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Cigarette smoke inhibits macrophage sensing of
Gram-negative bacteria and lipopolysaccharide:
relative roles of nicotine and oxidant stress
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Background and purpose: Smoking cigarettes is a major risk factor for the development of cardiovascular and respiratory
disease. Moreover, smokers are more prone to infections. This has been associated with a suppression of the immune system
by smoke. However, it is not clear how cigarette smoke affects the ability of immune cells to sense pathogens. Cigarette smoke
contains a large number of molecules which may mediate responses on immune cells and of these, nicotine and oxidants have
both been identified as inhibitory for the sensing of bacterial lipopolysaccharide (LPS). Nitric oxide synthase (NOS) and tumour
necrosis factor (TNF)-a are both induced in macrophages on stimulation with Gram negative bacteria or LPS.
Experimental approach: We used murine macrophages stimulated with whole heat-killed bacteria or LPS. We measured
output of NO (as nitrite) and TNFa, NOS protein by Western blotting and cellular oxidant stress.
Key results: Cigarette smoke extract suppressed the ability of murine macrophages to release NO, but not TNFa in response to
whole bacteria. Cigarette smoke extract also inhibited nitric oxide synthase II protein expression in response to LPS. The effects
of cigarette smoke extract on nitrite formation stimulated by LPS were unaffected by inhibition of nicotinic receptors with
a-bungarotoxin (100 units ml�1). However, the effects of cigarette smoke extract on LPS-induced nitrite formation were
mimicked by hydrogen peroxide and reversed by the anti-oxidants N-acetyl cysteine and glutathione.
Conclusions and implications: We suggest that cigarette smoke exerts its immunosuppressive effects through an oxidant-
dependent and not a nicotine-dependent mechanism.
British Journal of Pharmacology (2008) 153, 536–543; doi:10.1038/sj.bjp.0707595; published online 3 December 2007
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Introduction

Smoking cigarettes increases the risk of premature death

from heart attack, stroke, chronic obstructive pulmonary

disease (COPD) and cancer (Sloan et al., 2004). It is now

recognized that smoking cigarettes can also increase a

smoker’s chances of dying from an infection (Bartal, 2001).

Cigarette smoke can have direct inhibitory effects on the

sensing of bacterial ‘pathogen-associated molecular patterns’

such as bacterial lipopolysaccharide (LPS) in vitro (Laan et al.,

2004). However, the mechanism by which cigarette smoke

inhibits the sensing of LPS by macrophages is unknown.

Moreover, the effect of cigarette smoke on the activation of

macrophages by whole bacteria has not previously been

investigated.

Therefore, in the current study, we have used whole Gram-

positive Staphylococcus aureus or Streptococcus pneumoniae or

Gram-negative Escherichia coli or Pseudomonas aeruginosa

to activate macrophages and investigated the effects of

cigarette smoke on associated responses. NOSII and tumour

necrosis factor (TNF)-a are proteins central to the processes

of innate immunity and the corresponding genes are co-

induced by bacteria in macrophages (Paul-Clark et al., 2006).

We have therefore measured nitric oxide (NO) and TNFa as

markers of cell activation in this study.

Cigarette smoke contains a large number of biologically

active molecules. However, the ability of cigarette smoke to
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cause oxidant stress in cells is likely to be important in any

biological response observed in cells in vitro. In addition,

cigarette smoke contains nicotine, which has recently been

shown to inhibit the ability of macrophages to sense LPS

in vitro (Borovikova et al., 2000). The hypothesis that we have

been working towards is that cigarette smoke induces

inflammation and disease via oxidant stress-dependent

mechanisms and that this has important implications for

innate immune responses. Thus, in the current study, we

have specifically investigated the role of oxidant stress and

nicotine-like components of smoke on activation of macro-

phages by whole bacteria.

Methods

Test systems used

Bacterial culture and preparation. All bacteria were stored as

frozen glycerol stocks and streaked onto agar plates before

inoculation of single colonies into RPMI medium 1640 with

10% fetal calf serum and glutamine. Cultures were incubated

overnight and then centrifuged at 850 g to pellet bacteria.

