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Abstract

Background: Cauliflower mosaic virus (CaMV) and Rice tungro bacilliform virus (RTBV) belong to distinct genera of
pararetroviruses infecting dicot and monocot plants, respectively. In both viruses, polycistronic translation of pregenomic
(pg) RNA is initiated by shunting ribosomes that bypass a large region of the pgRNA leader with several short (s)ORFs and a
stable stem-loop structure. The shunt requires translation of a 59-proximal sORF terminating near the stem. In CaMV,
mutations knocking out this sORF nearly abolish shunting and virus viability.

Methodology/Principal Findings: Here we show that two distant regions of the CaMV leader that form a minimal shunt
configuration comprising the sORF, a bottom part of the stem, and a shunt landing sequence can be replaced by
heterologous sequences that form a structurally similar configuration in RTBV without any dramatic effect on shunt-
mediated translation and CaMV infectivity. The CaMV-RTBV chimeric leader sequence was largely stable over five viral
passages in turnip plants: a few alterations that did eventually occur in the virus progenies are indicative of fine tuning of
the chimeric sequence during adaptation to a new host.

Conclusions/Significance: Our findings demonstrate cross-species functionality of pararetroviral cis-elements driving
ribosome shunting and evolutionary conservation of the shunt mechanism. We are grateful to Matthias Müller and Sandra
Pauli for technical assistance. This work was initiated at Friedrich Miescher Institute (Basel, Switzerland). We thank Prof.
Thomas Boller for hosting the group at the Institute of Botany.
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Introduction

Ribosome shunt is a mechanism of eukaryotic translation

initiation that combines features of both 59-end dependent scanning

and internal ribosome entry. It has been discovered in plants, first for

Cauliflower mosaic virus (CaMV) [1,2] and then for Rice tungro bacilliform

virus (RTBV) [3]. Related phenomena have also been reported for

several viral and cellular mRNAs in animal, yeast and green alga

cells [14, 5, 6, 7, 8, 9; reviewed in Refs. 10, 11].

The CaMV shunt mechanism has been extensively studied in

plant protoplast and in vitro translation systems [12,1,2,13,14,15,

16,17,18]. According to our current model, shunt-mediated

translation initiation on the CaMV pregenomic (pg)RNA includes

the following steps: (i) a 40S ribosomal subunit binds the pgRNA

capped 59-end and scans along the leader sequence until a first

AUG, the start codon of short ORF 1 (also called sORF A), is

encountered; (ii) an 80S ribosome assembles and initiates

translation of sORF 1; (iii) the ribosome terminates translation

and disassembles at the sORF stop codon, the shunt take-off site,

located six nucleotides upstream of the base of a large stem-loop

structure with two bifurcations dividing it into stem sections 1, 2,

and 3 [19,15] (Fig. 1A); (iv) the released 40S, retaining initiation

factor(s) necessary for scanning and re-initiation but having lost

those capable of melting stable structure, shunts over (bypasses)

about 480 nt structured region to reach a shunt landing site

downstream of the structure, where (v) it resumes scanning and

finally re-initiates translation at the start codon of the first large

viral ORF (ORF VII). In CaMV, mutations of the start or the stop

codon of sORF 1, but not of its coding sequence, nearly abolished

shunting and drastically reduced viral infectivity in turnip plants,

leading to appearance of first and second site reversions restoring a

short ORF [14, 15] These findings indicated that sORF-mediated

ribosome shunting is essential for viral infectivity. However, the

importance of other cis-acting elements found to be essential for

ribosome shunting in protoplasts and in vitro, namely, the stem

section 1 [12,13,16] and the shunt landing site [2,17], was not

tested in planta.

CaMV and RTBV belong to the Caulimovirus and Tungrovirus

genera of the family Caulimoviridae. They replicate via reverse

transcription of pgRNA and encapsidate circular double-stranded

DNA of ,8 kbp. Their life cycles differ in many aspects including

host range, insect vectors and virion geometry [20,21]. Further-

more, genome organization (seven genes in CaMV versus four in

RTBV) and gene expression strategies are very different. In

CaMV, 35S and 19S promoters drive transcription of two major

units, pgRNA (35S RNA) and 39 co-terminal, subgenomic RNA

(19S RNA). 19S RNA serves as a monocistronic mRNA for

transactivator/viroplasmin (TAV) [22] that transactivates expres-
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sion of several internal ORFs from the polycistronic 35S RNA

(ORFs I and II) and its spliced version (ORFs IV and V) by

enabling ribosomes to re-initiate translation [23, 24, 25, 26;

reviewed in Ref. 27]. In contrast, RTBV does not encode a

translational transactivator and its internal ORFs II and III are

translated from pgRNA by leaky scanning [28], while ORF IV is

translated from a monocistronic, spliced version of pgRNA [29].

