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Abstract
We present a simple and inexpensive ‘one-step’ protocol for the hydrolysis of DNA to
deoxyribonucleosides. Unlike the older DNA hydrolysis protocol which is cumbersome and labor
intensive, thes new protocol is ideal for high-throughput assays and is suitable automation. Using
this protocol we were able to hydrolyze several hundred samples within an 8-hour period. The new
protocol is fully compatible with LC-MS/MS and gives similar recoveries for all five major
deoxyribonucleosides when compared to the older protocol.

The requirement to hydrolyze DNA to deoxyribonucleosides is a common component of
several assays. To measure the turnover of DNA [1,2] or cells [3–5] in various tissues, DNA
can be labeled with isotope-labeled precursor. In such studies, the DNA is extracted,
hydrolyzed, and analyzed to determine label incorporation by mass spectrometry. Likewise,
in vivo experiments in humans, such as examination of the effect of gene polymorphisms [6]
and nutritional status [6,7] on DNA metabolism, have used labeled one-carbon donors to label
monocyte DNA. Nucleoside hydrolysates of DNA also have been used in determining the base
composition of DNA, including investigation of epigenetic modification such as deoxycytosine
methylation [8,9], oxidative damage [10,11], or unique DNA composition [12].

One of the most commonly used protocols for digesting DNA is the tri-enzyme protocol
devised by Crain [13]. However, a major weakness of the Crain protocol is that the first enzyme
in the reaction, nuclease P1 (E.C. 3.1.30.1), only can digest single stranded DNA and has a pH
optimum (pH ~5) significantly lower and a reaction temperature significantly higher (~50°C)
than the other two enzymes (pH >8 and ~37°C) in the reaction. This leads to an overly complex
protocol [Fig 1], whereby the DNA must be boiled to denature (and rapidly cooled to prevent
reversion), the pH of the sample is adjusted twice, and the sample undergoes three separate
enzyme incubations. These complexities limit the number of samples that can be prepared. For
logistical reasons (repetitive manipulations of tubes), we were typically [6] restricted to
preparing ~60 samples per day when we used the Crain protocol. Furthermore, the Crain
protocol uses high buffer concentrations (e.g., 50–100 mmol/L ammonium bicarbonate, pH
7.9) which can interfere with downstream reactions and assays. Therefore, we devised a simple
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and inexpensive protocol for hydrolyzing DNA to deoxynucleosides that can be performed in
a single incubation, without the need to denature the DNA.

This was achieved by substituting an endonuclease from Serratia marcescens (E.C. 3.1.30.2)
for nuclease P1. This enzyme exhibits no preference for single or double stranded DNA, and
has pH (~pH 8) and temperature (~37°C) optima similar to the other enzymes in the reaction.
We use a commercial variant of the endonuclease enzyme, Benzonase (Merck, Darmstadt,
Germany), produced by over-expressing the recombinant enzyme in E. coli. Benzonase is sold
commercially as a reagent for purifying protein by removing DNA and RNA.

A typical DNA digestion protocol is described: DNA is extracted and purified using standard
laboratory protocols or a commercial kit. The DNA is reconstituted in water or DNA hydrolysis
buffer at a typical concentration of 20 ng/μL. Digest Mix (enough for one hundred 1μg samples)
was prepared by adding 250 Units Benzonase, 300 mUnits phosphdiesterase I (Sigma P-3243)
and 200 Units alkaline phosphatase (Sigma P-7923) to 5 mL Tris-HCl buffer (20mM, pH7.9)
containing 100 mM NaCl and 20 mM MgCl2. DNA samples (1 μg) were digested by adding
50 μL Digest Mix. After incubating at 37°C for 6 hr the DNA was ready for analysis [Fig. 1b].
To determine completeness of hydrolysis, triplicate 1 μg samples of human placental DNA
(Sigma D-7011) were digested for 6 hr, 8 hr, or overnight (~18 hr). Samples were
chromatographed on a Luna C18(2) column (50 × 3.0 mm, 3μ; Phenomenex, Torrence CA)
eluted at 0.3 mL/min with 1 mmol/L ammonium acetate/0.1% acetic acid using a methanol
(4% to 12%) gradient. Tandem mass spectrometry was conducted using a Termo Finnigan TSQ
Quantum mass spectrometer in H-ESI mode (200°C heated vaporizer) using the mass
transitions previously reported [6]. Incubation time had no effect on peak area. No attempt was
made to further optimize incubation times or enzyme concentrations.

For comparison 1μg human placental DNA (in 50μl water) was digested using the Crain
protocol [13]. In brief, the DNA sample was denatured by boiling in a water bath at 100°C for
3 min. The sample was cooled rapidly on ice before 5 μL ammonium acetate (0.1 mol/L, pH
5.3) was adding. After incubating with 2 U nuclease P1 (Sigma N-8630) at 45°C for 2 hr the
pH of the sample was adjusted with 5 μl fresh ammonium bicarbonate (1 mol/L) before 3
mUnits phosphodiesterase I were added and incubated at 37°C for a further 2 hr. After
incubating with 2 Units alkaline phosphatase at 37°C for 1 hr the volume of the sample was
made up to 100 μL with water. Components of the Crain digestion (presumably the high
ammonium bicarbonate and/or ammonium acetate concentration) interfered with both the
sample chromatograph and ionization (increasing diamerization of deoxycytidine, and of
deoxyadenosine). Consequently, the composition of both samples was adjusted to give a similar
buffer composition. Specifically, the sample digested using the Crain protocol was diluted with
100 μL Tris-HCl buffer (10mM, pH7.9) containing 50 mM NaCl and 10 mM MgCl2; the sample
digested using our new protocol was diluted with 50 μL ammonium acetate (10 mmol/L, pH
5.3) and 50 μL ammonium bicarbonate (100 mmol/L). Both samples were then diluted with
1.8 ml water (spiked with [15N3]deoxycytidine (Cambridge Isotopes, Cambridge MA) and
[2H4]thymidine (Cambridge Isotopes) as internal standards). Both digestion protocols gave
comparable deoxyribonucleoside concentrations [Table 1], particularly when the
deoxycytidine peak area was corrected using recovery of its internal standard.

In conclusion, we present a simple, one-step protocol for the digestion of DNA to
deoxynucleosides that is suitable for automation. Using a repeating pipette, it has taken us less
than two hours to prepare 450 samples for incubation. Reagent concentrations and digestion
volumes are scalable, depending on the sample DNA concentration and the desired final
volume. As all the enzymes used in the protocol are active towards RNA the protocol also
could be used to hydrolyze RNA to ribonucleosides.
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Fig 1.
DNA digestion flow diagram showing the method of a) Crain [13], and b) our revised method.
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