Bacteria were then washed twice in sterile saline, and pellets

were resuspended in sterile saline. Aliquots of the bacterial

suspension were serially diluted and plated onto agar to

quantify bacterial cell numbers. The bacterial suspensions

were then heat-treated for 60 min at 80 1C to kill all bacteria;

sterility was confirmed by plating of the resultant suspen-

sion. An aliquot of the live bacterial suspension was plated

onto agar for 24 h and colonies were counted for the

estimation of final colony-forming units (CFU) counts.

Suspensions of the bacteria were adjusted to 1010–1012 CFU

equivalents per ml and then frozen in 20% glycerol in

aliquots before use in cell culture experiments. E. coli

strain O111.B4, S. aureus strain H380, S. pneumoniae and

P. aeruginosa were used throughout. Bacterial LPS from the

E. coli strain O111.B4 was purchased from Sigma (Dorset, UK).

Cell culture. J774.2A murine macrophages were purchased

from the European Cell Collection (Sailsbury, Wiltshire, UK).

Primary cultures of murine macrophages derived from bone

marrow were isolated from femurs and differentiated as

described previously (Paul-Clark et al., 2006). Cells were

cultured in Dulbecco’s modified Eagle’s medium containing

1 mM sodium pyruvate and phenol red, supplemented with

penicillin (100 U ml�1), streptomycin (1 mg ml�1), L-gluta-

mine (2 mM), amphotericin B (2.5 mg ml�1), a mixture of

non-essential amino acids and 10% fetal calf serum. Cells

were maintained in a humidified incubator at 37 1C, 5% CO2

and 95% air.

Cells were plated on 96-well plates at a density of

5�105 ml�1 (1�105 cells per well). After plating, the cells

were grown to confluence. Medium was then replaced and

cells treated appropriately.

Preparation of smoke solutions. All cigarettes used in this

study were Marlboro Red cigarettes (Tar 11 mg, nicotine

0.8 mg, carbon monoxide 11 mg; Philip Morris International-

Ausanne, Switzerland). Cigarette smoke extracts (CSEs) were

made as described previously, using the smoke from four

cigarettes in 100 ml (Walters et al., 2005) of serum-free

culture medium. The prepared CSE solution was filtered

through a 2mm microfilter and used immediately due to its

labile nature (Walters et al., 2005). This solution was

described as ‘100%’ and standardized by measuring nitrite

concentration, as we have described previously (Walters

et al., 2005). In other studies using CSE, the ‘strength’ of

preparation is often assessed by measuring absorbance of

solutions at 320 nm (Mio et al., 1997; Yang et al., 2006). In

the current study, we have included data that show how the

strength of our CSE preparations compares with others. We

have also included data to show the oxidant potential of our

smoke solutions by measuring its ability to convert dihy-

drorhodamine-123 to rhodamine-123 (Figure 8) (see also

below for details of how this assay was used to assess oxidant

changes within cells).

Measurements made

Measurement of NO production. NO production by cells was

measured by the accumulation of its oxidation product,

nitrite using the Griess reaction, as we have described

previously (Paul-Clark et al., 2006). Briefly, 100ml of cell-free

supernatant was mixed with equal proportions of Griess

reagent (sulphanilamide 0.5%, orthophosphoric acid 2.5 and

0.05% N-(1-naphthyl) ethylenediamine). Nitrite levels were

measured at 550 nm and results were expressed as micro-

molar concentrations.

Determination of cell viability. The effect of treatments on

cell viability was indexed by measuring respiration, as we

have shown previously (Paul-Clark et al., 2006). Respiration

was assessed by measuring the mitochondrial-dependent

reduction of MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphe-

nyltetrazolium bromide) (Sigma, Poole, UK) to its formazan

dye. This was performed following all treatments. Unless

otherwise stated, none of the treatments affected MTT

conversion by cells.

