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ABSTRACT

Accurate and comprehensive information about the
nucleotide sequence specificity of trans-acting
factors (TFs) is essential for computational and
experimental analyses of gene regulatory networks.
We present the Yeast Transfactome Database,
a repository of sequence specificity models and
condition-specific regulatory activities for a large
number of DNA- and RNA-binding proteins in
Saccharomyces cerevisiae. The sequence specifi-
cities in TransfactomeDB, represented as position-
specific affinity matrices (PSAMs), are directly
estimated from genomewide measurements of
TF-binding using our previously published
MatrixREDUCE algorithm, which is based on a
biophysical model. For each mRNA expression
profile in the NCBI Gene Expression Omnibus, we
used sequence-based regression analysis to esti-
mate the post-translational regulatory activity of
each TF for which a PSAM is available. The trans-
factor activity profiles across multiple experiments
available in TransfactomeDB allow the user to
explore potential regulatory roles of hundreds of
TFs in any of thousands of microarray experiments.
Our resource is freely available at http://bussema-
kerlab.org/TransfactomeDB/

INTRODUCTION

Gene- and condition-specific regulation of transcription
rate is mediated by interactions between trans-acting
regulatory factors and DNA. Through these protein
interfaces to the genome, the cell can tightly control

gene expression in response to environmental or develop-
mental signals. If we can predict the affinity with
which a nucleotide sequence is bound by a particular
regulatory protein, we can make predictions about
the extent to which the corresponding gene is subject to
regulation by that factor. This knowledge can suggest
future experiments and allow for computational
analysis of gene expression. The community has therefore
long made efforts to discover, collect, organize and present
sequence specificity information for DNA-binding
proteins (DBPs) (1-4).

The two largest online databases of sequence specificity
information are TRANSFAC (5) and JASPAR (6). These
databases compile sequences that are known or believed
to be bound with high affinity by particular DBPs,
derived either by in vitro selection of tightly bound
oligonucleotides (SELEX) or by experimental determina-
tion of actual transcription factor binding sites. Both
databases align the collected sequences and summarize the
sequence specificity of DBPs as position weight matrices
(PWMs), which summarize how many sequences have
a given nucleotide at a given position in the transcription
factor binding site. A PWM can be used to define
a position-specific scoring matrix (PSSM), whose entries
can be related to binding free energies, but only by making
by rather strong assumptions about how the rate of
evolutionary selection of individual binding sites depends
on their relative affinity (1,2).

The advent of DNA microarrays has greatly aided in
discovering the nucleotide sequence specificities of trans-
factors. Microarrays have been used for measuring the
in vivo association of DBPs with upstream promoter
regions (7,8), the in vitro association of DBPs with long
(9,10) or short (11,12) segments of DNA and the
association of RNA-binding proteins (RBPs) with
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mRNA molecules (13,14). Typically, motif-finding
methods based on information theory [see (3) for early
examples] are applied to the most strongly bound
sequences from these experiments, providing PSSM
representations of the binding specificities of the assayed
DBPs or RBPs. Recently, Maclsaac et al. (15) created a
large collection of PSSMs for DBPs in Saccharomyces
cerevisiae from ChIP-chip data using this class of
methods.

Unlike traditional low-throughput methods, however,
genomewide binding data provides thousands of examples
of sequences rather than only a handful, and a numerical
value proportional to overall trans-acting factor (TF)
occupancy is available for each sequence rather than
only the binary distinction between bound and unbound.
The information theory-based algorithms do not take
full advantage of this quantitative information and
therefore may produce sequence specificities that are less
accurate than is possible. In particular, binding energies
are only inferred up to an unknown scaling factor.
Therefore, the resulting PSSMs can only be used to
approximately rank candidate TF-binding sites by affinity,
not to obtain a quantitative estimate of their relative
affinity.

To address this issue, we recently developed the
MatrixREDUCE algorithm, which employs a statistical-
mechanical model of protein—nucleic acid binding to infer
sequence specificities from mRNA expression data (16)
or genomewide occupancy data (17). MatrixREDUCE
directly integrates microarray intensities with nucleotide
sequence data to infer the free energies of sequence-
specific protein—nucleic acid interactions. The algorithm
represents this information as a position-specific affinity
matrix (PSAM; see (17) for a detailed derivation
of PSAMs and the MatrixREDUCE model). Briefly, a
PSAM is populated with relative affinities for each
nucleotide at each position in the binding site that
are directly related to the free energy of binding between
the protein and the nucleic acid. MatrixREDUCE avoids
the problematic assumption of affinity-proportional
sequence representation. As a consequence, it does
not require a background sequence model. [For a full
discussion of these issues, see Bussemaker et al. (4).]

