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1. Introduction.-This note introduces some nonlinear difference-differential
equations which can be interpreted as a learning theory or, alternatively, as a
prediction theory whose goal is to discuss the prediction of individual events, in a
fixed order, and at prescribed times. The theory provides a mathematical de-
scription of the following kind of experiment. An experimenter g, confronted by a
machine MlZ, presents M with a list of "letters" or "events" to be learned. Suppose,
for example, that g wishes to teach 9Mt the list of letters AB, or to predict the event
B, given the event A. g does this by presenting A and then B to M several times.
To find out if SE has learned the list as a result of these list presentations, the letter
A alone is then presented to M. If M responds with the letter B, and M does this
whenever A alone is said, then we have good evidence that MR has indeed learned
the list AB. Thus M learns to predict the event B whenever the event A occurs as
a result of repeated presentations of the list AB.
We will introduce some mathematical machines that learn lists in the above man-

ner. These machines have some properties that have a familiar intuitive inter-
pretation. For example, in our simplest machine, it is possible to make rigorous the
heuristic statements that (1) "practice makes perfect," (2) an isolated system suffers
no memory loss, (3) an isolated system remembers without practicing overtly, (4)
the memory of an isolated system sometimes spontaneously improves without
practice, (5) all errors can be corrected, although the rate of correction is sometimes
diminished by response interference due to prior learning, (6) increasing the number
of response alternatives sometimes diminishes the learning rate, and so on.

All of the machines we will introduce possess the same dynamical laws. None-
theless, the exact manner in which a given machine learns and remembers depends
crucially on the particular way in which the components of the machine are inter-
connected; i.e., on its "geometry." For example, properties (2) and (3) above do
not hold in all the machines we shall describe. In this note, we will sketch some
results for our simplest machine. These results, along with results for more com-
plicated machines, are described in greater detail in another place.'

2. The Nonlinear Systems.-Each of our machines M is described in terms of a
positive integer n; positive rate constants a, u, and A3; a nonnegative time lag r;

n

and an n X n matrix P = |pij whose entries satisfy pij 2 0 and E Pik = 0 or 1.
k=1

Given these quantities, let

n

af(t-Ci(t) + a kt-T)Yki(t) + Ii(t))X(ti~~~t)
+

X~~k t

n

Yjk(t) = Pjkzjk(t) [ E PJmZjm(t) ]', (2)
mi=
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and

Zjk(t) = [-Uz31(t) + OXJ(t - T)Xk(t) ]G(Pik), (3)

for all i,j,k = 1,2,... ,n, where

(1 if p > 0
@(P) =

Oifp < 0.

The initial data of this system must always be nonnegative. We also require it to
be continuous, and for convenience, suppose that Zjk(0) > 0 iff Pjk > 0.
We now state some results for the simplest machine to illustrate the theory. This

system is characterized by the matrix P with entries P12 = P13 = ... = Pin
1/(n - 1) and all other entries equal to zero. This system obeys the equations

xlt) = -axl(t) + 11(t), (4)

xtj(t) = -ax>(t) + ,3xi(t - r)y1j(t) + l1(t), (5)
n

Ylj(t) = Zlj(t) [a Zlk(t) ] 1, (6)
k =' 2

and

Zi1(t) = -uzI1(t) + Bx1(t - r)xj(t), (7)

wherej =2,3,... ,n. This system has the following geometrical interpretation as a
graph G2 with vertices V = {vi: i = 1,2, ... ,n}, and directed edges E = {e1:
j = 2,3,... ,n}. x(t) is interpreted as the state of a process at vj, and yl1(t) is
interpreted as the state of a process at the arrowhead of e1l. Then (4)-(7) can
readily be thought of as a flow of the quantity xl(t) over the edges e11, with flow ve-
locity v = 1/r. That is, at every time w = t - T, the quantity j#xi(w) is transmitted
from vl along each edge elj and reaches the arrowhead of el1 at time w + r = t.
This quantity then instantaneously activates the process described by ylj(t), and a
total magnitude 3x(t - r)ylj(t) reaches vj from vl at time t. xj(t) changes at a rate
equal to this input, as in(5). x>(t) also decays spontaneously at a rate - ax1(t), and
grows at a rate equal to the input I1(t), which the experimenter controls.
The quantity ylj(t) appearing in (5) is itself influenced by all the quantities

zlj(t), as (6) shows. We interpret zlj(t) as follows. At time t, a quantity ,3x1(t -r)
reaches the arrowhead of e1j, and this arrowhead impinges on vj which has the value
x>(t). zij(t) cross-correlates f1x1(t - r) and x>(t), in the sense that it changes at a
rate proportional to flxl(t - r)xj(t), as (7) shows. zlj(t) also decays spontaneously
at rate -uzlj(t). yij(t) compares zi1(t) with the sum of all z1k(t) belonging to any
edge leading away from vi, as in (6). It is the relative magnitude yl1(t), rather than
z1i(t), that controls the size of the transmission from vl to vj in (5).