ELISA for TNFa. TNFa levels in cell-free supernatant were

determined by ELISA using commercially available matched

antibody pairs following a protocol furnished by the

manufacturer (R&D Systems, Abingdon, UK). TNFa concen-

trations were measured at 450 nm with a reference filter at

550 nm and results expressed as ng ml�1.

Western blot analysis. NOSII was measured in cells by

western blotting, as we have described previously (Paul-

Clark et al., 2006). In brief, cells were plated into six-well

culture plates and treated with LPS with or without CSE for

24 h. The medium was removed and cells were washed twice

with ice-cold PBS. Cells were lysed using HEPES (10 mM)

containing MgCl2 (3 mM), KCl (40 mM), glycerol (5%),

Nonidet P-40 (0.3%) and phenylmethanesulphonyl fluoride

(1 mM). Protein concentration in whole-cell preparations was

measured using the Bradford assay. Samples were separated

by gel electrophoresis on 7.5% sodium dodecyl sulphate-

polyacrylamide gels; after transfer onto nitrocellulose mem-

branes, NOSII was detected using a specific polyclonal rabbit

antibody (1:1000; Santa Cruz Biotechnology, Santa Cruz, CA,
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USA) and the signal was amplified with goat anti-rabbit

IgG-horseradish peroxidase (1:1000; Dako, Cambridgeshire,

UK). Blots were visualized onto film using electrochemilu-

minescence reagents (Amersham Biotechnology, Oxford,

UK). After the blots were stripped using Restore Western

Blot Stripping Buffer (Pierce Biotechnology Inc., Rockford,

IL, USA) and probed with b-actin (1:2000) that was used to

confirm equal protein loading between lanes.

Measurement of oxidant stress. Oxidant stress in cells was

measured by the conversion of dihydrorhodamine-123 to

rhodamine-123, its oxidation product. Briefly, 100 ml of

0.5 mM dihydrorhodamine-123 in culture media was added

to cells and incubated in a cell culture incubator for 30 min.

The media were replaced and the stimulus (H2O2 (1 mM) or

CSE) was added in fresh media for 10 min. Fluorescence was

then measured in a plate reader (BioTek Instruments Inc.,

Winooski, Vermont, USA, Synergy HT) at 428 nm excitation

and 535 nm absorbance. Concentrations of rhodamine-123

generated in cells were calculated using a standard curve of

authentic rhodamine-123 (0.0131–4 mM).

Experimental design

Treating cells. Cells were treated with bacteria or LPS for 24 h

before medium was removed for the measurement of NO or

TNFa. In some experiments, cells were pretreated with CSE

20 min before the addition of bacteria or LPS. In other

experiments, cells were pretreated for 30 min with N-acetylcys-

teine (0.01–1mM), glutathione (0.01–1mM) or a-bungarotoxin

(1–100 U ml�1) before the addition of CSE and/or LPS. In

separate experiments, cells were treated with ACh (1–100mM),

nicotine (0.1–10mM) or a-bungarotoxin (1–100 Uml�1) alone

or before the addition of CSE with or without LPS. Super-

natants were either used immediately for nitrite determination

or stored at �80 1C for the measurement of TNFa levels.

Data analysis and statistical procedures

All data are the mean±s.e.mean from at least three

experiments. Details of the numbers of assays and statistical

tests performed are contained in the relevant figure legends.

Drugs, chemicals reagents and other materials

All drugs were obtained from Sigma Chemical Company

(Poole, Dorset, UK), unless otherwise stated.

Results

Effects of Gram-negative bacteria on NOS and TNFa induction

Under control culture conditions, murine macrophages

released low or undetectable levels of nitrite and TNFa.
However, two species of Gram-negative bacteria, E. coli or

P. aeruginosa, stimulated the cells to release NO, resulting in

elevated levels of nitrite or TNFa in a concentration-

dependent manner (Figure 1). In our hands, the effects of

whole Gram-negative P. aeruginosa, at the highest concentra-

tions tested, caused a small, but significant reduction in cell

viability (data not shown).

