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Regional differences in nitrergic innervation of the
smooth muscle of murine lower oesophageal
sphincter
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Background and purpose: Anatomical and pharmacological studies have demonstrated that the lower oesophageal sphincter
(LES) is not a simple homogenous circular muscle with uniform innervation. Regional differences have been demonstrated in
several species including humans. We investigated, for the first time in mice LES, regionally distinct physiological and
pharmacological characteristics of the neuromusculature.
Experimental approach: Conventional intracellular recordings and pharmacological techniques were employed to evaluate
electrical properties and functional innervation of smooth muscle cells. Results from CD1 (control), nNOS(�/�) and eNOS(�/�)

genetic knockout mice were compared.
Key results: Smooth muscle of sling and clasp LES displayed unitary membrane potentials of 1– 4 mV. Transmural nerve
stimulation produced a monophasic inhibitory junction potential (IJP) in the sling, whereas in the clasp a biphasic IJP,
consisting of a brief IJP followed by a long-lasting slow IJP (lsIJP), was induced. Pharmacological interventions and genetically
modified mice were used to demonstrate a monophasic apamin-sensitive (purinergic) component in both LES regions.
However, the nitrergic IJP was monophasic in the sling and biphasic in the clasp. Unitary membrane potentials and IJPs were
not different in CD1 and eNOS(�/�) mice, suggesting no involvement of myogenic NOS.
Conclusion and implications: These data in mouse LES indicate that there are previously unreported regional differences in
the IJP and that both the apamin-resistant monophasic and biphasic IJPs are mediated primarily by nitrergic innervation.
British Journal of Pharmacology (2008) 153, 517–527; doi:10.1038/sj.bjp.0707573; published online 26 November 2007

Keywords: ATP; niflumic acid; neuronal nitric oxide synthase; circular smooth muscle; long-lasting slow IJP

Abbreviations: ClCa, calcium-activated chloride channels; CSM, circular smooth muscle; eNOS, endothelial NOS; LES, lower
oesophageal sphincter; lsIJP, long-lasting slow IJP; L-NAME, N-nitro-L-arginine methyl ester; NFA, niflumic acid;
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Introduction

The lower oesophageal sphincter (LOS) comprises specialized

circular smooth muscle (CSM) that maintains myogenic tone

at rest, thereby providing an antireflux pressure barrier at

the gastroesophageal junction (Goyal and Paterson, 1989).

The CSM of the LES is not simply a symmetrical ring. Rather,

in most species it is composed of semicircular ‘clasp’ muscle

fibres on the right side, and obliquely oriented or ‘sling’

muscle fibres on the left side (Liebermann-Meffert et al.,

1979; Preiksaitis et al., 1994; Brookes et al., 1996; Yuan et al.,

1998). Both fibres intermingle anteriorly and posteriorly.

Recent investigations have not only shown functional

differences, but also different distributions of motor neurons

in the clasp and sling muscle fibres (Brookes et al., 1996;

Diamant, 2005). The clasp fibres show greater basal tone

than the sling fibres, but the latter are more sensitive to

cholinergic stimulation and less responsive to nitrergic

stimulation (Preiksaitis et al., 1994; Preiksaitis and Diamant,

1997; L’Heureux et al., 2006). These fibres also demonstrate

differing responses to other pharmacological agents, altered

expression of soluble N-ethylmaleimide-sensitive fusion

attachment protein receptor (SNARE) proteins, L-type Ca2þ

channels and Kþ channels and diverse Ca2þ sources (Ji et al.,

2000, 2002; Tian et al., 2004; Muinuddin et al., 2004a, b).

Retrograde labelling and immunohistochemical studies

have demonstrated a different distribution of motor neuron

somata in guinea-pig LOS (Brookes et al., 1996). Clasp fibres
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receive nearly five times more motor neurons than sling

fibres. Moreover, 33% of the neurons in the clasp stain

positively for choline acetyl transferase, whereas 70% stain

positively for NOS (Brookes et al., 1996). In contrast, the

sling fibres are innervated predominantly by choline acetyl

transferase-positive neurons (B80%), with only 15%

staining positively for NOS. (Yuan and Brookes, 1999).

Together with the functional studies mentioned above, these

findings strongly suggest that the inhibitory innervation

predominates in the clasp, whereas excitatory innervation

prevails in the sling.

