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ABSTRACT

Although chloroplast genomes are small, the tran-
scriptional machinery is very complex in plastids of
higher plants. Plastidial genes of higher plants are
transcribed by plastid-encoded (PEP) and nuclear-
encoded RNA polymerases (NEP). The nuclear
genome of Arabidopsis contains two candidate
genes for NEP, RpoTp and RpoTmp, both coding
for phage-type RNA polymerases. We have analyzed
the use of PEP and NEP promoters in transgenic
Arabidopsis lines with altered RpoTp activities and
in Arabidopsis RpoTp insertion mutants lacking
functional RpoTp. Low or lacking RpoTp activity
resulted in an albino phenotype of the seedlings,
which normalized later in development. Differences
in promoter usage between wild type and plants
with altered RpoTp activity were also most obvious
early in development. Nearly all NEP promoters
were used in plants with low or lacking RpoTp
activity, though certain promoters showed reduced
or even increased usage. The strong NEP promoter
of the essential ycf1 gene, however, was not used in
mutant seedlings lacking RpoTp activity. Our data
provide evidence for NEP being represented by two
phage-type RNA polymerases (RpoTp and RpoTmp)
that have overlapping as well as gene-specific
functions in the transcription of plastidial genes.

INTRODUCTION

Chloroplasts (plastids) are derived from free-living cya-
nobacteria that were engulfed as endosymbionts by a
eukaryotic host cell, the ancestor of algac and plants.
During chloroplast evolution, most genes of the ancestral
cyanobacterial genome have been lost or transferred into

the nucleus leaving a plastidial genome (plastome) that, in
case of higher plants, harbors only about 120 genes for
products that function primarily in photosynthesis and
gene expression (1). Chloroplast genes coding for compo-
nents of the plastid translation machinery are essential for
tobacco and Arabidopsis since lack of plastid protein
synthesis leads to embryo lethality (2—4). In striking
contrast, lack of the plastid encoded RNA polymerase
[PEP, the core subunits of which are coded for the plastid
rpoA, rpoB, rpoCI and C2 genes; (5,60)], although resulting
in an albino phenotype and impaired photosynthesis, still
allows for heterotrophic growth of tobacco plants (7,8).
The comparatively mild effects of the loss of PEP activity
are explained by the existence of a second, plastid-
localized, nuclear-encoded transcription activity (NEP,
nuclear-encoded plastid RNA polymerase) that supple-
ments PEP to fully transcribe the genes encoded in the
plastome (6,9). The plastid NEP transcription activity is
proposed to be represented by nuclear-encoded, phage-
type RNA polymerases (10-13). Genes encoding organel-
lar phage-type RNA polymerases have been found in
several higher plant genomes. Aside from mitochondrial
targeting (RpoTm), it was shown that a second RpoT
enzyme is targeted into plastids both in monocots and
dicots [RpoTp; (11,12,14-20)]. Moreover, a third RpoT
enzyme found exclusively in dicots (RpoTmp) has been
shown to be dually targeted both into mitochondria and
plastids of Arabidopsis and Nicotiana (14,18,21).
Promoters recognized by NEP have been characterized
by using plants lacking (7,22,23) or with diminished PEP
activity (24-30). Most NEP promoters have a core
sequence motif (YRTA; type-la), similar to promoters of
plant mitochondria (31-35). A subclass of NEP promoters
shares a GAA-box motif upstream of the YRTA-motif
[type-Ib; (36)]. Type-II NEP promoters, represented by
dicot c¢lpP promoters, lack these motifs and possess
crucial sequences located downstream of the transcription
initiation site (32,33,37). Furthermore, the existence
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of additional NEP promoters has been reported for the rrn
operon in spinach, mustard and Arabidopsis (Pc promo-
ter), and for the internal promoters of certain tRNAs (6).