In the latter case, an inefficient splicing event fuses the pgRNA

leader-based sORF 1 and ORF IV [29]. Notably in CaMV, a

fraction of 35S RNA molecules are also spliced and one of the four

splice donor sites was mapped to the leader, but far downstream

from sORF 1 [29]. This splicing event removes ORFs VII, I and

II, thus enabling expression of further downstream ORFs.

Despite these differences, both CaMV [2] and RTBV [3] use

shunting to initiate translation of the first large ORF downstream

of the respective pgRNA leaders that carry multiple sORFs and

form stable stem-loop secondary structures (Fig. 1A). Our recent

experiments in rice protoplasts and wheat germ extracts

demonstrated that, like in CaMV, the mechanism of RTBV

shunting involves translation of sORF 1 terminating near the stem

structure and requires integrity of the stem section 1 and the shunt

landing site just downstream of the stem [17]. This supported our

earlier bioinformatic prediction of the conserved shunt configura-

tion in the pgRNA leaders of CaMV and RTBV (Fig. 1A) as well

as other plant pararetroviruses [30,31]. Here we demonstrate that

all the three essential cis-elements forming the minimal shunt

configuration in CaMV–sORF 1, stem section 1 and the landing

site-can be functionally substituted by respective elements from

RTBV to confer efficient shunt-mediated polycistronic translation

and virus infectivity in planta.
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Figure 1. Conserved shunt configuration from the RTBV leader imbedded in the CaMV leader drives efficient polycistronic
expression in plant protoplasts. (A) The large stem-loop structures of the leaders predicted by MFold for CaMV (left) and RTBV (right) and
experimentally verified for CaMV [19] are schematically drawn with thick lines. The 59- and 39-sequences flanking the main structure are shown in
open conformation. The stable structural element at the stem base (stem section 1) and adjacent regions, are enlarged and their sequences shown
(these sequences substitute one another in the CaMV-RTBV chimeric leader and virus). The nucleotide numbering is from the pgRNA 59-end (cap-
site). The 59-proximal short ORF (sORF 1) is boxed. The AUG start codons and the non-AUG initiating codons in the shunt landing site are in bold. (B)
Polycistronic expression controlled by the wild type and chimeric CaMV-RTBV leaders (shown on the left) in O. violaceous protoplasts. Relative
expression levels of the CAT reporter gene fused to the first (ORFVII::CAT) or the second (ORFVII-ORFI::CAT) viral ORF downstream of the leader in the
absence (2TAV) or the presence (+TAV) of the TAV expressing plasmid are given. Expression of ORFVII::CAT downstream of the wild type CaMV leader
in the absence of TAV is set to 100%.
doi:10.1371/journal.pone.0001650.g001
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Results and Discussion

The RTBV shunt elements imbedded in the CaMV leader
confer efficient shunting and TAV-activated polycistronic
translation in protoplasts derived from a CaMV host plant

Using a PCR ligation method, we replaced two distant regions

of the 612 nt CaMV leader sequence (positions 54-106 and 530-

585) with corresponding regions of the RTBV leader (positions 87-

148 and 659-714) (Fig. 1A). Secondary structure analysis using the

Wisconsin GCG MFold program suggested that this replacement

did not affect integrity of an upper part of the central stem-loop

structure that harbors a putative RNA packaging signal specifically

interacting with the CaMV coat protein [32], although the overall

stability of the leader secondary structure was predicted to be

slightly increased (see Data S1). Other known cis-elements located

in the CaMV leader, namely, a transcriptional/translational

enhancer (positions 1-52) [33], a poly(A) signal with upstream

elements (positions 148-177) [34], the 59-splice site (positions 482-

491) [25] and a primer binding site for reverse transcription

(positions 599-612), were not affected.