To create the Yeast Transfactome Database, we applied
an updated version of MatrixREDUCE to hundreds of
available in vivo and in vitro genomewide occupancy
datasets for both DNA- and RNA-binding proteins for
S. cerevisiae. We produced a PSAM for each individual
microarray experiment, so there are often multiple
examples of PSAMs for the same DBP or RBP, allowing
for internal validation in many cases. Using these PSAMs,
we applied the sequence-based regression approach
of Foat et al. (16) to infer condition-specific, post-
translational regulatory activities for each TF for which
a PSAM is available across all yeast mRNA expression
profiles available in NCBI Gene Expression Omnibus
(GEO) (18). The PSAMs can also be used to predict the
relative TF-binding affinity for any arbitrary nucleotide
sequence. All this information can be browsed and
queried via a web interface. To our knowledge, the
Yeast Transfactome Database is the most comprehensive
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Figure 1. The flow of data. Publicly available microarray data and
genomic sequence was integrated by MatrixREDUCE and other
computational procedures to infer TF sequence specificities (PSAMs)
and post-translational regulatory activities (TFAPs). These two data
types can be displayed and interrogated using five different ‘tabs’ in the
Yeast Transfactome Database interface.

source of sequence specificities for TFs for S. cerevisiae.
In addition, it has the advantages of (i) having
a uniform, biophysically motivated representation of seq-
uence specificities in the form of PSAMs; (ii) providing
condition-specific regulatory information for each PSAM;
and (iii) predicting single-nucleotide TF-binding affinity
profiles for arbitrary DNA and RNA sequences.

DATABASE GENERATION AND CONTENTS

The contents of the Yeast Transfactome Database
are original and derived by integrating publicly available
microarray and sequence data via computational model-
ling. The process results in two primary kinds of
information: (i) the sequence specificities for trans-factors
that have been profiled in genomewide binding assays,
and (ii) inferred post-translational regulatory activities
for those same TFs in each experimental condition
represented by a microarray sample in GEO. Figure 1
illustrates the flow of the low-level primary data through
to the derived data types and to the web interfaces
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Figure 2. Regressing microarray data on genomic sequence.
(A) Inferring a PSAM from a ChIP-chip experiment. Shown is the
result for the transcription factor Abflp. The parameters of the PSAM
are chosen so as to maximize the correlation between chromatin
enrichment ratios and the total affinities of the promoter region across
all genes. (B) Regression of the change in mRNA expression value on
total promoter affinity predicted using a previously computed PSAM
can be used to infer changes in the regulatory activity (the slope of
the regression line) of the TF whose sequence specificity is represented
by the PSAM. In this example, it is shown that between rich media and
media containing copper sulphate (GEO accession number GSM17192)
mRNA expression levels are downregulated in proportion to the
affinity of the promoter region for Abflp.

through which they can be interrogated. First, genome-
wide occupancy data and microarray probe sequences
were gathered from publication supplements and used
as input to the MatrixREDUCE algorithm (16,17).
MatrixREDUCE produced a PSAM to represent the
sequence specificity of the TF assayed in each experiment.
Next, regulatory sequence (upstream promoter regions
for DBPs, full-length mRNAs for RBPs) for each gene in
the genome was scored for its predicted affinity for the
TF represented by the PSAM. Each of thousands of
individual microarray experiments from GEO was then
regressed on the genomewide profile of gene-specific
binding affinity for each PSAM, and the regression
coefficient interpreted as a (change in) TF activity
in that particular experiment. We refer to the profile of
inferred TF activity across all experiments as a trans-
factor activity profile (TFAP). The TFAPs represent the
majority of the novel results in our database, likely
containing hundreds of examples of previously unknown
regulatory effects for the assayed TFs.