The role of RpoTp and RpoTmp in transcription of
plastid genes is not understood yet. Recently, the so-called
SCABRA mutants lacking RpoTp activity have been
reported to show altered steady-state levels of the NEP-
transcribed genes rpoB, clpP and accD (38). Evidence for a
role of RpoTp in plastid transcription was provided by
overexpression of the RpoTp enzyme in transgenic
tobacco plants that revealed enhanced transcription
from certain type-I NEP promoters but not from the
type-11 PclpP-53 (the number indicates here and for all
other promoters the position of the transcription initiation
site with respect to the translation initiation site, + 1), an
indication of the involvement of RpoTp in transcription
from type-I NEP promoters (13). Recognition of a type-I
promoter by RpoTp was observed in in vitro transcription
assays (39). Although a role of RpoTmp in transcription
of Arabidopsis chloroplast genes has been questioned (40)
and this enzyme does not recognize NEP promoters
in vitro (39), several observations suggest a function of
RpoTmp as plastidial RNA polymerase. The analysis of
an AthRpoTmp homolog of spinach was detected in
chloroplasts rather than mitochondria (41). T-DNA
insertion mutant provided data, which corroborate a
function of RpoTmp in plastid rather than mitochondrial
transcription and suggest a role in early plant development
(42). Analysis of an rpoTp/rpoTmp double mutant
indicated that both RpoTmp and RpoTp might have
redundant functions in plant development (38). However,
no information is available yet about effects of the
mutations on transcription from NEP promoters, i.e. if
RpoTp and/or RpoTmp represent the nuclear-encoded
plastid RNA polymerase. Moreover, there is no indication
regarding why dicots have two plastid targeted phage-type
RNA polymerases and if they transcribe the same set of
plastid genes. Furthermore, the question remains, which
RNA polymerase is responsible for recognition and
transcription from ‘non-consensus-type’ NEP promoters.

To acquire information on their individual role in
plastid transcription, we have studied transgenic
Arabidopsis plants with lowered activity of RpoTp as
well as Arabidopsis SCABRA mutants lacking functional
RpoTp. We report here on differential effects of the
altered RpoTp activities on the usage of NEP promoters.
Our data provide evidence for the importance of RpoTp
for transcription of a subset of NEP promoters and clearly
demonstrate that a second phage-type RNA polymerase
(RpoTmp) is involved in chloroplast transcription and
might play a major role in transcription from PclpP-53
(type-II) and Prrn-139 (Pc) NEP promoters.

MATERIALS AND METHODS
Plant material

Arabidopsis thaliana (ecotype Columbia) was grown on
MS medium under an 8h/16h light/dark cycle at 20°C.
After 14 days the seedlings were exposed to a light regime
of 16 h/8 h light/dark. AthRpoTp insertion mutants sca3-2

and sca3-3, kindly provided by José Luis Micol, were
grown as described by Hricova et al. (38).

Plasmid construction

Plasmid pMS1 was constructed by PCR amplification of
the AthpsbA promoter sequence from A. thaliana using
(NC_000932) primers 73 TACATTGGTTGACATGG
CTAT (1567) and 74 ATCCAGTTACAGAAGCGACC
(1383); pMS3 contains a PCR fragment (77 GAAATC
CCATATAGCCCG, 71774 and 78 CCGGTTAGTCCA
TAAGGG, 72897) comprising the promoter region of
AthclpP; pMS4 contains a PCR fragment (81 GATTAAA
TCCGGGTATTGC, 26281 and 82 GAACTAAATTA
GTAGTGGCAAGTAAAG, 27626) comprising the
promoter region of AthrpoB, cloned into pGEM-T
(Promega).

Plasmid pGPTV-sRpoTp was constructed by PCR ampli-
fication of a 2.99 kb PCR AthRpoTp fragment (At2g24120)
from an Arabidopsis cDNA library using primer gggtct
agaCCTTCCATGGCTTCC (AS 1) and primer GACTCA
GTTGAAGAAGTACTGTGATTTGAG (AS 993) and
subsequently cloning it Xbal/Smal into pGPTV (43). A
3.04kb AthRpoTmp (At5g15700) PCR fragment (gggtcta
GATTGATGTCCAGTGC, AS 1; CTTTATCAGTTGA
AGAAATAAGGTGAATC, AS 1011) was ligated into the
Xbal and Smal sites of the vector pGPTV resulting in
pGPTV-sRpoTmp.

Transformation of Arabidopsis

Arabidopsis thaliana (ecotype Columbia) plants were
transformed by the floral dip method according to Ref.
(44) using Agrobacterium tumefaciens strain EHA105
transformed with plasmids pGPTV-sRpoTp and
pGPTV-sRpoTmp. Plants were selected on plates contain-
ing 30mg/l phosphinotricine (Sigma). Integration of the
transgenes was confirmed by PCR and Southern hybridi-
zation (data not shown).