Inhibitory neurotransmission plays a major role in regula-

tion of LOS basal tone and in swallow-induced LOS

relaxation (Goyal and Paterson, 1989). To date, relatively

little is known about regional differences in inhibitory

innervation to the LOS. Furthermore, although mice are

increasingly used to study the physiology of gut motility

because of the availability of gene knockout models,

relatively little is known about the physiology of the LOS

in this species. The goal of the current study was to use

conventional intracellular recording methods to characterize

the resting electrical properties and the inhibitory neuro-

transmission in clasp and sling muscle fibres from mouse

LOS. The present data reveal previously unreported regional

difference in nitrergic inhibitory junction potentials (IJP) in

the CSM of the mouse LES.

Methods

Tissue preparation and conventional intracellular recordings

The protocol was approved by the Animal Care Committee

of Queen’s University. Adult mice (CD1, Charles River

Laboratories, Montréal, Canada), neuronal NOS (nNOS)(�/�)

knockout mice (B6.129S4-Nos1tm1Plh) (Jackson Laboratory,

Bar Harbor, ME, USA) and endothelial NOS (eNOS)(�/�)

knockout mice (B6.129P2-Nos2tm1Lau) (created and main-

tained at Harvard University) (Huang et al., 1995) of either of

sex were killed by cervical dislocation after isoflurane

anaesthesia. The abdominal cavity was then exposed via a

mid-line incision. The stomach and part of attached

oesophagus were dissected (Figure 1a). The LOS was then

separated using a dissecting microscope. Similar to other

species, the mouse LOS is not a simple concentric ring.

Rather, the LOS clasp muscle (right) is distinctly thickened,

but the LOS sling muscle (left) more resembles gastric muscle

(Figure 1b). Strips (0.5–1�2–2.5 mm) of right and left LOS

were pinned with mucosa side facing upward on the bottom

of a recording chamber covered by Sylgard (Dow Corning)

and perfused at 2 ml min�1 with pre-oxygenated Krebs’

solution containing guanethidine (3 mM) and substance P

(1 mM) at 361C (Zhang and Paterson, 2001, 2005). Substance

P was added to the bath to induce tachyphylaxis and thereby

ensured that any neurokinin-mediated excitatory potentials

were eliminated (Krysiak and Preiksaitis, 2001). The Krebs’

solution consisted of (in mM) NaCl 118.07, NaHCO3 25.00,

D(þ )-glucose 11.10, KCl 4.69, CaCI2 2.52, MgSO4 1.00,

NaH2PO4 1.01. Nerve stimulation using either 1- or 4-square

wave pulses (20 Hz) with a duration of 0.3 ms and voltage of

70 V was delivered to the muscle preparations by a pair of

silver wires, while electrical activity was recorded using

conventional intracellular electrodes as previously described

(Zhang and Lang, 1994; Zhang and Paterson, 2002).

Previously defined electrical parameters were used to analyse

quantitatively the electrical properties of the smooth muscle

(Zhang and Paterson, 2002, 2003).

Statistical analysis

Data are shown as mean±s.e.mean, refer to number of

animals. Only recordings in which a full protocol was

completed in the same cell are included in the statistical

analysis. Pre- and post-drug comparisons were made using

the paired Student’s t-test and a P-value o0.05 was

considered statistically significant.

Drugs

All drugs were purchased from Sigma, except isoflurane

(Baxter, Canada). The following drugs were used: nifedipine,

Figure 1 Gross anatomy of mouse LES. (a) Stomach with attached
oesophagus and duodenum. Arrows indicate location of right (clasp)
and left (sling) LOS. (b) Oesophagus and stomach corpus were cut
sagittally along the anterior wall as depicted by dotted line in (a).
LOS muscle coat was pinned with serosal side facing downward after
removal of mucosa. Black arrows point to LOS sling muscle and the
distinctly thickened LES clasp muscle. The former resembles gastric
sling muscle. LOS, lower oesophageal sphincter.
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atropine, guanethidine, apamin, substance P, NG-nitro-L-

arginine methyl ester (L-NAME) NFA in DMSO and niflumic

acid (NFA). Nifedipine was dissolved in alcohol, and others in

distilled and de-ionized water. These were diluted to final

concentrations with Krebs’ solution. Final concentration of

DMSO in Krebs’ solution was not more than 1%, which

did not produce any effect on the electrical activity of the tissue.