To test the effect of this replacement on leader-controlled

translation we used a transient expression system based on plant

protoplasts from cell suspension of Orychophragmus violaceus (a

CaMV host plant), in which the CAT reporter gene is expressed

from transiently-transfected plasmid constructs as part of the

modified CaMV 35S RNA transcription unit. This system has

been established in our previous studies on shunting and

transactivation [23,2,16]. In the construct ORFVII::CAT, CAT

is fused to ORF VII to monitor shunt-mediated expression of the

first ORF downstream of the leader. In the construct ORFVII-

ORFI::CAT, CAT is fused to ORF I to monitor TAV-mediated

expression of the second ORF following ORF VII (Fig. 1B). The

relative expression of CAT from these plasmids was examined in

the absence and presence of a separate plasmid expressing the

CaMV TAV protein (pHELP7) [23]. Additionally, a plasmid

expressing GUS as a second reporter gene was always co-

transfected to serve as an internal control of transfection efficiency

and to normalize CAT levels as described by Pooggin et al [16].

The basal level of shunt-mediated expression from the

monocistronic construct ORFVII::CAT was set to 100%.

Consistent with previous reports [2,16,14], it was enhanced 2.5

times by TAV (Fig. 1B). The relative CAT expression from the

dicistronic construct ORFVII-ORFI::CAT was below 1%. In the

presence of TAV, it was transactivated up to 115%, again

confirming previous results [23]. The CaMV-RTBV shunt

chimeras had similar expression profiles, albeit the levels of

shunting (85%) and TAV-activated ORF I expression (72%) were

slightly lower (Fig. 1B).

Similar results were obtained when, in addition to the shunt

elements, the CaMV leader region (positions 230-408) forming

stem-section 3 and the bowl structure (a presumed pgRNA

packaging signal) [32] was replaced with the corresponding region

of the RTBV leader (positions 238-421) designated here ‘‘RTBV

pack’’ (Fig. 1B). Interestingly, both in the presence and the absence

of TAV, the expression levels of the RTBV pack-containing

constructs were higher than those of the respective constructs with

the original ‘‘CaMV pack’’ sequence. Previously, we have reported

that replacement of the CaMV leader region forming the entire

hairpin structure above stem section 1 with a short sequence

forming a perfectly double-stranded hairpin also increased shunt-

mediated translation [16]. In both cases, higher propensity of the

leader sequence to fold into the shunt-supporting configuration,

with stem section 1 stabilized by a more stable (and/or compact)

structure above, might account for increased efficiency of

shunting. According to the current model of CaMV polycistronic

translation, the ribosomes having completed translation of ORF

VII can reinitiate at ORF I in the presence of TAV [26,11].

Therefore, an increase in translation of ORF VII should lead to a

comparable increase in translation of ORF I. However, this model

does not explain why the RTBV pack sequence had a greater

contribution to expression of ORF I than to that of ORF VII

(Fig 1B). This finding suggests an additional, leader sequence-

controlled and TAV-dependent mechanism of ORF I translation,

which would bypass the ORF VII start codon.

We conclude that the RTBV cis-elements imbedded in the

CaMV leader can functionally substitute the corresponding

CaMV elements in driving efficient shunt-mediated translation

initiation and TAV-activated dicistronic translation.

The RTBV shunt elements support CaMV infection in
turnip plants

To test whether the RTBV shunt configuration can support

CaMV infection in planta, we introduced the four chimeric leader

sequences into the CaMV infectious clone pCa540, a derivative of

CM4-184 lacking the insect transmission factor due to a natural

deletion in ORF II, and mechanically inoculated turnip seedlings

with the resulting DNA as described in [15]. Both chimeric viruses

containing the RTBV pack sequence were not infectious, most

likely because the presumed RNA packaging signal within this

region requires the RTBV coat protein for functionality [32]. In

contrast, plants inoculated with the chimeric virus containing the

sORF1, the stem-section 1 and the landing site sequences of

RTBV developed viral disease symptoms similar to those caused

by wild-type CaMV, albeit with a delay of about 10 days.

The increased latency period indicated that the chimeric leader

sequence is not fully optimal for one or more processes of the viral

replication cycle. We have shown previously that suboptimal viral

genomes restore or adjust features important for optimized

infectivity and fitness by first or second site reversions [14,15].

The nature of selected revertant genomes might allow conclusions

about the underlying mechanisms affected by the original

mutations. Therefore, we performed several passages of the viral

progenies to new turnip plants using sap-inoculation and, after

each passage, monitored virus latency periods (Fig. 2). Alterations

in the chimeric leader sequence were examined in samples from

young, systemically infected leaves, which had been used for sap-

inoculation, by PCR amplification of a 834 bp fragment of viral

DNA containing the complete leader with flanking 35S promoter

and ORF VII sequences, followed by cloning of the PCR product

and sequencing of several individual clones per progeny as

described in detail previously [15].