Effects of Gram-positive bacteria on NOS and TNFa induction

In contrast to the results obtained using Gram-negative

bacteria, Gram-positive S. aureus or S. pneumoniae did not

induce statistically significant (one-way ANOVA P40.05)

increases in nitrite levels. However, both Gram-positive

pathogens induced TNFa release from the cells with an

efficacy similar to that seen with Gram-negative pathogens

(Table 1). At the highest concentration used, S. pneumoniae

(108 CFU ml�1) reduced cell viability (data not shown).
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Figure 1 Effect of Gram-negative P. aeruginosa and E. coli on nitrite
and TNFa formation by J774.2 macrophages. A range of concentra-
tions of P. aeruginosa or E. coli were added to the cells for 24 h and
(a) nitrite and (b) TNFa levels were measured. The data are the
mean±s.e.mean; n¼12.

Table 1 Effect of Gram-negative and Gram-positive bacteria on NO
(nitrite) and TNFa levels in J774.2 macrophages

Bacteria NO eMax
(mM)

TNFa eMax
(ng ml�1)

Control ND ND
Escherichia coli Gram �ve 18.9±2.4 4.3±1.3
Pseudomonas aeruginosa Gram �ve 25.9±0.3 4.2±0.5
Staphylococcus aureus Gram þ ve 4.7±1.6 5.7±1.2
Streptococcus pneumoniae Gram þ ve 4.7±0.5 3.5±1.4

ND, not detectable; NO, nitric oxide; TNFa, tumour necrosis factor.

Mean eMax (maximum possible effect) values with s.e.mean for NO and TNFa
release following stimulation with Gram-negative bacteria (E. coli and

P. aeruginosa) or Gram-positive bacteria (S. aureus and S. pneumoniae) by

J774.2 macrophages (n¼12), below limits of assay; for NO¼ 1 mM; for

TNFa¼15.6 pg ml�1.
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Effects of CSE on NO release induced by LPS or bacteria

The increased level of nitrite induced by Gram-negative

E. coli was inhibited in a concentration-dependent manner

by CSE, with complete abolition achieved with a 5% dilution

of the CSE (Figure 2). CSE also inhibited nitrite formation by

cells treated with P. aeruginosa (Figure 2). Similarly, CSE

caused a concentration-dependent inhibition of nitrite

formation induced by LPS (1 mg ml�1) (Figure 2). The

inhibitory effect of CSE on nitrite formation was not due

to any direct effect on the degradation of NO to higher

oxides of nitrogen because it had no effect on nitrite

accumulated (via free NO) following incubation of sodium

nitroprusside (data not shown).

Effect of CSE on NOSII induction in macrophages

The increased levels of nitrite induced by either LPS or Gram-

negative bacteria was inhibited by the selective NOSII

inhibitor 1400W (10 mM; data not shown) and was associated

with increased expression of NOSII immunoreactivity

(Figure 3). The inhibitory effects of CSE on nitrite levels

were paralleled by a reduction in the expression of NOSII

protein (Figure 3).

Effects of CSE on TNFa release induced by Gram-negative or

Gram-positive bacteria

In contrast to the effects of CSE on increased nitrite levels

and NOSII induction, CSE had no significant effect on TNFa
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Figure 2 Effect of cigarette smoke extract (CSE) on nitrite formation induced by Gram-negative bacteria or LPS. (a) E. coli (108 CFU ml�1), (b)
P. aeruginosa (108 CFU ml�1) or (c) LPS (1mg ml�1) were added to J774 macrophages for 24 h in the presence or absence of CSE (1.25–5%).
The data are the mean±s.e.mean; n¼3–9 experiments. Analysis was carried out using one-way ANOVA followed by a Bonferroni post-test.
*Po0.05 vs stimulus alone.
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Figure 3 Effect of cigarette smoke extract (CSE) on NOSII protein
expression. (a) A typical western blot for NOSII expression in J774.2
macrophages stimulated with LPS (1 mg ml�1) for 24 h in the
presence or absence of CSE (5%). (b) Pooled data of the relative
absorbance from four separate western blots. The data are normal-
ized to the absorbance seen in cells treated with LPS (100%). The
data were analysed using a one-sample t-test for normalized data.
*Po0.05 vs LPS alone.
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release from macrophages activated by either E. coli or