Results

General electrical properties of right (clasp) and left (sling) LOS

All of the conventional intracellular recordings were con-

ducted in the presence of guanethidine (3 mM) and substance

P (1 mM). Our earlier preliminary experiments suggested that

there were no significant differences in electrical properties

and neural responses among CD1 and true background wild

types of nNOS(�/�) (B6x129SF2/J F1 strain) and eNOS(�/�)

mice (C57BL/6J strain). Therefore, CD1 mice were used as

controls for nNOS(�/�) and eNOS(�/�) strains in the current

studies. LOS clasp muscle displayed on-going spontaneous

action potentials with variable amplitudes of up to 10 mV.

The spontaneous action potentials were usually super-

imposed on the upward deflections of membrane potential

fluctuations. This is consistent with our previous observa-

tions in opossum (Zhang et al., 2000). Bath application of

nifedipine (1mM) abolished the spontaneous action poten-

tials, but did not affect the underlying membrane potential

fluctuations of 1–4 mV, which appear similar to the ‘unitary

potentials’ recorded in guinea-pig gastric smooth muscle

(Edwards et al., 1999; Beckett et al., 2004) and CSM of

opossum LOS (Zhang and Paterson, 2002, 2003). IJPs

induced by four pulses (0.3 ms duration) at frequency of

20 Hz were not affected by nifedipine. Spontaneous action

potentials were not observed consistently in LES sling

muscle. To prevent frequent dislodgement of intracellular

microelectrodes, nifedipine (1 mM) was routinely included in

the bath perfusion solution in the remaining experiments.

No significant difference was observed in the resting

membrane potential (RMP) between the clasp and sling

fibres (Table 1). Nerve stimulation with parameters of one

and four pulses (0.3 ms duration) at frequency of 10, 20 and

40 Hz was tested initially. Four pulses at frequency of 20 Hz

evoked an IJP of maximal amplitude in both clasp and sling

fibres (Figure 2) and these stimulus parameters were used

in subsequent experiments. Nerve stimulation produced

biphasic IJPs in clasp muscle, a brief IJP, followed by a

long-lasting slow IJP (lsIJP). In sling muscle, nerve stimula-

tion evoked a monophasic IJP.

Isolation of different IJP components

The following experiments were designed to isolate the

different neural components of the evoked IJP, with results

summarized in Table 1. In the clasp muscle, atropine (3 mM)

increased the amplitude of the biphasic IJP and widened the

half-amplitude duration of the lsIJP over control (Figure 3a).

In the sling muscle, atropine potentiated the amplitude of

the monophasic IJP over control (Figure 3b). The IJP induced

by ATP is known to be due to the opening of small T
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conductance caþþ -activated Kþchannels (SK) channels,

which are specifically apamin-sensitive. Thus, apamin was

used to identify the purinergic component of the evoked

IJPs. Apamin’s onset of action was rapid, reaching a

maximum value in 5–10 min (Figure 4), but was not reversed

even 60 min after wash out. In the presence of atropine

(3mM), apamin (300 nM, 10 min) depolarized RMP in the

clasp and in the sling muscle, and markedly inhibited the

amplitude of the first phase of the biphasic IJP in clasp

muscle and monophasic IJP in sling muscle (Table 1).

Figure 2 Smooth muscle responses to transmural nerve stimulation of different intensity. Original recordings of IJPs induced by 1 or 4 pulses
(p) of 0.3 ms duration, at frequency of 10, 20 and 40 Hz in LOS clasp (A) and sling muscle (B). (C and D) IJPs depicted in (A and B),
respectively, at expanded time scale. Four pulses at 20 Hz appeared to evoke a maximal IJP. Resting membrane potential was B �43 mV with
membrane fluctuations of 1–5 mV, and was no different in clasp vs sling muscles. Nerve stimulation using 4 square wave pulses (20 Hz) to CSM
of sling muscle (D) induced a monophasic IJP. However, nerve stimulation to CSM of clasp muscle (C) evoked a biphasic IJP consisting of an
initial IJP, followed by a long-lasting slow IJP. These distinct regional differences in mouse LES IJPs have not previously been reported. CSM,
circular smooth muscle; IJP, inhibitory junction potential; LOS, lower oesophageal sphincter.