The manner in which PSAMs and TFAPs are generated
have similarities and deserve further description to
enable a full understanding of the database contents.
Both PSAMs and TFAPs result from a model fit that
explains microarray intensities in terms of promoter
affinities predicted from sequence. For the purposes of
this database, however, PSAMs were inferred from
genomewide TF binding data through a non-linear fit of
the MatrixREDUCE model (Figure 2A). TFAPs were
generated by using the discovered PSAMs to predict
the total affinity of each regulatory sequence, and then
performing linear regression of mRNA expression data
on these affinities. The TF activities in each TFAP are
represented as regression coefficients scaled by their
standard deviations (z-values). Figure 2A shows the
fit of ChIP-chip data to the predicted total affinities
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for an optimized PSAM as would be performed by
MatrixREDUCE. Figure 2B shows the fit of data from
a particular gene expression microarray experiment to
the predicted affinities for the same PSAM, as would be
necessary to calculate an entry in its TFAP.

At present, the Yeast Transfactome Database con-
tains 399 and 20 automatically-generated PSAMs for 194
DBPs and 5 RBPs, respectively. It also contains TFAPs
for each PSAM across more than 4000 microarray
experiments. For comparison, Maclsaac et al. (15) provide
124 curated matrices with one matrix per factor,
TRANSFAC (Release 10.3) (5) provides 40 matrices for
31 DBPs, and JASPAR (6) has no matrices for S.
cerevisiae. Of the 399 DBP PSAMs in the Yeast
Transfactome Database, 100 PSAMs corresponding to
52 DBPs are most similar to a PSSM from Maclsaac et al.
(15) with the same factor identity. An additional
28 PSAMs corresponding to 11 DBPs are most similar
to a PSSM from Maclsaac et al. (15) corresponding to a
protein with which the analysed factor is believed to have
a physical or genetic association. Physical associations
are significant in that an assayed factor may be bound
to its target sequences indirectly via protein—protein
interactions with a DBP. Genetic associations are sig-
nificant as factors may have genetic interactions if they
have the same sequence specificity (e.g. Msn2p and
Msndp). Fifty-nine PSAMs for 18 proteins are most
similar to the TRANSFAC (5) matrix of the same protein
identity, and six PSAMs for four proteins are most
similar to a matrix for a protein with which the assayed
factor has a physical or genetic interaction. In the web
interface, it is possible to view only those PSAMs that are
consistent with one or both of the other sources of
sequence specificities.

Since MatrixREDUCE is based on a biophysical
model of DBP-DNA interactions, and since PSAMs are
derived by a direct fit of the model to a particular
dataset, a PSAM should always do at least as well at
explaining genomewide occupancy measurements as a
‘pseudo-PSAM’ (see Methods section and Supplementary
Data) derived from the PWM for the same DBP.
We tested this assertion by converting all PWMs from
TRANSFAC (5) and Maclsaac et al. (15) to pseudo-
PSAMs and comparing to the PSAMs inferred by
MatrixREDUCE (Figure 3). In 471 of 480 comparisons,
the latter better explained the data, as expected. In the
nine cases where the pseudo-PSAM performed better
than the true PSAM, an even better fit to the data was
achieved by allowing MatrixREDUCE to improve the
pseudo-PSAM through the PSAM fitting procedure.
Those few cases where the the pseudo-PSAMs performed
better were likely due to MatrixREDUCE settling on
a suboptimal local minimum.

WEB INTERFACE

The web interface to the Yeast Transfactome Database
is available at http://bussemakerlab.org/Transfactome
DB/. The user may choose between examining DNA- or
RNA-binding proteins. At the time of writing,
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Figure 3. Comparison with weight matrices from Maclsaac et al. (15)
and TRANSFAC. Each weight matrix from Maclsaac ez al. (15) or
TRANSFAC (5) was converted into a pseudo-PSAM (see Methods).
The correlation between the total affinity of each promoter region
predicted by the pseudo-PSAM and the fold-enrichment in the ChIP-
chip experiment was then computed. These Pearson r values were then
compared with the Pearson r values achieved by PSAMs optimized for
the same ChIP-chip data by MatrixREDUCE. In all but nine instances,
the correlations were better for PSAMs fit by MatrixREDUCE than
for pseudo-PSAMs. In those cases where the pseudo-PSAM had a
higher correlation, MatrixREDUCE could still improve the fit of the
pseudo-PSAM (green lines).

genomewide binding data was only publicly available for
the five members of the Puf family of RBPs in yeast, so the
DBP section of the database is more substantial,
covering hundreds of yeast transcription factors.