S. aureus (Figure 4). However, when LPS was used to activate

cells, CSE significantly reduced TNFa release (LPS alone

4465±1348 pg ml�1, with 5% CSE 769±309 ng ml�1; n¼6).

Role of nicotine in CSE-induced inhibition of NOSII induction by

LPS in macrophages

LPS-induced nitrite release was unaffected by adding the

muscarinic/nicotinic agonist ACh (1 mM), the nicotinic

selective ligand nicotine (10 nM) or the selective nicotinic

antagonist a-bungarotoxin (100 U ml�1) to the incubations

(Figure 5). Furthermore, the inhibitory effects of CSE on LPS-

induced nitrite release were unaffected by a-bungarotoxin

(Figure 5). As seen with the macrophage cell line (Figure 2),

CSE inhibited LPS (1mg ml�1) induced increases in nitrite

from primary cultures of murine bone marrow-derived

macrophages (LPS, 23±0.2mM: plus 5% CSE below limit of

detection 41mM). Moreover, as was the case with J774

macrophages, nicotine (10 nM) had no effect on LPS-induced

nitrite release by primary cultures of murine bone marrow-

derived macrophages (LPS, 80±1mM: LPS plus nicotine,

78±0.9mM; n¼3).

Role of oxidant stress in CSE-induced inhibition of nitrite release

by J774 macrophages

Exposure of cells to CSE caused a detectable oxidant stress

measured by the formation of free rhodamine-123 (Figure 6).

Pretreatment of cells with the antioxidant N-acetylcysteine

(0.01–1 mM) resulted in a concentration-dependent reversal

of the inhibitory effect of CSE (2.5%) on increased levels of

nitrite from cells activated by LPS (Figure 6). In separate

experiments, another antioxidant glutathione (1 mM) partly

reversed the inhibitory effect of CSE (2.5%) on LPS-induced

NO release (control, below 1 mM; plus LPS, 7±1.6 mM; LPS

plus CSE, 1.6±0.3mM; LPSþCSEþ glutathione, 4.2±1.2mM,

n¼6). Another oxidant, H2O2, also caused a detectable

oxidant stress in cells and reduced LPS-induced increases in

nitrite levels. Furthermore, as was the case for CSE, the

inhibitory effects of H2O2 were prevented when cells were

treated with N-acetylcysteine (Figure 7).
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Figure 4 Effect of cigarette smoke extract (CSE) on TNFa release
from cells stimulated with (a) E. coli or (b) S. aureus. Bacteria
(108 CFU ml�1) in the presence or absence of CSE (0.16–5%) were
added to cells for 24 h. The data are the mean±s.e.mean; n¼5–9
experiments. Analysis was carried out using one-way ANOVA
followed by a Bonferroni post-test.
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Figure 5 Effects of nicotine-related drugs on LPS (1mg ml�1) and
cigarette smoke extract (CSE) induced responses in macrophages.
(a) Cells were treated with LPS in the presence or absence of nicotine
(Nic; 10 nM), ACh (Ach; 100 mM) or a-bungarotoxin (Bung;
100 U ml�1) for 24 h and NO formation was measured by the levels
of nitrite in culture medium. (b) Cells were treated with LPS
(1mg ml�1) and CSE (2.5%) in the presence and absence of
a-bungarotoxin (Bung, 0.01–10 U ml�1) for 24 h. Data are the
means±s.e.mean; n¼3–12 experiments. Analysis was carried out
using one-way ANOVA followed by a Bonferroni post-test.
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Discussion

Smoking cigarettes reduces immunity and is associated with

increased risk of bacterial infection (Bartal, 2001; Laan et al.,

2004; Sloan et al., 2004). In the current study, we have

shown, for the first time, that CSE directly inhibits the ability

of macrophages to sense whole Gram-negative bacteria at

the level of NOSII induction, which is an important

antibacterial mechanism (Stuehr et al., 1991). The inhibitory

effect of CSE on whole bacterial sensing was selective because

TNFa release was not reduced. The inhibitory effects of CSE

were attributed to oxidants, and not to nicotine, also present

in the smoke (Figure 8).