Northern blot analysis

Total leaf RNA was prepared using TRIzol (Invitrogen)
following the manufacture’s protocol. Five microgram of
total RNA was subjected to electrophoresis on 1%
agarose-formaldehyde gels, transferred onto nylon mem-
branes and hybridized with random-primed labeled DNA
fragments overnight at 55°C. The DNA fragments were
prepared by PCR using the primers 13 CATTCAT
TGCTGCTCCTCCAGTA (1293) and 14 GAGCCTC
AACAGCAGCTAGGTCT (400) for pshA and 17 GCTC
TGGTGGTTAAGGGTCGAG (54021) and 18 GCAG
GTGCGGGGTCAGT (53138) for atpB.

Primer extension analysis

Primer extension reactions were carried out with 5 pg (psbA),
10 ug (clpP), 15 g (atpB, rrnl6, ycfl) and 20 ug (rpoB) of
total cotyledon and leaf RNA according to standard
protocols (45). Briefly, primers PEAtpsbA(97), TCCAGT
TACAGAAGCGACCCCATAG (5 position in the Arabi-
dopsis plastid genome at 1384), PEArclpP(104), GGTA
CTTTTGGAACGCCAATAGGC (5 position 71857),



PE4AtatpB(5), CAAGCGGATGTGGAATTCAATTTT
(5" position 54281), PE3Atrrni6(6), CGTAGACAAAG
CTGATTCGGAATTG (5 position 100979/137670),
P3-ycf1(213), GGGCCCTATGGAAAATGTGG (5 posi-
tion 109524/129125) and PE4rpoB(2), TACTGAATC
ACATGAAATTTTATCCAACTCC (5 position 26445)
were end-labeled with [y-**PJATP and T4 polynucleotide
kinase (Fermentas). Primer extensions were performed
using Superscript III MMLV reverse transcriptase
(Invitrogen) at 50°C and the resulting products analyzed
on 5% sequencing gels. To map transcript 5'-ends, sequence
ladders were generated using the same primers as listed
above (USB Sequenase 2). Quantification of obtained
signals was done for three independent experiments with a
Phospholmaging system using the complementary soft-
ware (BioRad).

Mapping of transcription initiation sites

To map the transcription initiation site of rpoB in
Arabidopsis, a PCR-based method was employed (46). In
a volume of 100 pl, 5 pg of total RNA, 10 U TAP (tobacco
acid pyrophosphatase, Epicentre) and 40U RNasin
(Fermentas) were incubated for 1h at 37°C (+TAP). As
a control, 5ug of RNA was similarly incubated without
TAP (—TAP). After precipitation, 150 ng of RNA linker
(CGAAUUCCUGUAGAACGAACACUAGAAGA) was
added and ligated with 50 U RNA ligase (Epicentre) for
1 h at 37°C. cDNA was synthesized using primer PElrpoB
(CCTCTTTTTCATCCCCAAGCATC; 5  position
26308) with 200U Superscript III MMLV reverse
transcriptase (Invitrogen) for 1h at 55°C. Two microliter
of cDNA was used in a first PCR using an rpoB gene-
specific primer (PElrpoB) and an adaptor primer
(TGTAGAACGAACACTAGAAGA), followed by a
second PCR with 1/50th of the first PCR as a template,
using the adaptor primer and a nested rpoB gene-specific
primer PE4rpoB. The products were analyzed on 1.8%
agarose gels and bands prominent in the + TAP samples
were isolated and sequenced.

RESULTS

Reduced amounts of AthRpo Tp transcripts lead to delayed
plant development

To investigate the role of RpoTp in plant development,
we created Arabidopsis plants overexpressing AthRpoTp.
Plants expressing AthRpoTp with | transgene copy (Tplx,
Figure 1a) showed no phenotypical differences compared
to the wild type. However, the seeds of plants with five
copies of the AthRpoTp transgene (TpSx) were germinat-
ing into seedlings with white cotyledons, which eventually
greened up to wild-type levels after two weeks (Figure 1b).
Interestingly, such a phenotype was not observable in
tobacco plants overexpressing either AthRpoTp or
NsRpoTp (13). Northern blot analyses of transgene tran-
script levels in the AthRpoTp mutants revealed that
different transgene copy numbers not only resulted in
different seedling phenotypes but also in different tran-
script accumulation of the transgene (Figure 1c¢). Whereas
in Tplx AthRpoTp mRNA accumulated to higher levels
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Figure 1. Overexpression and partially silencing the native AthRpoTp
gene by insertion of ectopic AthRpoTp gene copies leads to different
phenotypes. (a) Single copy plants (Tplx) are not distinguishable from
wild-type plants. Multiple copy plants (Tp5x) germinate into white
seedlings. The white seedlings will eventually become green reaching
wild-type levels after two weeks (b). (¢) In northern blot analyses, 50 pg
total RNA of Tplx (lane 1), TpSx (lane 2) and wild-type plants (lane 3)
was separated in 1% agarose-formaldehyde gels. Ethidium bromide
stained gel image is shown as a loading control (bottom panel). The
RNA blot was hybridized with a single-stranded full-length A7RpoTp
antisense DNA probe. Positions of rRNAs are given on the margin.
AtRpoTp RNA accumulates to highest amounts in overexpressor plants
with only one A7RpoTp transgene (Tplx, lane 1). However, in multiple
copy plants 4tRpoTp RNA levels (TpSx, lane 2) are reduced to lower
than wild-type RNA levels (wt, lane 3).