The main interface consists of five different ‘tabs’ that
allow the user to view different kinds of data. Displayed in
the ‘Browse PSAMs’ tab are all PSAMs (one for each
available genomewide occupancy experiment) along with
the name of the TF assayed and the citation for the source
of the data. A button at the top of the page allows the user
to toggle between two different views of the PSAM list.
The first view sorts all PSAMs by their goodness of fit (%)
to the original occupancy data. The #-value provides a
guide for the highest quality PSAMs: the higher the
t-value, the better the PSAM explained the original data.
The other view sorts all PSAMs alphabetically by the
common gene name of the TF. Clicking on an affinity logo
allows the user to view the actual relative affinities that
constitute the PSAM and other details about the PSAM.
The user may click on any gene name to look up the TF
in the Saccharomyces Genome Database (19).

In the ‘Sort Experiments’ tab, the user is presented
with the list of all PSAMs similar to the display from the
‘Browse PSAMs’ tab. Clicking on a PSAM logo presents
a list of all experiments, sorted by the absolute #-value
of the correlation between gene expression values and
predicted regulatory sequence affinities. The user may

investigate the experimental design of any of the samples
with which she is unfamiliar by clicking on the ‘GEO’
link next to the sample title, which goes to the NCBI GEO
website (18).

In the ‘Sort PSAMSs’ tab, the user is presented with a list
of all parsable (see Methods) gene expression ‘samples’
available in GEO for S. cerevisiae. The samples are listed
in order of their GEO sample IDs and are labelled with
their GEO sample titles. The user can view the sample
information in GEO by clicking on the ‘GEQO’ link across
from the sample title. Clicking on a link for a sample
presents the user with a list of PSAMs sorted by the
goodness of fit (absolute ¢-value) of their predicted
promoter occupancy (17) to the expression values in the
experiment of interest. Also shown are P-values corre-
sponding to the ¢-values, and E-values, which are P-values
corrected for the number of PSAMs that have been sorted.

The ‘Visualize TFAPs’ tab is useful for visually
inspecting patterns of condition-specific regulation for
multiple TFs across multiple microarray experiment
conditions. It presents this TFAP information in colour
matrix displays that were originally developed for
visualizing microarray data (20) and later adapted to
visualizing TFAPs (16). This interface allows the user to
dynamically generate a blue and yellow colour matrix
displaying the TFAPs for user-selected PSAMs and
experiments. Each coloured box in this display represents
the t-value for the fit of the predicted promoter
occupancies for the TF (given its PSAM) to the measured
expression values for the respective experiment.

The ‘Dissect Sequence’ tab allows the user to view high
affinity binding sites for user-selected PSAMs in the
preloaded regulatory sequences or in a user-supplied
nucleotide sequence. After indicating the desired sequence
and PSAMs, the user is presented with a graphical display
of the sequence. Any sequence window that has an affinity
that would cause the site to be bound at least 5% as
strongly as the best binding site in the genome is marked
by a coloured box. The stronger the binding site, the
darker the box.

CAVEATS

As with any tool in biology, the information in
TransfactomeDB should not be interpreted in isolation.
However, when the information in the database is
combined with knowledge gleaned from the original
microarray publications and other literature sources, the
user can derive specific and meaningful conclusions.
Moreover, the database can be used to generate experi-
mentally testable hypotheses about transcriptional regula-
tion (DBPs) and post-transcriptional regulation (RBPs).
Of course, it inherits any limitations of the original data
from which it is derived. First, not all microarray
experiments in GEO contain meaningful data or
necessarily measure only the phenomenon that the
experiment was designed to measure. Second, a PSAM
derived from genomewide occupancy data is not neces-
sarily the PSAM for the named, assayed factor or even
a real PSAM. We report the best fit PSAM for each



ChIP-chip or similar experiment. Therefore, if the original
occupancy data is due to the specificity of another factor,
then the reported PSAM will not accurately reflect the
binding specificities for the factor of interest. The t-value
for the goodness of fit for the PSAM to the occupancy
data can provide a measure of whether the PSAM is
derived from pure noise. To mitigate uncertainty in DBP
identity, the database allows the user to optionally list
only those PSAMs that have a similar predicted occu-
pancies as PSSMs from Maclsaac et al. (15) or PWMs
from TRANSFAC (5) for the same DBP or related DBPs.
However, there is no computational solution to perfectly
prevent reporting PSAMs for factors that are physically
interacting with to the immunoprecipitated factor in
ChIP-chip experiments. Only data generated from in
vitro genomewide occupancy experiments (9-12) can
assure that the microarray signal and thus the PSAM is
due to the assayed factor. Finally, a high scoring PSAM
match for the ‘Dissect Sequence’ tab can only imply
potential regulation. This feature can be powerful if
combined with previous knowledge and experimental
validation. However, the user should expect frequent
false positives.