In line with previous studies within our group, the Gram-

negative bacteria E. coli and P. aeruginosa caused the co-

release of NO (through NOSII) and TNFa from murine

macrophages (Paul-Clark et al., 2006). In accordance with

what has been previously shown, stimulation of cells with

Gram-positive bacterium S. aureus caused the induction of

TNFa alone at this time point. In the current study, we show

that a second Gram-positive bacterium S. pneumoniae, like

S. aureus, induced the release of TNFa without the release

of NO. Gram-negative bacteria, via LPS, activate Toll-like

receptor (TLR)4 receptors (Vogel et al., 2003). Gram-positive

bacteria, via lipoteichoic acid, activate TLR2 receptors (Vogel

et al., 2003). TLR2 and TLR4 activation results in recruitment

of MyD88 and MAL adapter proteins. TLR4 also recruits Toll/

IL-1 receptor domain containing adaptor inducing IFNb
(TRIF) and TRIF-related adaptor molecule (TRAM) adapter

proteins (Vogel et al., 2003). TNFa is induced via the MyD88

pathway, whereas NOSII is induced via the MyD88-indepen-

dent pathway (via TRIF/TRAM). Our findings, that Gram-

negative bacteria induce the release of both NO and TNFa,
whereas Gram-positive bacteria induce TNFa only, are

therefore consistent with what is known about TLR signal-

ling and the expression of these mediators.

In the present study, CSE inhibited the induction of NO

release from murine macrophages following stimulation

with Gram-negative bacteria. These observations are con-

sistent with what is known about the effects of CSE on NOSII

activity and induction in vitro and in vivo (Mazzio et al., 2005;

Vlahos et al., 2006). However, ours is the first study to show a
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Figure 6 Role of oxidant stress in the effects of cigarette smoke
extract (CSE) on NOSII activity in J774 macrophages. (a) Macro-
phages were treated with CSE for 10 min before extraction and
measurement of rhodamine-123. Data are the mean±s.e.mean;
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statistical differences are measured using one-sample t-test for
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analysed by one-way ANOVA followed by a Bonferroni post-test.
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Figure 7 Effect of oxidant stress and antioxidants on LPS-induced
NO release (measured as nitrite) by J774.2 macrophages. (a)
Rhodamine-123 was measured as in Figure 6 under basal conditions
and after 10 min stimulation with H2O2 (1 mM). Data are normalized
to control levels and statistical differences are measured using one-
sample t-test for normalized data. (b) J774.2 macrophages were
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ments. Data were analysed by two-way ANOVA. *Po0.05 between
LPS alone and LPSþNAC.
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similar inhibitory effect of CSE on NOSII activity induced by

whole bacteria and to provide a mechanism by which it acts.

CSE has also been shown to inhibit the expression of other

proinflammatory proteins, including interleukin-1b, inter-

leukin-2, interferon-g and TNFa, induced by anti-CD3

monoclonal antibody or phorbol-12-myristate-13-acetate in

human monocytic cells (Ouyang et al., 2000), eotaxin or

RANTES (regulated upon activation, normal T-cell expressed

and secreted) in human airway smooth muscle cells

stimulated with cytokines (Stanford et al., 2005) and

granulocyte macrophage colony stimulation factor, and

CXCL8 in human bronchial epithelial cells stimulated with

LPS (Laan et al., 2004). Some of these proteins are important

in innate immunity and inhibition of their expression by

CSE affects normal immune functioning and may help to

explain why smokers are more susceptible to infections

(Alam et al., 2002).