Figure 3 Effect of atropine (3mM) on IJPs. (A and B) Original recordings of IJPs induced by 4 pulses of nerve stimulation (0.3 ms duration,
20 Hz) in clasp and sling muscle, respectively. (a) Represents control tracing, (b) following administration of atropine and (c) overlap of control
and post-atropine tracings. Atropine significantly increased the amplitudes of biphasic and monophasic IJPs, implying that cholinergic
neurotransmission is present in both sides of LES. IJP, inhibitory junction potential; LOS, lower oesophageal sphincter.
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In the presence of muscarinic and purinergic blockade,

nerve stimulation still evoked a biphasic IJP in clasp muscle

(Figure 5a) (n¼5) and a monophasic IJP in sling muscle

(Figure 5b; Table 1). L-NAME, an NOS inhibitor, was used

to identify a nitrergic component of the IJP. L-NAME had a

maximal effect in 10 min and in keeping with our previous

publication (Zhang and Paterson, 2002), its effect was not

reversible with washout. Application of L-NAME abolished

the lsIJP (Figure 5a) and significantly inhibited the ampli-

tude of the first phase of the apamin-resistant biphasic IJP

(clasp; Figure 5a) and monophasic IJP (sling; Figure 5b).

IJP in clasp muscle of nNOS(�/�) mouse

To confirm the presence of nitrergic inhibitory neurotrans-

mission in mouse LOS, similar experiments were performed

using clasp LOS muscle from nNOS(�/�) mice (Figure 6 and

Table 2.). In the presence of atropine, nerve stimulation

produced only a monophasic IJP with a lower amplitude and

shorter duration (Figure 6b; Table 2), which were markedly

different from the corresponding values in CD1 mice

(Figure 2c; Table 1). However, RMP (Table 2) and associated

unitary potentials were no different from control mice.

Administration of apamin (300 nM) significantly suppressed

the amplitude of the monophasic IJP (Figure 6b). Concomi-

tant application of L-NAME (200 mM) did not significantly

decrease the amplitude of the monophasic IJP (Figure 6b), in

keeping with a lack of nitrergic IJP in nNOS(�/�) mice.

Figure 4 Effect of apamin (300 nM) in the presence of atropine. (A and B) Time course of effects of apamin, a small conductance Kþ channel
blocker, on the clasp and sling muscle, respectively. (C(a) and (b) and D(a) and (b)) Snapshots of IJPs before and 10 min after apamin in clasp
and sling muscle, respectively. (C(c) and D(c)) Overlay of IJPs before and after apamin. Apamin depolarized resting membrane potential and
decreased the IJP amplitudes in both clasp and sling muscles. However, no significant effect was observed on the long-lasting phase of the
biphasic IJP in clasp muscle. IJP, inhibitory junction potential.

Figure 5 Characterization of apamin-resistant biphasic and mono-
phasic IJPs in LES clasp (A) and sling (B) muscles before (a) and
10 min after (b) application of L-NAME (200mM), an NOS inhibitor.
Experiments were performed in the presence of atropine, apamin,
guanethidine and substance P. (c) Superimposed IJPs before and
10 min after L-NAME. L-NAME inhibited IJP amplitude in sling muscle
by about 90%, while it decreased the amplitude of the initial phase
of the biphasic IJP by 60% and abolished the long-lasting slow IJP in
clasp muscle, suggesting that nitric oxide mediates the apamin-
resistant IJP and the biphasic IJP in both sides of the LOS. IJP,
inhibitory junction potential; LOS, lower oesophageal sphincter;
L-NAME, N-nitro-L-arginine methyl ester.
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IJP in LES clasp muscle of eNOS(�/�) mouse

It has been proposed that myogenic NOS is involved in

downstream neuronal VIP signalling and neuronal nitric

oxide (NO) amplification in gastrointestinal smooth muscle

(Murthy et al., 1993; Murthy and Makhlouf, 1994; Sanders,

1996; Makhlouf and Murthy, 1997; Goyal, 2000; Murthy,

2006). In addition, the unique two-component nitrergic IJP

noted in mouse clasp LES CSM raised the possibility that one

of the IJP components could involve myogenic NOS. This

was tested using eNOS(�/�) mice, which have been reported

to lack myogenic NOS in gut smooth muscle (Huang et al.,

1995). Nerve stimulation produced a biphasic IJP in clasp

LOS CSM of eNOS(�/�) mice that was no different from that

recorded in CD1 control mice (Figure 7; Table 3 vs Table 1).