For each of the two plants initially infected with the chimeric

virus, samples of young leaves were harvested at about 2 and

3 months post-inoculation, and two parallel series of passages were

performed (five passages for the early harvest and four for the late

harvest). The early harvest progenies were designated 1 and 2, the

late harvest ones 19 and 29 (Fig. 2). All the sequence alterations

detected in each viral progeny in the course of passages are

provided in Data S1.

For each progeny, the wild-type latency period was completely

restored after one to three passages (Fig. 2). This restoration

correlated well with the appearance of some predominant

alterations in the chimeric leader sequence (summarized in

Figs. 3 and 4; for more details of each passage, see Data S1). In

contrast, sequencing of the ,1.6 kbp TAV coding region of

several clones representing each progeny of the chimeric virus

after the final passages did not reveal any sequence alteration.

Changes in the chimeric leader occurring several times indepen-
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dently and changes that are fixed in subsequent generations

therefore most likely have a functional importance.

Our analysis of the virus genomes at early stages of propagation

revealed a large collection of individual clones with and without

reversions. The recurring feature was one nucleotide substitution

inside the RTBV sORF (G64A, G69A, or, less frequently, C67G,

G69C, G74U and U75G) combined either with a substitution

G595A or a deletion of three adjacent nucleotide (D596-598) at the

junction between the RTBV landing site and the downstream

CaMV sequence (Fig. 3A and 4A; and Data S1). Interestingly,

analysis of the late harvest progenies showed that the chimeric virus

continued to evolve within a single, initially infected plant (Fig. 3A

and Data S1). In fact, these additional alterations appeared to

improve viral fitness, because the late harvest progenies had shorter

latency periods than the early harvest ones (Fig. 2). Notably, most of

the dominant alterations (e.g. G64A and D596-598) occurred

independently in progenies stemming from the two initially infected

plants, indicating their importance for viral fitness.

For the initial heterogeneous populations, it is unclear which of

the clones actually support infection and how much of the present

variation is covered by the sequenced clones. However, upon serial

passage, a purifying selection should occur and analysis of the

resulting populations should become more informative.

Analysis of the viral progenies after several passages
Upon several passages, symptom development was no longer

retarded (Fig. 2) and the population isolated from a given plant

turned out to be more uniform (see Data S1). By comparing the four

progenies, a small number of recurring alterations in the chimeric

leader sequences could be discerned. All 43 analyzed clones showed

alterations of the sORF1 coding sequence and all clones also showed

changes at the 39 border of the RTBV landing site or the junction

sequence. In the sORF of three progenies, the second codon was

altered such that the initiation context was weakened and a Ser or

Thr was encoded instead of an Ala (Fig. 3A and 3B). In all but one

progenies, the third codon containing the exonic part of the RTBV

splice donor site was altered (Fig. 3A) in a way predicted to reduce

the splicing efficiency. Surprisingly, the GU of the intronic part of the

splice site, which represents the most conserved signal [35], was

altered only in one of the late progeny clones and also only in two

clones of the intermediate populations (Fig. 3B). The fourth or fifth

codon was altered in two of the four progenies, while the sixth codon

remained unchanged in all the progenies.

Mutations at the junction of the RTBV landing site to the

CaMV downstream region affected the two last nucleotides in the

RTBV sequence or the artificial junction itself (Fig. 4A). The

G595A mutation was frequent already in the first generation

progenies, while, in all the late progenies, small deletions in this

region were found, with D596-598 being predominant (Fig. 4A

and Data S1). Strikingly, also the 59 junction between CaMV

leader and RTBV sORF1 gave rise to deletions or mutations in

most cases (Fig. 3A) and smaller deletions close by in some (see

Data S1). Almost all these changes affected the palindromic

restriction sites engineered at the junctions. Besides these common

alterations, a C107U or C109U mutation appeared independently

in two virus progenies. These bases are located in a three-

nucleotide bulge of stem section 1 and might be a protein-binding

site or be involved in long-range RNA interactions.

The pgRNA leader sequence of plant pararetroviruses is

involved in many different processes that could potentially be

affected by reversions. Reversions affecting the RTBV splice

donor in sORF1 should lead to reduced production of aberrant

splicing products from the RTBV splice site to the authentic

CaMV splice acceptor site [25]. In one late progeny population,

the most conserved nucleotides of the splice site remained

unchanged but the viral latency period was no longer compro-

mised. In this case, mIn this utation in the fifth codon of sORF 1

(U75A) may also affect splicing by weakening interactions with the

U1 and U6 snRNAs [35]. Furthermore, we have previously found

that mutation of the normal splice site leads to the usage of an

alternative splice donor including the GU of this fifth codon [29].

