differences using the presented
computational methods.

It is also observed that the facial expression recognition results of the expression of sadness
(as seen in the graph of probabilities in Figure 10) are not as good as other facial expressions.
Sadness is somehow confused with anger expression perhaps owing to the following two
reasons. First, the sad and anger expressions share some similar facial movements, such as
eyebrow lower, and lip corner depressor [53]. Such facial movements may cause confusion
between two expressions. Second, the participants (both patients and controls) usually show
more subtle expressions than actors. Since our classifiers are built on actors’ expressions, they
may not recognize well the low intensity expression of sadness and concentrate more on salient
facial expressions such as anger. Our solution to this problem is to retrain the facial expression
classifiers using data from healthy controls when additional data from healthy controls is
available. We believe that by training facial expression classifiers based on a healthy
population, our method can better characterize the true trends of intended emotions. We expect
that training with healthy controls will also help the separation between sadness and anger.

The experiments pave the way for establishing a video based method for quantitative analysis
of facial expressions in clinical research. The method can be applied to any disorder that causes
affect deficits. The probabilistic profile of facial expressions provides a graphical visualization
of affect deficits as well as measures to quantify flatness and inappropriateness of expression.
In future, we will apply our framework to large population group-based studies, to quantify
the group differences between healthy controls and patients, to correlate with clinical
measurements, and to obtain a population profile of temporal change during the course of a
facial expression. We expect that the knowledge obtained from such an analysis will help in
diagnosis, prognosis, and studying treatment effects.
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Figure 1.
Landmark detection and tracking in videos
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Figure 2.
Face detection at the first frame
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Figure 3.
Definition of landmarks and their detection. (a) 58 landmarks defined on face; (b) the landmarks
detected at the first frame
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Figure 4.
Landmark tracking results in the video
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Figure 5.
Landmark tracking combined with face detection. (a) tracking when face is detected; (b) AAM
tracking is stopped when face is out of view; (c) tracking is re-initialized when the face is back
to frontal view
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Figure 6.
Geometric features defined on landmarks for expression analysis. (a) 28 regions defined on
landmarks; (b) distance features characterizing expression changes
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Figure 7.
A graphical model for facial expression inference in video.
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Figure 8.
Emotional expressions from the professional actor database (a) neutral; (b) happiness; (c)
sadness; (d) anger; (e) fear
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Figure 9.
The data capturing system
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Figure 10.
Probabilistic profiles of facial expressions in video for (a) a healthy control; (b) a patient with
schizophrenia; (c) a patient with Asperger’s syndrome. From left to right, graphs in each row
show the probabilities obtained from an individual’s intended happy, sad, anger, and fear
emotions. In each figure, the horizontal axis is the frame number, and the vertical axis
represents the posterior probability of facial expression. Profiles of different colors in the
graphs represent different types of expressions: happy (green), sad (blue), anger (red), fear
(yellow) and neutral (brown).
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Figure 11.
Emotional expressions of a healthy control: (a) happiness; (b) anger; (c) fear. The length of the
bar is proportional to the probability associate with each expression. The original probability
scales between 0 and 1
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Figure 12.
Emotional expressions of a patient with schizophrenia (a) happiness; (b) anger; (c) fear. The
length of the bar is proportional to the probability associate with each expression
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Figure 13.
Emotional expressions of a patient with Asperger’s syndrome: (a) happiness; (b) anger; (c)
fear. The length of the bar is proportional to the probability associate with each expression
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