than in the wild type (Figure lc, lanes 1 and 3), in Tp5x
less than wild-type levels of AthRpoTp transcripts were
observable (lane 2). Both Tplx and Tp5x AhtRpoTp
transcripts showed lower molecular degradation products,
indicating that the transgene mRNAs were subjected to a
faster turnover and might be less stable than the wild-type
AthRpoTp transcripts. Obviously, high copy numbers of
the AthRpoTp transgene may lead to delayed greening in
early seedling development due to higher AthRpoTp
transcript turnover and/or gene silencing. We therefore
considered Tp5x plants as partially silenced in their
AthRpoTp gene expression.

To analyze the delayed secedling development in
TpSx plants, we performed northern analysis of the
PEP-transcribed pshbA (Figure 2a) and the atpB gene
(Figure 2b), which is transcribed by NEP and PEP (30),
with total RNA isolated from 6-day-old cotyledons and
3-week-old leaves. In white cotyledons of Tp5x plants,
only negligible amounts of psh4 messages and reduced
atpB transcript levels were detectable, which returned to
wild-type levels in older leaves. To further investigate the
effect of reduced AthRpoTp expression on Arabidopsis
PEP and NEP promoter activity in Tp5x plants, we
determined transcript levels by primer extension analysis
mapping transcript 5'-ends in 4- and 9-day-old cotyledons
and 6-week-old leaves from both, transgenic and wild-type
plants (Figure 3). Reminiscent to the northern data, the
transcript 5-ends of the PpsbA-77 PEP promoter (30)
accumulated to only ~10-30% of wild-type Ievels
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Figure 2. Northern blot analysis of pshbA4 (a) and atpB (b) transcript
levels in wild type and partially silenced TpSx plants. Five microgram
of total RNA of 6-day-old cotyledons of wild type (lanes 1) and Tp5x
(lanes 3), and of 3-week-old leaves of wild type (lanes 2) and TpSx
(lanes 4) plants was separated in 1% agarose-formaldehyde gels. The
RNA blot was hybridized to the indicated plastid gene sequence (upper
panel). The same blot hybridized with an 18S rRNA probe is shown as
a loading control (18S, bottom panel). Transcript sizes (kb) are given
on the margin.

in 4- and 9-day-old Tp5x cotyledons (see also Figure 4b,
lane 6). Similarly, transcript 5'-ends of the type-I NEP
promoter of the rpoB operon (PrpoB-300; 30) were barely
detectable in Tp5x cotyledons (see also Figure 4a, lane 6).
The Arabidopsis clp P gene is transcribed from a weak PEP
promoter (Pc/pP-115) and a strong type-11 NEP promoter
(PclpP-58; 30). While PclpP-115 followed the same pattern
as observed with PpsbA-77 and PrpoB-300 (see also
Figure 4d, lane 6), examination of Pc/pP-58 revealed no
significant change in its 5'-end accumulation in Tp5x when
compared to the wild type (see also Figure 4d, lane 6).
Reduced expression of AthRpoTp in TpSx plants may
therefore directly affect transcription from type-I, but not
from type-I1I NEP promoters.