FINAL THOUGHTS

We expect that there are hundreds of cases of biologically
interesting differential regulation of TF activity in speci-
fic conditions waiting to be uncovered using the Yeast
Transfactome Database. The web interface allows the
user to dynamically interact with published microarray
data and easily discern otherwise hidden regulatory
patterns. In addition, all sequence specificity models
(PSAMs) were inferred from genomewide occupancy
data and are original to the database. TransfactomeDB
remains under development, and can in principle
be extended to any organism for which comprehensive
TF binding and mRNA expression data is available.
However, we believe that this first version will already be
useful to the community.

METHODS
MatrixREDUCE implementation and parameters

We used the MatrixREDUCE algorithm as described
in (16,17) to find the best fit PSAM that could be
produced from each microarray experiment. The para-
meters for all runs of MatrixREDUCE were as follows:
the length of each of the two dyads of the seed motifs
was three, the length of the added flanks on each side of
the dyad was three, the minimum gap was zero, the
maximum gap was 15, the minimum allowed relative
affinity for any nucleotide was 1073. To factor out
any nucleotide composition biases in the microarray
data (21), a model with regression coefficients for the
count on each individual nucleotide was fit to each
dataset before fitting a PSAM.

Nucleic Acids Research, 2008, Vol. 36, Database issue D129

Empirical P-value estimation

The quantity that is maximized by MatrixREDUCE is the
absolute value of the Pearson correlation r between
the sequence-predicted and actual measured microarray
intensities. Because of the non-linear dependence of
the PSAM parameters (see Supplementary Data), the
null distribution of |r| is not known analytically, and the >
values obtained for random data are typically much
larger than for standard linear regression. Without proper
measures, this would give rise to incorrect estimation of
the statistical significance of r>. However, we have found
that the null distribution can be determined empirically
by executing repeated trials of MatrixREDUCE on
randomly generated nucleotide sequence and microarray
data. We performed approximately 1000 trials for several
combinations of parameters defining the randomized data.
For each setting of these parameters, the empirical
distribution of the Pearson |r| was well approximated
by the normal distribution. We found that the mean of
the distribution was dependent only on N, the number
of sequence-measurement pairs and L,, the number of
optimized nucleotide positions in the PSAM. In addition,
we observed that the standard deviation of the empirical
distribution of |r| depends solely on the size of the dataset
N and is inversely proportional to its square root.
The microarray data distributions sampled to reach
this conclusion were the following: Gaussian (normal)
distribution; skewed Gaussian (all values greater than
zero doubled); mixture of Gaussians (90% with SD=1,
10% with SD=2); uniform (rectangular) distribution
(an extreme case); permuted actual biological data
(a realistic case). The distribution of |r| was also
determined to be independent of the lengths of the
sequences over a wide range, from ~200 to 2000 bases.
In addition, we found that the distribution of |r| does not
depend on the overall base composition statistics of the
sequence data, based upon trials using both randomized
and true biological sequences.

Combining the observations from the above trials and
performing linear regression on PSAM width L,
(Figure 4), the estimator of the mean of |r] under the
null distribution as a function of L,, and the number of
genes N is given by:

I 1.64 +0.58L,, )
0= \/N
while the standard deviation is given by:
0.66
§=—. 2
N @

Thus, a (pseudo-) r-value corresponding to the Pearson
correlation r for a MatrixREDUCE optimized PSAM is:

t="-"0(”/|r|)_ (3)
)

Since N > 1000 for all of the data analysed here, the
corresponding P-value can be well estimated using a
standard normal distribution. We used the empirical |r|
distribution to calculate r-values and P-values for every



D130 Nucleic Acids Research, 2008, Vol. 36, Database issue

I

124
o
o

0.14; ;
0.12 L -
0.1 L
0.08 L
0.06 L

0.04 -

0.02 | : .

Absolute value of Pearson Correlation (|r])

0 ! ! | | ! ! \
0 2 4 6 8 10 12 14 16

Width of PSAM (L,,)
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The red line shows the result of a linear fit to the data, which gives
rise to the results shown in Equation 1.

PSAM in the database. Only those PSAMs with P-values
better than 10~ were included.