Besides splicing, sORF1 mutations might influence translation

initiation or termination events at this ORF and thus might be

involved in fine tuning of the ribosome fate for shunting and

reinitiation. From our previous work, we conclude that many

different coding sequences can support the sORF1 function in
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Figure 2. Serial passages of the CaMV-RTBV chimeric virus in turnip plants. The experimental scheme of serial passages for the early
harvest (1 and 2) and the late harvest (19 and 29) progenies stemming from two initially infected plants (N1 and N2) is depicted. For each progeny, a
delay (in days) in symptom development for the chimeric virus versus the wild type virus is given. Samples taken for PCR amplification and
sequencing of viral DNA are indicated by circles (for the detailed sequencing data, see Data S1).
doi:10.1371/journal.pone.0001650.g002
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controlling translation, however, clearly not all codon combina-

tions work equally well and some are inhibitory [14,16,18]. We

mobilized some of the ‘‘revertant’’ leader sequences into our gene

expression constructs and tested them for effects on ORF VII

translation and found no or only marginal improvements of

expression (data not shown). Since the ORF VII::CAT reporter

construct lacks any splice acceptor, the latter results suggest that

the reversions in the sORF might not primarily occur to

compensate for a slight decrease in shunt-mediated translation

(Fig. 1B) and could therefore be more important for inactivation of

the RTBV splice donor that would interfere with proper splicing

in the context of viral pgRNA.

All changes of the RNA sequences lead to subtle alterations of

the predicted secondary structures and–as a rule–the observed

reversions reduce stability and restore shape of the local secondary

structures (Fig. 3C and 4B; and for all the revertant structures, see

Data S1). Deletions at the 39 junction occur in the region where

reverse transcription of pregenomic RNA is initiated. The small

insertions and substitutions frequently observed in a nearby region

in front of the primer binding site [15] (also, see Data S1) suggest

that this initiation and early elongation process may be particularly

error prone, possibly because the association between reverse

transcriptase and pgRNA is not yet stable. In such a situation,

elongation might be particularly affected by RNA secondary
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Figure 3. Alterations in the sORF1 region of the CaMV-RTBV chimeric virus. (A) The nucleotide sequences of the original CaMV-RTBV
chimeric leader (top), the wild type CaMV strains CM4-184 and Cabb-S (bottom) and the dominant revertants obtained in the four progenies initially
and after several passages (middle panel) are shown. The junction between CaMV and RTBV sequences is indicated by bent arrows (two non-viral
nucleotides are in lower case). For each sequence, sORF is boxed and the encoded peptide indicated (altered amino acids are in bold). Nucleotide
substitutions in the progeny viruses are shown in bold, low case. The middle panel also shows alterations in stem section 1 (Stem) and the shunt
landing site (Land) regions dominating in the respective progenies. The nucleotide numbering is from the pgRNA 59-end. (B) A complete collection
of the sORF1 peptide and nucleotide sequence variants found in the sequenced clones for each progeny, both initially and on passage (for details,
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doi:10.1371/journal.pone.0001650.g003
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structure. The observed alterations all reduce the number of

ACGU palindromes which might be involved in structure formation

within the RNA or with the second RNA molecule that most likely is

involved in complete reverse transcription of the genome.

Concluding remarks
Our study demonstrates that cis-elements driving ribosome

shunting are functionally conserved between monocot and dicot

pararetroviruses. Indeed, two distant regions of CaMV pgRNA

leader–the shunt take-off and the landing sites brought into a close

spatial vicinity by formation of stem section 1-can be substituted

by the corresponding regions from RTBV in driving efficient

shunt-mediated polycistronic translation in CaMV host plant

protoplasts and in supporting CaMV infectivity in turnip plants.