Comparison of PEP and NEP initiated transcript 5'-ends
in wild-type and rpo Tp mutants indicates transcriptional
compensation during plant development

To confirm the suggested role of RpoTp in plastid
transcription, we compared PEP and NEP initiated
transcript 5'-ends in wild-type and rpoTp mutants. The
rpoTp mutants sca3-2 and sca3-3 displayed pale-green
cotyledons and leaves as described by Hricova et al. (38).
Compared to the wild type, they were retarded both in
growth and development, i.e. 4-day-old rpoTp seedlings
developmentally equal 2-day-old wild-type seedlings. We
therefore chose these developmental stages to analyze the
accumulation of transcript 5-ends of plastid genes
transcribed from a PEP promoter (psbA), a consensus
type (type-1) NEP promoter (rpoB), by both PEP and
type-I NEP promoters (atpB, ycf1), and by both PEP and
‘non-consensus-type’ NEP promoters (cIpP, rrnl6; 30). To
compare the effects of the reduction with the loss of
AthRpoTp, we additionally examined the accumulation of
these transcript 5'-ends in 4-day-old Tplx and Tp5x plants
(Figures 2 and 3). Unlike Tp5x plants, rpoTp mutants
showed generally no reduction but rather enhanced accu-
mulation of PEP initiated transcript 5-ends from
PpsbA-T77, PatpB-520 (Figure 4b and c, lanes 2 and 3),
Prrn16-112, and Pycf1-34/33 (Figure 5a and c, lanes 2 and 3).
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Figure 3. Partial silencing of AthRpoTp in multiple copy plants
negatively affects transcription of the type-I rpoB NEP promoter.
Less abundant rpoB transcript levels most likely lead to white seedlings
due to delayed PEP synthesis. However, the type-11 ¢/pP-58 promoter is
not affected. Primer extension data are shown for the pshA (a), rpoB (b)
and clpP genes (¢). Mapped NEP type-I (filled circle), type-II (filled
square) and PEP (open circle) promoters are identified by their distance
between the transcription initiation site and the translation initiation
codon in nucleotides (30). For reference, the same end-labeled primer
was used to generate a DNA sequence ladder.

Interestingly, the very low abundant transcripts from the
PclpP-115 PEP promoter were absent in 4-day-old rpoTp
mutants (Figure 4d, lanes 2 and 3), but reappeared in
3-week-old leaves (lane 4). By and large, we observed a
similar pattern with all other examined type-I NEP
transcripts as well. Similar to Tp5x, transcripts initiated
from PrpoB-300 (Figure 4a) and the weak PycfI-104
(Figure 5c) type-I NEP promoters showed in comparison
to the 2-day-old wild type reduced levels in the 4-day-old
rpoTp mutants (lanes 1-3), which in 3-week-old leaves of
the rpoTp mutants returned to levels close to those found
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Figure 4. Mapping of rpoB (a), pshbA (b), atpB (¢) and clpP (d)
transcription sites in wild type and in rpoTp mutant seedlings. RNA
isolated from 2-day-old wild type (lane 1), 4-day-old RpoTp T-DNA
insertion lines sca3-3 (lane 2) and sca3-2 (lane 3), 3-week-old sca3-2
leaves (lane 4), 4-day-old plants with single (Tplx, lane 5) and multiple
(Tp5x, lane 6) AthRpoTp transgene copies were analyzed by primer
extension. The lower panels show products generated with a second,
cytoplasmatic 18S ribosomal RNA primer in the same primer extension
reactions as shown above (18S). Mapped NEP type-1 (filled circle),
type-II (filled square) and PEP (open circle) promoters are identified by
their distance between the transcription initiation site and the
translation initiation codon in nucleotides.
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Figure 5. Mapping of rrnl6 (a and b) and ycfI (¢ and d) transcription
sites in wild type and in rpoTp mutant seedlings. RNA isolated from
2-day-old wild type (lane 1), 4-day-old RpoTp T-DNA insertion lines
sca3-3 (lane 2) and sca3-2 (lane 3), 3-week-old sca3-2 leaves (lane 4),
4-day-old plants with single (Tplx, lane 5) and multiple (TpSx,
lane 6) AthRpoTp transgene copies were analyzed by primer extension
(a and ¢). To control for loading and recovery, the primer extension
reactions shown above contained a second primer for the cytoplasmatic
18S ribosomal RNA. The generated products are shown in the lower
panels (18S). A physical map of the rrni6 region (b) and the ycf7 region
(d) showing promoter usage in wild type (top) and in the sca3 mutant
(bottom) is shown below. Primary transcripts from NEP and PEP
promoters are marked by filled circles and open circles and labeled with
their distance between the transcription initiation site and the
translation initiation codon in nucleotides.
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in the wild type (lanes 1 and 4). In case of ParpB-318
(Figure 4c¢) and Pycf1-39 (Figure 5¢), no corresponding
S’-ends were observed in the primer extension analyses
with RNAs from 4-day-old rpoTp mutants (lanes 2 and
3). However, in 3-week-old leaves of sca3-2 and sca3-3
RNA from these promoters accumulated close to wild-
type levels (lanes 1 and 4).