In order to teach this machine M the list AB, we assign to letter A the vertex vi,
to letter B the vertex v2, and so on down to letter Z and vertex v26. Suppose that we
present A and B to MZ at a periodic rate with A occurring at times t = O,w + W,2-
(w + W)... . ,n(w + .)... ., and B occurring at times t = w,2w + W,3w + 2W,...
(n + 1)w + nW, .... Each presentation of a letter to fMZ at a time to is represented
by an "input pulse" to the corresponding vertex with "onset time" to. An input
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pulse is a continuous and nonnegative function J which is positive in a finite in-
terval. The onset time of J is inf {t: J(t) >0 }. The experiment described above
can thus be mathematically formulated as inputs

I,(t) = E J1(t - k(w + W)), (8)
k =O

12(t) = aj J2(t - W- k(w + W)), (9)
k=O

and

IJ(t) _ 0. j $ 1,2, (10)

in (5), where J1 and J2 are input pulses with onset time zero.
3. Mathematical Results.-We announce here some results for the special case

of the list AB periodically presented to M. These results can be substantially
generalized. 1 They describe the limiting and oscillatory behavior of the probabilities

n n

yli(t) = z11(t) [I zlk(t) ]1, and Xj(t) = xj(t) [ E x*(t)X ( , as t -o c.
k=2 k=2

THEOREM 1. The limits Qj = lim Xj(t) and P1j = lim ylj(t) exist and equal

Q2= P12=1, (11)

and

Qk = Pl= 02 k =3, ... n. (12)
Moreover, the functions ,js and f, yij - Xj change sign at most once. When
j = 2, they do not change sign at all if X2(0) 2 y12(0), whereas theychange sign once
if X2(0) < y,2(0). When j $ 2, they do not change sign at all if X,(0) < yl,(0),
whereas they change sign once if X1(0) > yj(0).
That is, perturbing vertices vl and v2 periodically forces all the mass E Xk(t)

n k=2
in the vertices and all the mass E ylk(t) in the edges to be concentrated in v2 and

k=2

e12, respectively, as t co.
Theorem 1 describes what happens when A and B are each presented infinitely

often to M. No experiment lasts more than a finite amount of time, however. We
therefore study what happens when vl and v2 are each perturbed exactly N times,
followed by one perturbation of vj. This corresponds to an experiment in which
AB is presented N times and then only A is presented in the hope that the output
B will be produced in reply.
Our first result describes what happens after AB has been presented N times, and

thus when only A alone is presented. This case corresponds to a machine in
which there is a to such that Ij(t) = 0, for all t > to and j = 2,3,.. . ,n. We will
assume for simplicity that to is chosen after vl has received at least one input.
THEOREM 12. If Ij(t) = 0 for all t > to and j = 2,3 ... ,n, then Xj(t) and yij(t)

are monotonic in opposite senses and

lim Xj(t) = lim yij(t).
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In particular, if Xj(to) = yi,(to), then X1(t) = yij(t) = constant, t > to. In all
cases, Xj(t) and yij(t) are contained in the interval [mj,Mj], where mj = min
IXj(to),y (to) } and Mj = max{ Xj(to),yij(to) }. If we can guarantee by presenting
AB sufficiently often that m2 and M2 are close to 1 at some time t = to, then we can
replace the infinite strings of input pulses in (8) and (9) by finite strings of N
pulses with an arbitrarily small change of the limits in (11) and (12), if N is taken
sufficiently large. This we now do.
We consider an infinite collection of experiments {SN: N = 1,2,. . }. Each

experiment SN has the same initial data as the system of Theorem 1. Moreover,
in S, AB occurs N times at a periodic rate and is followed by a single presentation
of A. We denote the functions of SN by superscripts "(N)." For example, I, is
written as I1(N) Thus

N-1

I, (N)(t) - E J1(t - k(w + W)) + J1(t -A(N))
k=O

N-1

I2(N)(t) = Ej J2(t -w-k(w + W)),
k=O

and

Ij(N)(t) 0, j = 3,

where A(N) >> w + (N - 1) (w + W). Our goal is to see how presenting AB an
ever larger number N of times influences the guessing of B given A on the test trial
Jj(t - A(N)). This goal is achieved, essentially, by thinking of the Nth experiment
as the case of Theorem 1 for small times and as the case of Theorem 2 for large times.
THEOREM 3. Given any sequence I SN: N = 1,2,. .. } of experiments, then,
(a) for every N > 1, the limits Qj(N) = lim X/N) (t) and plj(N) = lim y1j(N)(t)

ted-c t -) co

exist and Qj(N) = plj(N)
(b) for every N > 1 and all t > w + (N - 1)(w + W) + sup{v: J2(v) > 0,