Our findings indicate that primary sequences of sORF 1, stem-

section 1 and landing site are not absolutely essential for ribosome

shunting and viral infectivity, unless they carry some inhibitory

features or alter low index of local secondary structure upstream

and downstream of the central stem-loop structure. Our previous

work demonstrated that a regulatory sORF such as the AdoMetDC

sORF MAGDIS [36] or the GCN4 sORF 4 [37] that can

conditionally block downstream translation reinitiation, when

introduced in place of CaMV sORF1, inhibits shunt-mediated

translation downstream of the CaMV leader [16,18]. We therefore

assume that some of the dominant alterations in the coding

content of RTBV sORF 1 that occurred on passage of the

chimeric virus in turnip plants might have slightly modulated

elongation or termination rates of sORF 1 translation that controls

shunt-mediated polycistonic translation on viral pgRNA. In

addition, heterologous sequences may carry elements that affect

proper processing (capping, splicing and polyadenylation) or decay

of RNA. Indeed, the 59-splice site located within the RTBV sORF

1 sequence was affected by most (but not all) nucleotide

substitution dominating in progenies of the CaMV-RTBV

chimera. Low propensity to formation of secondary structure

appears to be a main characteristic of the shunt landing site in

both CaMV and RTBV, although some unknown features of its

primary sequence do contribute to shunt efficiency in host and

non-host translation systems [17]. Consistent with the fact that the

RTBV shunt landing site, individually or in combinations with

other cis-elements comprising the minimal shunt configuration,

can function efficiently in CaMV host plant protoplasts [17; this

study], it does so in the context of CaMV infection in turnip plants

as well. The only dominant alteration that occurred in vicinity of

the RTBV landing site was the deletion of three nucleotides at the

junction with downstream CaMV sequence. Our MFold-assisted

analysis shows that the latter deletion restores both low index and

shape of local secondary structure. Likewise, a main purpose of the

dominant deletions in the chimeric sequence upstream of sORF 1

appears to be relaxation of local secondary structure. We assume

that, in both cases, the ribosome scanning process should be

facilitated. This assumption is supported by earlier findings that

CaMV shunting does not operate, when a stable secondary structure

element that blocks scanning is inserted just upstream of sORF 1 or

downstream of the landing site in the CaMV leader [2].

It has been proposed that the ascending and descending arms of

the CaMV leader stem section 1 have evolved through head-to-

head incorporation of long terminal repeats of an ancient

retrotransposon found in the yeast genome [38]. However, the

primary sequences building the stem section 1 in RTBV (Fig. 1) do

not appear to bear any significant homology to the yeast

retrotransposon sequence. Moreover, our studies show that

primary sequences of stem section 1 are not essential for shunt-

mediated translation [12,16,17] and CaMV infectivity [this study].

Thus, the conserved, minimal shunt configurations identified in

CaMV and RTBV as well as in other plant pararetroviruses [30]

may have evolved independently.

Moissiard and Voinnet [39] have reported that the central

hairpin of the CaMV leader codes for small interfering RNAs, the

effector molecules of RNA silencing, that target certain host

transcripts for cleavage and degradation in a sequence-specific

manner. In particular, two such siRNAs are derived from the

ascending and descending arms of stem section 1. Our study shows

that heterologous RTBV sequences, which do not bear any

similarity to the predicted siRNAs, can substitute for the CaMV

sequences involved in formation of stem-section 1 without any

notable effect on CaMV infectivity and these sequences are stable

over several passages. Furthermore, our previous studies have

shown that second site reversions accumulating in progenies of

different CaMV mutants compensated for defects in secondary
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Figure 4. Alterations near the shunt landing region of the CaMV-RTBV chimeric virus. (A) The nucleotide sequences of the original CaMV-
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structure rather than primary sequences of the leader stem section

3 [14,15] to which three other predicted siRNAs map [39]. Taken

together, our findings indicate that siRNAs derived from different

regions of the CaMV leader including stem section 1 [40; and our

unpublished data] may not have any substantial deliberate

function in sequence-specific inactivation of certain host genes.

Materials and Methods
Protoplast preparation and transfection

Protoplasts were prepared and transfected with plasmid DNA as

described previously [16]. Briefly, 26106 protoplasts were

transfected with 10 mg CAT-expressing plasmid and 2 ml GUS-

expressing plasmid. The latter served as an internal control of

transfection efficiency. For transactivation, 5 mg TAV-expressing

plasmid was also added. Following incubation for 19–24 hrs at

27uC in the dark, protoplasts were harvested, protein extracts

prepared and assayed for CAT and GUS accumulation. Relative

GUS activities were taken for normalization of CAT expression

levels. For each construct, the values given are the means of at

least three experiments in independent batches of protoplasts.

Deviations from the mean values did not exceed 20%.

Virus and plants
Construction of CaMV mutants, mechanical inoculation of

turnip plants, DNA preparation and PCR, cloning and sequencing

of viral progeny from infected plants were performed as described

in detail in [14,15].

Supporting Information

Data S1

Found at: doi:10.1371/journal.pone.0001650.s001 (1.57 MB PPT)
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