Application of apamin (300 nM) depolarized RMP and

inhibited amplitude of IJPs, but did not affect the lsIJP

(Figure 7b). Subsequent application of L-NAME suppressed

the IJP amplitude and abolished the lsIJP (Figure 7b; Table 3).

These data do not support a role for eNOS in either

purinergic or nitrergic inhibitory neurotransmission in

mouse LOS.

Effects of NFA on nitrergic IJP

We previously reported that NFA, an antagonist of ClCa,

abolished the nitrergic IJP in opossum oesophagus and

guinea-pig ileum, while leaving the purinergic IJP in guinea-

pig ileum unaffected. However, such an effect has not been

investigated in other species, including mice. In the presence

of atropine and apamin, NFA (200 mM) hyperpolarized RMP,

abolished unitary potentials and inhibited the nitrergic

component of the biphasic IJP in the clasp and monophasic

IJP in the sling (Figure 8; statistical data summarized in

Table 1). The inhibitory effects of NFA on RMP, unitary

potentials and nitrergic IJPs reversed after wash out. Figure 9

summarizes the relative contributions of nitrergic and

purinergic neurotransmission in the mouse clasp and sling

on the basis of the current studies.

Discussion

In the current study, we have demonstrated previously

unreported electrophysiological differences in the clasp vs

Figure 6 Properties of the IJP recorded in clasp muscle of nNOS(�/�)

mouse in the presence of atropine, guanethidine and substance P.
(A) Recording of membrane potentials. (B) IJPs depicted in (A) at
expanded time scale. Only a monophasic IJP (B(a)) was recorded,
which was essentially abolished by apamin (300 nM, 10 min) (B(b)).
Further application of L-NAME (200mM, 10 min) did not have any
significant effect (B(c) and (d)). The finding of only an apamin-
sensitive IJP in nNOS(�/�) mice suggests that nitrergic innervation
mediates a component of the initial IJP and all of the long-lasting
slow IJP in clasp muscle. IJP, inhibitory junction potential; L-NAME,
N-nitro-L-arginine methyl ester.

Table 2 Pharmacological properties of IJPs in LOS clasp of nNOS
knockout mice

RMP (mV) IJP amplitude (mV) IJP duration (ms)

Control n¼4 �41.0±3.3 6.6±1.5 366±61
Apamin (300 nM) �38.4±3.0 2.4±0.5* 518±97
Apamin (300 nM)þ
L-NAME (200 mM)

�35.0±3.9 1.8±0.4 N/M

Abbreviations: LES, lower oesophageal sphincter; L-NAME, N-nitro-L-arginine

methyl ester; N/M, not measured or not measurable; RMP, resting membrane

potential.

*Po0.05 before and after drug application.

‘Control’ represents results obtained in the presence of atropine (3 mM),

guanethidine (3 mM) and substance P (1 mM).

Figure 7 Properties of the IJP recorded in clasp muscle of eNOS(�/�)

mouse in the presence of atropine, guanethidine and substance P.
(A) Raw recording of membrane potential. (B) IJPs depicted in (A)
at expanded time scale. Clasp muscle in eNOS(�/�) mouse had a
normal response to apamin (300 nM) and L-NAME (200mM). Unitary
membrane potentials and biphasic IJPs were not different in CD1 and
eNOS(�/�) mice, suggesting that myogenic eNOS is not involved in
the events in clasp muscle. IJP, inhibitory junction potential;
L-NAME, N-nitro-L-arginine methyl ester.
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sling muscle of the mouse LOS. In the clasp muscle, nerve

stimulation produced a biphasic IJP, consisting of a relatively

brief initial hyperpolarization followed by an unusual long-

lasting hyperpolarization, whereas in the sling muscle, only

a monophasic IJP was observed. Using pharmacological anta-

gonists and genetically altered nNOS(�/�) and eNOS(�/�)

mice, we have also demonstrated that nitrergic innervation

was responsible for the entire long-lasting IJP, as well as a

component of the initial IJP. Consistent with our previous

reports in smooth muscle of opossum oesophagus (Zhang

et al., 1998; Zhang and Paterson, 2002, 2003) and guinea-pig

ileum (Zhang and Paterson, 2002), NFA hyperpolarized the

RMP and abolished unitary membrane potentials and the

nitrergic components of the biphasic and monophasic IJPs,

suggesting that the nitrergic IJP is due to the closing of ClCa

channels.