X2(N) (t) and y12(N) (t) are contained in an interval [n12(N),M2(N)] such that lim m2(N) =

lim M2 (N) = 1. In particular,

lim Q2 (N) = lim P12 (N) = 1 (13)
AMO+CO Ned+c

and

lim Q/(N) = lim P1l(N) = 0, (14)
N--+ co Ned*c-

j= 3,...,n.
Equations (13) and (14) are the finite analogues of the limits (11) and (12) for the

infinite experiment with inputs (8)-(10).
(c) For every N > 1 andj = 2,... ,n, the functions y/j(N) and fj(N) = ylj(N) - X/N)

change sign at most once. When j = 2, they dlo not (hange sign at all if X.,()(0) >
y12() (0), whereas they change sign once ij X2(N)(0) < y12(A)(0). When j # 2, they do
notchange sign atall ijfXj(N)(0) < qyi_(,(0), whereasthey chanige sign o)ne ifXcJeN)f (0)
> yi (N)(0).

4. Learning.-We illustrate the effects of the probabilities yij/N) (t) on the out-
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puts x1(N) (t) in the Nth experiment SN when N is taken large and t is so large that
the inputs corresponding to the presentations of AB are zero. The test trial
JI(t - A(N)) is also assumed to occur after the inputs corresponding to AB are
zero.
ForN >> 1 and t > A(N), y12(N) (t) -1 and ylj(N) (t) _ 0, j 5 1,2, by Theorem 3.

By contrast, we readily see that each output x,(N) (t) converges exponentially to
zero when no inputs are present, and thus x,(N) (A(N)) _ 0 for all i = 1,2,. . .,n.
To study the effects of J1(t - A(N)), we integrate (5) and find that xj(N) (t) - 0 for
all t > A(N) and all j = 3,4,. .. ,n, whereas

1t-A(N)-T rv
x2()(t) _ 3ea(t-A(N)r) J dv eawJl(w)dw,

for t > A(N) + -r. Thus the output from B, namely x2(N)-and only x2(N) among all
the outputs x/(N) representing letters B,C,. . . ,Z-becomes large after the test in-
put to A. That is, periodically presenting AB and thereby periodically perturb-
ing vl and v2 a large numberN of times has the consequence that only v2 produces a
large output when vl is perturbed at a later time. That is, SN "learns" that B
follows A as N becomes large. Indeed, as N is taken increasingly large, an
increasingly large fraction of the output comes from v2, so that "practice makes
perfect."

In an isolated system (i.e., one which is receiving no inputs), all outputs converge
exponentially to zero. That is, no "overt practice" occurs. Nonetheless, for
sufficiently many trials N and sufficiently large t, Theorem 3 guarantees that the
"associations" yJ(/N) (t) remain essentially constant. Thus, no "forgetting" occurs
even in the absence of overt practice.
Moreover, for sufficiently large N and all large t, it is easily seen that Y12(N) (t) is

monotone increasing. That is, the association from A to B undergoes "spontaneous
facilitation" or "remiuiscence"3 even in the absence of overt practice. This effect
is most evident when N is large but not so large that the gap X2(N) (t) - y12(N) (t)
is small when the presentations of AB cease; i.e., during experiments providing
"moderate practice." It is also most evident immediately after the outputs x/N)
undergo their rapid exponential decay when the presentations of AB cease; i.e.,
shortly after moderate practice ceases.

Increasing the number of response alternatives B,C,. . . ,Z (or the number of ver-
tices v2,v3, ... vn) can decrease the rate of learning by decreasing the effect of Z12

n ~-1
on the "association" Y12 = Z12 E Zl . Nonetheless, after considerable prac-

_k =2
tice, when Y12 _ 1, these alternatives have little effect, since Z12 >» Zij, j i 1,2.

All errors can be corrected, because Theorems 2 and 3 hold for all positive initial
data. Suppose, for example, that AB has been taught to o for a finite amount of
time, until time t = To, say. Then Y12(To) - 1. We can thereafter present AC
periodically to guaranteec that y13(I) _ 1 for I sufficiently large. The "error"
B given A has hereby been corrected. Nonetheless, it will take longer to bring
y13(t) close to 1 if y12(To) 1 I than it would if yjj(To) _ 1/(t - 1), j = 2,. .;
i.e., "response interference" due to the association A B has occurred.
The above remarks illustrate that the interaction of the outputs (or "stimulus
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traces") x,(t) and the "associations" yxj(t) with the inputs Ik(t) can be sub-
jected to many thought experiments which often have a heuristic interpretation
with a familiar psychological ring to them.

5. Summary.-Some nonlinear difference-differential equations are introduced
which can be interpreted as a learning theory or prediction theory. The simplest
case of learning to predict an event B given an event A is briefly discussed.
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