By contrast, the expression of some proteins appear to be

unaffected or induced (Walters et al., 2005) by CSE. In the

current study, we show that in the same experiments where

NOSII induction was inhibited, the release of TNFa was

unaffected by CSE. The reasons why CSE regulates proteins

differently in different experimental settings are not clear.

However, as NOSII and TNFa are on separate TLR adapter

protein pathways (Vogel et al., 2003), it is possible that, in

our study, CSE is having an effect on the downstream TLR

signalling cascade. Indeed, preliminary data from our group

(Paul-Clark et al., 2005) and from others (Droemann et al.,

2005; Vlahos et al., 2006) suggest that CSE may interact with

TLR signalling. Interestingly, although CSE did not inhibit

TNFa release induced by whole bacteria, it did affect the

release induced by LPS. Whole bacteria will contain a range

of pathogen associated molecular patterns (PAMPs), some of

which interact with each other at the level of gene induction

(Mitchell et al., 2007). It may well be that the effect of CSE,

and other oxidants, on protein expression may not only be

dictated by the specific gene, but also by the signal-

transduction pathway leading to its expression.

How then does CSE inhibit the ability of bacteria or LPS to

induce NOSII in macrophages? CSE contains a number of

biologically active components, including nicotine, which

may influence bacterial signalling in cells (Borovikova et al.,

2000). These authors showed that nicotine inhibited LPS-

induced activation of macrophage in vitro and LPS-induced

‘shock’ in vivo via an action on nicotinic receptors. The

inhibitory effects of nicotine on LPS-induced responses in

these models were shown to be mediated by the a7 nicotinic

receptor subtype. In the current study, we found no effect of

ACh (which activates muscarinic and nicotinic receptors) or

nicotine (which activates nicotinic receptors) on NOSII

activity in murine macrophages. Furthermore, the inhibitory

effect of CSE on LPS-induced NOSII activity was unaffected

by a-bungarotoxin, which is a selective nicotinic receptor

antagonist, including those of the a7 nicotinic receptor

subtype (Alexander et al., 2005). These results suggest that, in

our hands, and for the NOSII pathway, nicotine does not

inhibit the sensing of LPS by macrophages and is not the

active inhibitory component of CSE.

CSE has previously been shown to represent a powerful

oxidant stress to cells (Walters et al., 2005). Oxidants have
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been shown to inhibit both the stability of NO (Moncada

et al., 1986) and the induction of NOSII (Cho et al., 2005). To

investigate the role of CSE-induced oxidant stress in its

inhibitory actions on NOSII in macrophages, we pretreated

cells with two well-described antioxidants, N-acetylcysteine

and glutathione. Interestingly, both N-acetylcysteine and

glutathione reversed the inhibition of NO release by CSE.

Furthermore, the effects of CSE were mimicked by H2O2,

which is a powerful oxidant. These observations suggest that

the presence of oxidants in CSE is responsible for its

inhibitory effect on NOSII in murine macrophages following

bacterial stimulation. The precise mechanism by which

oxidant stress downregulates NOSII induction is unclear at

this time, but remains the subject of investigation. Further-

more, it is important to remember when considering the

effects of CSE on different genes and in different cell types

that in cells that produce high levels of NO (such as murine

macrophages), CSE may have increased oxidant potential

because radicals such as superoxide may combine with NO to

make more powerful oxidizing species such as peroxynitrite.

In summary, we have shown that CSE can inhibit the

ability of macrophages to sense and respond to Gram-

negative bacteria. In our model, this inhibition is shown as a

profound reduction in the ability of cells to release NO and

express NOSII appropriately. However, TNFa release by

bacteria was not dramatically affected by the CSE, suggesting

that its effects are selective and may be mediated at the level

of TLR adapter proteins. The effects of CSE appeared to be

mediated by oxidant stress and not nicotine. These observa-

tions provide new insights into the mechanisms of bacteria

sensing and disease.
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