Maintenance of basal tone in opossum LOS is mainly

dependent on influx of extracellular Ca2þ via nifedipine-

sensitive (L-type) Ca2þ channels (Fox and Daniel, 1979;

Zhang et al., 2000). Furthermore, the RMP of LES muscle is

relatively more positive (B �41 mV) compared to the

adjacent oesophageal body (B �54 mV) (Daniel et al.,

1976; Jury et al., 1992; Conklin et al., 1993; Zhang et al.,

2000; Zhang and Paterson, 2003), which results in on-going

spike-like action potentials, due to continuous Ca2þ influx

through voltage-sensitive Ca2þ channels (Kubota et al.,

1998; Zhang et al., 2000). In the current study, we recorded

an RMP of B �43 mV, which is comparable to that recorded

in guinea-pig (Yuan et al., 1998; Yuan and Brookes, 1999) and

opossum LES (Daniel et al., 1976; Zhang et al., 2000). It is also

similar to that recorded in mouse LES by Imaeda and

Cunnane (2003), but quite different from that reported by

Table 3 Pharmacological properties of biphasic IJPs in LES clasp of eNOS knockout mice

RMP (mV) IJP amplitude (mV) IJP duration (ms) lsIJP amplitude (mV) lsIJP duration (ms)

Control n¼4 �43.7±0.90 20.3±3.50 953±750 5.9±2.1 9509±1232
Apamin (300 nM) �35.8±1.5* 14.5±2.3* 1593±392 6.0±2.1 11 283±1173
Change 7.9±1.4* 5.8±1.2* 639±467 0.1±0.7 1775±710
Apamin (300 nM)þ L-NAME (200 mM) �33.3±1.30 2.1±0.1* N/M N/M N/M
Change 2.5±1.50 12.4±2.4* N/M N/M N/M

Abbreviations: eNOS, endothelial NOS; IJP, monophasic IJP or initial phase of biphasic IJP; LOS, lower oesophageal sphincter; L-NAME, N-nitro-L-arginine methyl

ester; LSIJP, long-lasting slow IJP; N/M, not measured or not measurable; RMP, resting membrane potential.

*Po0.05.

‘Control’ represents results obtained in the presence of atropine (3mM), guanethidine (3mM) and substance P (1 mM).

Figure 8 Niflumic acid (NFA, 200 mM), a ClCa channel blocker, inhibited IJPs induced by nitrergic neurons in the presence of atropine and
apamin. (A and B) Continuous recording of membrane electrical activity in clasp and sling muscle for up to 25 min. (C(a–c) and D(a–c)) IJPs
before, 10 min after application of NFA and 10 min after wash out in clasp and sling muscles, respectively The effects of NFA were reversible.
NFA almost completely abolished membrane potential fluctuations and the apamin-resistant component in both the clasp and sling muscles.
The concentration of NFA used was previously found by us to maximally inhibit the nitrergic IJP in opossum LES. *Denotes artifacts resulting
from perfusion bubbles. IJP, inhibitory junction potential; LES, lower oesophageal sphincter.
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Ward et al. (1998) (RMP B �57 mV). The reason for the more

negative RMP in the latter study is unclear.

Inhibitory innervation to LES muscle is of critical im-

portance in swallow-induced LES relaxation (Goyal and

Paterson, 1989). In the current studies, the NOS inhibitor

L-NAME blocked the apamin-resistant biphasic and mono-

phasic IJPs, indicating that nitrergic innervation plays a

dominant role in the inhibitory innervation to the LES. This

conclusion is confirmed by recordings from the clasp LES of

nNOS(�/�) mouse, in which only apamin-sensitive mono-

phasic IJPs were recorded. Thus, the combined studies in

CD1 and nNOS(�/�) mice provide compelling evidence that

purinergic and nitrergic innervations are involved in the

monophasic IJP and the first phase of the biphasic IJP.