Analyses of the accumulation of the two NEP
promoters PclpP-58 (Figure 4d) and Prrnl6-139
(Figure 5a), however, revealed a different picture. The
5’-ends initiated from both promoters did not decrease in
the rpoTp mutants (lanes 2 and 3). While accumulation
from PclpP-58 seemed not to be affected (Figure 4d, lanes
2 and 3), Prrni6-139 5-ends accumulated to much higher
levels in sca3-2 and sca3-3 (lanes 2 and 3) than in the wild
type (lane 1). Interestingly, although to much lower extent,
this was also observable in Tp5x plants (lane 6).

We therefore conclude that, to some extent, an
additional RNA polymerase is able to compensate for
the loss of AthRpoTp, by recognizing and initiating
from type-I NEP promoters. AthRpoTmp, as the only
known second phage-type RNA polymerase in plastids, is
the best candidate to maintain the observed transcript
initiation as suggested by Hricova et al. (38). Since tran-
scription from non-consensus (type-II) promoters was not
negatively, but rather positively affected in the rpoTp
mutants, one may speculate that AthRpoTmp might be
responsible for transcription of these promoters in wild-
type plants.

DISCUSSION

Plastid genes in Arabidopsis are transcribed by at least
three RNA polymerases. PEP uses bacterial-type promo-
ters, which are found upstream of genes encoding
components of the photosynthetic apparatus, and often
together with NEP promoters upstream of housekeeping
genes. NEP activity is required for the expression of most
housekeeping genes and most important, for the tran-
scription of the genes for the core subunits of PEP (6).
Although most yet described NEP promoters contain an
YRTA consensus motif (type-I NEP promoters), several
others do not, which in Arabidopsis are most prominently
represented by PclpP-58 (type-I1 NEP promoter) and the
Pc Prrm16-139 promoter (30). In vitro transcription assays
have shown, that for accurate recognition of the majority
of promoters by NEP enzymes in vivo, additional yet
unknown factors are needed (31,39). So far, individual
roles of RpoTp and RpoTmp in NEP promoter recogni-
tion are unknown. An indication for a role of RpoTp
transcription from type-I NEP promoters was provided by
overexpression of the RpoTp enzyme in transgenic
tobacco plants (13). In this study, we present for the first
time evidence that an additional phage-type RNA
polymerase other than RpoTp is involved in transcription
of plastid genes by recognizing NEP promoters.
Obviously, with RpoTm so far shown to be exclusively
mitochondrial localized, RpoTmp might represent the
additional RNA polymerase activity in plastids.
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To investigate the individual role of RpoTp in plastid
transcription, we analyzed Arabidopsis mutants lacking
RpoTp (sca3-2, sca3-3: rpoTp; 38), with partially silenced
AthRpoTp gene expression (TpSx) and Arabidopsis plants
overexpressing the AthRpoTp gene (Tplx). Although we
detected an enhanced level of RpoTp transcripts in Tplx
overexpressor plants, they did not differ from the wild
type. Since we found also indications for a fast degrada-
tion of the RpoTp transcripts in Tplx, these plants may
not possess markedly higher RpoTp amounts and activity
than the wild type. In contrast, rpoTp plants displayed a
pale-green phenotype throughout their development,
whereas Tp5x plants with reduced AthRpoTp transcript
levels germinated into seedlings with white cotyledons,
which eventually greened up after nine days, and
subsequently developed normally (Figure 1). The sca3-2
and sca3-3 RpoTp insertion mutants were previously
shown to lack functional RpoTp (38). Analysis of the
transcript 5'-ends of NEP and PEP promoters in 4-day-old
plants showed striking similarities for the effect on NEP
but not on PEP promoter usage between Tp5x and the
rpoTp mutants. It seems likely that reduction of AtRpoTp
transcript levels leads to lower AthRpoTp enzyme
amounts, which may be responsible for the observed
negative effect on transcription of the rpoB operon. This
possibly results in decreased amounts of PEP, which in
turn results in delayed accumulation of PEP transcripts.
After 9 days AtRpoTp amounts may build up to levels
that allow for sufficient expression of PEP-transcribed
photosynthesis genes such as psbA and finally facilitating
greening up of the cotyledons. In rpoTp plants, however,
transcript accumulation from PrpoB-300 is not as strongly
affected as in Tp5x plants and levels of the PEP PpsbA-77
5-ends seem not to be affected (Figure 4). In contrast to
partially silenced Tp5x plants, rpoTp plants completely
lack AthRpoTp. Therefore, different control mechanisms
of maintaining plastid gene expression in interaction with
the nucleus may take place, e.g. by stronger expression of
RpoTmp, the second phage-type RNA polymerase in
plastids, or of transcription factors responsible for specific
promoter recognition, or by increasing the transcript
stability of plastid genes transcribed by PEP.