Genomewide TF binding data

Genomewide occupancy data was gathered from publica-
tion supplements. ChIP-chip data for transcription
factors was from (7,8,22-25), in vitro protein binding
microarray data was from (9) and in vitro DNA
immunoprecipitation data was from (10). The affinity
selection microarray for the Puf RBPs was from (14).
All data was analysed as the ratio of binding-enriched
signal versus control signal. All microarray data was
purged of extreme outliers before analysis (Grubbs test
(26) P-value < 10719).

Sequence data

When analysing genomewide occupancy data with
MatrixREDUCE, the most accurate results will be
obtained when the input sequence set corresponds to the
actual bound sequences that give rise to each spot signal
on the microarray. In the case of the ChIP-chip, PBM
and DIP-chip data, we used the probe sequences
themselves as a proxy for the chromatin or DNA
fragments that were bound by the DBPs. For the affinity
selection microarrays for the RBPs, we used approximated
full length mRNA sequences as follows: David et al. (27)
measured the mRNA levels for every yeast gene using
a genome tiling microarray. Thus, they created a nucleo-
tide-resolution map of the transcriptome expressed under
log-growth conditions. While, the data does not contain
a measurement for every gene, we used this data to
produce approximate full-length mRNA sequences
for about half of all yeast genes. We used the fixed 5
and 3 UTR lengths for the unknown half of mRNA
sequences that gave a 25% per nucleotide false negative
rate for the UTRs of the known half.

mRINA expression data

All S. cerevisiee mRNA expression data available in
the Gene Expression Omnibus (18) was downloaded and
parsed. Datasets were used for further analysis if it was
possible to resolve spot IDs to open reading frame (ORF)
identifiers and if they contained values for over 4000
ORFs. This resulted in 201 of 228 available data series,
which provided 4094 experiments for analysis. All
data was analysed in the numerical form that was entered
into GEO. These values are often log,-ratios but may be
measurements of absolute expression in some instances.

Trans-factor activity profiles

The PSAMs were used to infer regulatory activities
associated with their nucleotide specificities. For DBPs,
the occupancy was predicted (17) for the 800 bp upstream
of every yeast ORF as approximate promoter regions.
The predicted occupancies were then correlated with each
mRNA expression microarray experiment dataset.
The strength and direction of the correlation between
predicted DBP binding and mRNA expression was
reported as a r-value. The same process was performed
for RBPs except that occupancy was predicted over real or
approximate full length mRNA sequences rather than
approximate promoter regions.

Comparing PSAMs and PSSMs

If we assume that the sequences that give rise to PSSMs or
PWMs are represented proportionally to their affinity,
we can convert these other matrix formats to ‘pseudo-
PSAMs’ (see Supplementary Data). This enables
the predictions of true PSAMs and the PSSM- or PWM-
derived pseudo-PSAMs to be directly compared. Using
these relationships, we converted all of the specificity
matrices for S. cerevisiae from TRANSFAC (Release
10.3) (5) and Maclsaac et al. (15) into pseudo-PSAMs.
JASPAR (6) has no matrices for S. cerevisiae.

Next we calculated occupancies for each real PSAM
and pseudo-PSAM across all intergenic sequences from
S. cerevisiae as previously described (17). Pearson
correlations were then calculated between the predicted
occupancies of the same regions for each pair of PSAMs.
We used the resulting r* values to identify which PSAMs
from the Yeast Transfactome best matched matrices
from other sources. For each Yeast Transfactome
PSAM, we identified the best correlating pseudo-PSAM
from both TRANSFAC (5) and Maclsaac et al. (15). We
then noted whether the pseudo-PSAM corresponded
to the same DBP or an associated factor. Physical or
genetic associations between factors were identified using
BioGRID (28).

Finally, we used the predicted occupancies of the
Yeast Transfactome PSAMs and the pseudo-PSAMs to
compare their abilities to explain genomewide occupancy
data. For each PSAM, we calculated the Pearson r
between the predicted occupancies and the measured
intensity ratios values for the genomewide occupancy
experiment from which the PSAM was derived. For
each pseudo-PSAM, we calculated the Pearson r between



the predicted occupancies and the measured intensity
ratios for each genomewide occupancy experiment per-
formed for the same DBP.

Website implementation

The Yeast Transfactome Database runs on a Linux,
Apache, MySQL, Perl platform. The HTML forms are
generated with the help of CGI.pm. Graphics are created
using GD.pm. TFAP clustering is accomplished with
the help of Algorithm::Cluster.pm (29). The interface
with the MySQL database is accomplished via DBI.pm.
Affinity logos for PSAMs were generated as previously
described (17).
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