Moreover, the second, long-lasting phase of the biphasic IJP

appears to be exclusively mediated by nitrergic neurotrans-

mission. It should be noted that on close inspection of our

tracings, a subtle change in the rate of rise of the upstroke of

the initial component of the biphasic IJP in the LES clasp as

well as the monophasic IJP in the LES sling is apparent. This

is consistent with the initial phase being comprised of both

purinergic and nitrergic components. Indeed, this resembles

the classic combined fast and slow IJP recorded in guinea-pig

ileum (Crist and He, 1991; Bennett, 1997; Zhang and

Paterson, 2002), which are mediated by purinergic and

nitrergic innervations, respectively. In this tissue, however,

there is no long-lasting nitrergic IJP.

Interestingly, previous studies in the opossum, guinea-pig

and cat showed no evidence for an ATP-mediated fast IJP in

the smooth muscle of LES and adjacent oesophageal body

(Crist et al., 1991a; Yuan et al., 1998; Yuan and Brookes, 1999;

Zhang and Paterson, 2002, 2003; L’Heureux et al., 2006). On

the other hand, we found clear evidence of an apamin-

sensitive component to the IJP in mouse LES, similar to that

observed in mouse gastric fundus (Mashimo et al., 1996).

Although sensitivity to apamin does not necessarily equate

with purinergic neurotransmission, previous investigators

have shown that the apamin-sensitive component of the IJP

in mouse LES is also inhibited by purinergic antagonists

(Imaeda and Cunnane, 2003). Similar to the opossum model,

Figure 9 Summary of ionic mechanisms underlying monophasic and biphasic IJPs recorded in mouse clasp (A) and sling (B) muscles. (A(a)
and B(a)) Digitally recorded IJPs after cumulative application of apamin (300 nM) and L-NAME (200mM). (A(b) and B(b)) Purinergic
(monophasic) and nitrergic (biphasic) IJPs were obtained after digital subtraction of the original IJPs. The data suggest that the opening of SK
by ATP and the closing of Clca by NO are responsible for the monophasic IJP and initial component of the biphasic IJP, while closing of ClCa

channels by NO underlies the long-lasting slow IJP. Note the subtle change in the rate of the upstroke of the initial phase of the IJP (A(a)), in
keeping with it comprising both purinergic and nitrergic components. IJP, inhibitory junction potential; L-NAME, N-nitro-L-arginine methyl
ester; NO, nitric oxide.
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application of atropine increased the amplitudes of the

biphasic and monophasic IJPs, suggesting the presence of

intrinsic cholinergic innervation, which serves to dampen

the amplitude of the IJP when all nerves are activated

simultaneously.

Our observations demonstrate that inhibitory neurotrans-

mission predominates in both clasp and sling muscles of

mouse. This is different from tension-recording studies in

cat and human in which excitatory cholinergic innervation

to the LES sling is predominant (Preiksaitis et al., 1994;

Preiksaitis and Diamant, 1997; L’Heureux et al., 2006). The

biphasic IJPs in the clasp LES of mouse also differ from the

monophasic IJPs in the LES of guinea-pig and opossum, for

which nitrergic innervation is exclusively responsible (Yuan

et al., 1998; Yuan and Brookes, 1999; Zhang and Paterson,

2003). The functional consequences of these interspecies

differences remain to be determined. Our preliminary

muscle strip studies confirm the presence of both nitrergic

and purinergic components to LES relaxation. Unfortu-

nately, due to the very small size of this muscle, it has not

been technically possible to compare nerve-mediated me-

chanical responses between the clasp and sling components.

A decade ago, it was proposed that neuronal VIP acts as an

inhibitory neurotransmitter to gastrointestinal smooth mus-

cle by activating myogenic NOS, which then generates NO

within the muscle cells (Murthy et al., 1993; Murthy and

Makhlouf, 1994; Makhlouf and Murthy, 1997; Murthy,

2006). In addition, there are reports that interstitial cells of

Cajal amplify neuronal NO signalling by producing more NO

through activation of myogenic NOS. In those studies, eNOS

was reported as functioning as the myogenic NOS. Daniel

et al. (2001) subsequently reported that in some smooth

muscles, myogenic NOS may actually be a variant of nNOS.