Accumulation of 5'-ends from NEP promoters in 4-day-
old rpoTp plants showed remarkable differences to the
wild type (Figures 4 and 5). While transcript 5'-ends of
some type-I NEP promoters such as PrpoB-300 and Pycf1-
104 showed reduced levels, no accumulation could be
observed for PatpB-318 and Pycf1-39. However, in all
cases, accumulation of these promoters returned to wild-
type levels in 3-week-old rpoTp plants. With AthRpoTmp
being the second phage-type RNA polymerase in plastids,
we propose that AthRpoTmp is able to take over the
transcription from type-I NEP promoters.

The T7 RNA polymerase is a single-polypeptide
polymerase and does not need any transcription factor
(47) whereas mitochondrial phage-type RNA polymerases
of animals and yeasts need two transcription factors for
promoter recognition and to optimal transcriptional
efficiency (48). Such general transcription factors are
not known yet in plants but predicted to exist from
data obtained by in vitro transcription assays with the

Arabidopsis phage-type RNA polymerases (39). More-
over, our data indicate the existence of more promoter-
specific factors acting only at certain developmental
stages. The differential recognition of NEP promoters in
mutants and wild type, in particular the inability to use
Pycf1-39 and PatpB-318 only in very young seedlings of
the mutants, points to missing interaction between
activator(s) and RpoTmp. Interestingly, accumulation of
5’-ends from so-called non-consensus type NEP promoters
(type-II) such as PclpP-58 and the Prrnl6-139 (Pc pro-
moter) was not affected and even enhanced, respectively,
in 4-day-old rpoTp plants. We therefore conclude that
AthRpoTmp may have a special function in maintaining
transcription from this type of promoters in wild-type
plants. AthRpoTp, in turn, seems to be important for
recognition and transcription from type-I NEP promoters,
as suggested by Liere et al. (13). Beside a division of labor
between RpoTp and RpoTmp with regards to promoter
usage, the two polymerases may be of variant importance
in different tissues. It was recently reported that RpoTp
shows maximal expression in green tissues whereas
the highest RpoTmp promoter activity was observed in
meristematic and young cells containing non-green
plastids (49).

In conclusion, we have analyzed the usage of PEP
promoters (recognized by the bacterial-type plastid-
encoded RNA polymerase) and NEP promoters (recog-
nized by phage-type nuclear-encoded RNA polymerases)
in Arabidopsis plants with altered and lacking RpoTp
activity. Low or lacking activity of RpoTp led to lower
levels of transcripts originating from NEP promoters with
the consensus YRTA motif. The strong NEP promoter
that drives transcription of the essential ycf1 gene in wild-
type chloroplasts was even not used at all in very young
mutant seedlings without functional RpoTp. This data
demonstrates on one hand the importance of RpoTp for
chloroplast transcription. On the other hand, most NEP
promoters were active even in the absence of RpoTp
activity, thus providing clear evidence for the participation
of another phage-type RNA polymerase (RpoTmp) in the
transcription of plastid genes from NEP promoters.
Interestingly, usage of the non-consensus promoters of
the c¢/pP gene and the rrn operon was not affected and even
enhanced, respectively, by the lack of RpoTp activity. Our
data indicate that RpoTp and RpoTmp together form the
NEP activity and play overlapping as well as specific roles
in the transcription of plastid genes. During the reviewing
process of this manuscript, Courtois et al. (50) published
data, which are in agreement with our results. Further
studies including also plants with altered RpoTmp activity
have to show if the two phage-type polymerases play
different roles in different tissues and at certain stages
of plant development.
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