Our studies do not support a role for myogenic NOS in

the nitrergic IJP. Not only was the nitrergic IJP absent in

nNOS(�/�) mice, but normal IJPs, indistinguishable from

those of wild-type mice, were observed in eNOS(�/�) mice.

The ionic mechanisms underlying the nitrergic IJP in

digestive smooth muscle have been debated for more than a

decade. Initially, it was proposed that this resulted from

opening of Kþ channels via a cGMP-mediated signal path-

way (Jury et al., 1985; Sanders and Ozaki, 1994). However,

the inability of specific Kþ channel blockers to abolish the

nitrergic IJP has called this hypothesis into question (Crist

et al., 1991a; Zhang and Paterson, 2002, 2003). Crist et al.

(1991a, b) first suggested that NO hyperpolarized intestinal

smooth muscle by closing ClCa channels, and several recent

publications have lent support to this mechanism (Zhang

and Paterson, 2002, 2003; Craven et al., 2004). We previously

demonstrated that ClCa channel blockers abolished both

unitary potentials and nitrergic IJP in opossum LES and

guinea-pig ileum, without affecting the fast purinergic IJP in

the latter tissue (Zhang and Paterson, 2002, 2003). In the

current studies, NFA also abolished the nitrergic component

of the IJP and markedly attenuated the unitary potentials.

Recently, Craven et al. (2004) have reported that NO blocked

spontaneous transient inward currents via a cGMP-depen-

dent pathway in isolated cells in rabbit corpus cavernosum

smooth muscle, providing further support for closure of ClCa

channels as the mechanism underlying the nitrergic IJP.

In contrast, Imaeda and Cunnane (2003) have reported

that glibenclamide, a blocker of KATP channels, partially

inhibited the nitrergic IJP in murine LES, suggesting that

activation of KATP channels by the NO-cGMP pathway plays

some role in the generation of the nitrergic IJP. However, the

degree of attenuation of the IJP by glibenclamide was quite

small in comparison to NFA and unitary potentials appeared

unaffected by glibenclamide.

Attributing the nitrergic IJP to closing of ClCa channels

implies that ClCa channels have basal activity in the resting

state. Recent publications have proposed that unitary

membrane potentials (Edwards et al., 1999) can be regarded

as a marker of ClCa channel activity (Zhang and Paterson,

2002, 2003). The basal activation of ClCa channels results

from spontaneous Ca2þ release from sarcoplasmic reticulum

(Hogg et al., 1994; Janssen and Sims, 1994; Large and Wang,

1996; Zhang and Paterson, 2003) and involves a complicated

signal cascade, the details of which remain unclear. We have

found that drugs interfering with sarcoplasmic reticulum

function (for example caffeine), myosin light-chain kinase

inhibitors or ClCa channel blockers hyperpolarize RMP and

abolish the unitary potentials and the nitrergic IJP in

opossum oesophageal smooth muscle (Zhang and Paterson,

2002, 2003) and mouse LES. This suggests that spontaneous

release of Ca2þ from sarcoplasmic reticulum activates ClCa

channel via Ca2þ -dependent activation of myosin light-

chain kinase, and that the nitrergic IJP results from the

closing of ClCa channels. Therefore, any intervention that

blocks the unitary potentials is theoretically expected to

inhibit nitrergic IJP as well. These results also suggest that

myosin light-chain kinase is an important cross-link between

ClCa channel activity and contractile protein regulation.

The mechanisms underlying the unusual long-lasting

component of the nitrergic IJP observed in the clasp muscle

are uncertain, but clearly this involves a more complicated

mechanism in the clasp compared to the sling muscles. NFA

blocks both the initial and long-lasting components of this

nitrergic IJP, suggesting that Clca channels are involved in

both phases of the IJP. Further physiological and anatomical

studies are required to determine whether the biphasic IJP

on the right side is due to pre- or post-synaptic factors,

differences in intracellular signalling pathways or possibly

regional differences in interstitial cells of Cajal, which are

believed to be involved in coupling neural signals to gastro-

intestinal smooth muscle (Ward and Sanders, 2001; Hirst and

Ward, 2003; Hirst and Edwards, 2004; Sanders et al., 2004;

Ward et al., 2004).
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